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Mandouze,‡ Francesco Rinaldo Talenti,‡,⊥ Abdelmounaim Harouri,† Bruno
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This supplement is 11 pages long and contains 4 figures.

Losses and group index

Losses and group indices for TE and TM polarisations are extracted using Fabry-Pérot fringe

analysis, following the work in Reference1. The experimental setup consists of a broadband

light source (Exalos EBS300006-03), the waveguide under study, a polarisation controller to

choose either of the two polarisations, and an optical spectrum analyzer (OSA) to record the

transmitted spectrum. The normalized transmission spectra for TE and TM are presented

in Fig. S1 (a). The losses for each mode, deduced from the fringe contrast and a reflectivity

of 0.3 for both cleaved facets, are represented in Fig. S1 (b). Losses for the TE polarisation

are less than 10 cm−1 over the entire frequency range in the spectrum, and as low as 7 cm−1

in the region of interest (187THz to 188.5THz). Losses for the TM polarisation are similar

to those for the TE polarisation, except for a peak of 20 cm−1 at 188THz. Taking these

losses into account, the group index is retrieved from the spectral interval between fringes in

the transmitted spectra plotted in Fig. S1 (a). The evolution of the group index for TE and

TM as a function of frequency are plotted in Fig. S1 (c). The plots reveal that the group

index is slightly higher than the index of GaP (3.05). No difference between TE and TM is

observed.

Thermal drift

In an ideal OP-GaP structure and at the considered frequencies, all the input optical-pump

power should be converted, transmitted or, back-reflected. In real structures, residual doping,

surface states on the etched facets of the waveguide or defects at the bonding and regrowth

interfaces, or the inversion boundaries between the alternating domains in OP-GaP can all

contribute to losses in these structures. Among these, the last are highly detrimental, as they

overlap the most with the optical mode. To better evaluate their individual contribution and
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Fig. S1: a) Normalized transmission spectra as a function of frequency for TE and TM
polarisation of the fundamental. Envelopes for the two curves are given in red (max) and
blue (min). The Fabry-Pérot contrast, computed from these envelopes, is used to deduce
losses for TE and TM polarisations. The evolution of these losses as a function of frequency
are shown in b). Losses in TE polarisation are less than 10 cm−1 over the entire measured
range, and less than 7 cm−1 in the region of interest. Losses in TM polarisation are similar,
except for a peak of 20 cm−1 at 188THz. Taking these losses into account, the Fabry-Pérot
fringe spacing is used to deduce the group indices. The evolution of the group index for
TE and TM polarisation with frequency is shown in c). The group indices for the two
polarisations are similar, and both slightly higher than the optical index of GaP. No TE-TM
birefringence on the group index is observed.

discriminate whether their origin lies in scattering or absorption, the percentage of purely

optical absorption is deduced from the thermal drift observed in the second-harmonic output

power.

The first step in this calculation is to determine the thermal resistance of the suspended

waveguide. This resistance can be deduced from the equivalent RC circuit of the waveguide,

that follows the equation:
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Fig. S2: a) Mapping of the SHG spectra as a function of the incident pump power in the fibre.
Spectra are recorded by sweeping the frequency from blue to red and from low to high input
power. A frequency drift of the Fabry-Pérot fringes of 1.14THzW−1 is extracted through
linear fitting of the maximum generation pic. b) Calculated temperature distribution at
steady state of a 20 µm-long suspended waveguide section.

Cth
dT

dt
= W − T

Rth

. (S1)

Here, Cth is the circuit’s thermal capacity, W the power of the source of heating, and Rth

the circuit’s thermal resistance. The steady-state temperature distribution of a 20µm-long

section of the OP-GaP waveguide is shown in Fig. S2 (a). The distribution was obtained from

COMSOL® (Heat transfer in solids model). Only the central part of the modelled section

is visible, the complete model being much larger (H = 350 µm×L = 1mm×W = 20 µm) to

mimic the real size of the sample. As boundary conditions, an external temperature of 20 °C

is imposed on the underside. In the steady state, the left-hand term in Equation S1 is nil,

yielding a thermal resistance of Rth = 3.75× 105KW−1 for the 20 µm-long waveguide. The

distribution shows that the side apertures, used to suspend the waveguide, tend to increase

the temperature in the waveguide and, hence, the thermal resistance.

