Supporting Information

Speed of Sound and Excess Properties of (Ethanol + Isooctane) Binary System

Ying Zhang[†], Yongbo Zhang[†], Yuqi Su[†], Junshuai Chen[†], Taotao Zhan[†], Hengfei Zhang[†], Maogang He^{†,*}

[†]Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, P. R. China

*To whom correspondence and proof should be sent: Prof. Dr. Maogang He, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi province, 710049, P. R. China, Tel: +86–29–8266–3863; Fax: +86–29–8266–3863

^{*}Corresponding author. Tel: +86-29-8266-3863; Fax: +86-29-8266-8789 Email address: mghe@xjtu.edu.cn (Maogang He)

Figure S1. Schematic of the Experimental Optical Setup for the Speed of Sound.

Figure S2. The control and measurement systems of temperature and pressure.

Figure S