In order to determine the fractional power absorbed in the sample, the temperature within

the waveguide has to be determined. This is done by recording the conversion efficiencies as
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a function of wavelength for increasing input powers. Fig. S2 (a) maps the second-harmonic

output power to the incident pump power in the fibre and the frequency of the second

harmonic. The mapping reveals the presence of a linear drift of the frequency at peak SHG

with increasing input power, with a slope of 1.14THzW−1. This value takes into account

3.75 dB of coupling losses. Considering that ∆f
f

= ∆n
n
, an index change of ∆n = 5.47× 10−4

is deduced. Differentiating the Sellmeier equation2 yields a thermo-optical coefficient of

∆n
∆T

= 1.189×10−4K−1. Thus a 4.6K temperature increase is deduced. Knowing the average

power in the 1mm-long waveguide, P =
√
Pin ∗ Pout =23mW, and according to Equation S1,

we can estimate 2.67% of the circulating optical power is absorbed, a value that corresponds

to an absorption coefficient α of 0.27 cm−1.

Optimal interaction length

Under the hypothesis of a non-depleted pump, the conversion efficiency for second harmonic

generation is:

η =
2ω2

ε0c3
d2eff

n2
ωn2ω

L2HΓ. (S2)

The optimal waveguide length Lopt is defined as the length for which η is maximum.

Therefore:

dη

dL

∣∣∣∣∣
L=Lopt

= 0. (S3)

In Equation S2, only L2h depends on L. Hence, Equation S3 can be written as:

d

dL

(
L2H

)∣∣∣∣∣
L=Lopt

= 0. (S4)

The phase-mismatch function, H is defined as:
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H =

(
sinh

(
∆αL/2

)
cos
(
∆βL/2

))2
+
(
cosh

(
∆αL/2

)
sin
(
∆βL/2

))2((
∆α2 +∆β2

)
L2/4

) × e−
(

a2ω
2

+αω

)
L.

(S5)

Quasi phase matching implies ∆β = 0. As a result, Equation S5 reduces to:

H =
sinh2

(
∆αL/2

)
∆α2L2/4

× e−
(

a2ω
2

+αω

)
L. (S6)

Following this equation, L2H can be expressed as:

L2H =
sinh2

(
∆αL/2

)
∆α2/4

× e−
(

a2ω
2

+αω

)
L. (S7)

Using the following identity:

sinh2(x) =
1

2

(
cosh(2x)− 1

)
, (S8)

Equation S7 becomes:

L2H =
cosh

(
∆αL

)
− 1

∆α2/2
× e−

(
a2ω
2

+αω

)
L. (S9)

By definition, the hyperbolic cosine is:

cosh(x) =
ex + e−x

2
. (S10)

Using this definition, Equation S9 can be expanded to:

L2H =
e∆αL + e−∆αL − 2

∆α2
× e−

(
a2ω
2

+αω

)
L. (S11)
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Carrying the exponential, the last equation further simplifies to:

L2H =
1

∆α2

(
e−2αωL + e−2

α2ω
2

L − 2e−
(

a2ω
2

+αω

)
L

)
(S12)

Differentiating this expression with respect to L yields:

d

dL

(
L2H

)
=

1

∆α2

(
− 2αωe

−2αωL − 2
α2ω

2
e−2

α2ω
2

L + 2
(a2ω

2
+ αω

)
e−
(

a2ω
2

+αω

)
L

)
. (S13)

The derivative is equal to zero if:

−2αωe
−2αωL − 2

α2ω

2
e−2

α2ω
2

L + 2
(a2ω

2
+ αω

)
e−
(

a2ω
2

+αω

)
L = 0. (S14)

Simplifying by two and factoring terms in αω and α2ω yields:

αω

(
e−
(

a2ω
2

+αω

)
L − e−2αωL

)
+

α2ω

2

(
e−
(

a2ω
2

+αω

)
L − e−2

α2ω
2

L
)
= 0. (S15)

Factoring out e−αωL in the first parenthesis and e−
α2ω
2

L in the second yields:

αωe
−αωL

(
e−

a2ω
2

L − e−αωL
)
− α2ω

2
e−

a2ω
2

L
(
e−

a2ω
2

L − e−αωL
)
= 0, (S16)

which, in turn, can be factored and rewritten as:

(
αωe

−αωL − α2ω

2
e−

a2ω
2

L
)(

e−
a2ω
2

L − e−αωL
)
= 0. (S17)

For L > 0 and non-zero absorption losses, the last equation is equivalent to:

αωe
−αωL − α2ω

2
e−

a2ω
2

L = 0. (S18)
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This, in turn, is equivalent to:

e∆αL =
α2ω

2αω

. (S19)

Using the natural logarithm and solving for L yields an optimal length Lopt of:

Lopt =
1

∆α
ln

α2ω

2αω

, (S20)

or, finally:

Lopt =
2

α2ω − 2αω

ln
α2ω

2αω

. (S21)

With both αω and α2ω at 7 cm−1, Lopt has a value of 2mm, twice the one used in the paper.

Therefore, the conversion efficiency can be improved by a factor 1.4 simply by doubling the

length of the waveguide. Furthermore, assuming that αω ∼ α2ω, a reduction by a factor

two of the losses would allow increase the optimal length to 4mm, at which length the

conversion efficiency would be 1100%W−1 cm−2, a factor five improvement. Reducing the

losses by a factor ten and keeping the length to 4mm, would yield a conversion efficiency

of 6000%W−1 cm−2, better than PPLN waveguides reported in the literature for similar

lengths. Fig. S3 shows plot that summarize these findings.

Impact of slanted waveguide sidewalls on Type I and

Type II configurations

Overlapping between Type-I and Type-II SHG processes has been observed experimentally.

Yet calculations performed using an ideal waveguide profile, do not predict such overlap

even though, for reasons related to the almost squared geometry of the waveguide, the

two generation maxima are spectrally close. In order to investigate this in more detail,

simulations were carried out using FIMMWAVE®. On figure S4a) is reported the period

Λ for the quasi-phase matching (QPM) as a function of wavelength for Type-I and Type-II
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a)

b) c)

Fig. S3: (a) Conversion efficiency versus waveguide length for losses at 7 cm−1. The optimal
length is 2mm. (b) Optimal length and (c) Conversion efficiency as a function of losses for
the fundamental and the second harmonic.

configurations. With respect to experimental data, for a poling period of 5.5 µm, the Type-I

and Type-II maximum generation processes are respectively 35 nm and 15 nm off (spectral

separation of 20 nm).

Due to a dependence of the etching behavior between the two orientations of GaP, a

periodic modulation of the sidewall angle is observed. SEM observations suggest angles of

±15 deg depending on which material orientation is considered (direct or indirect). New

calculations were made taking into account this consideration. Note that the width of the

waveguideW at the top is kept constant whatever the angle. Effective indices were computed

for both angles and then averaged for the two polarisations of the field. On figure S4b), one
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Fig. S4: Period Λ for the quasi-phase matching as a function of wavelength for respectively
a) ideal waveguide profile and b) periodically modulated sidewall angles (±15 deg).

can observe that the offset is reduced (≈10 nm off) with respect to experiment and more

importantly Type-I and Type-II are now very close with a spectral separation of 2.9 nm

(≈350GHz), in good agreement with the experiment.
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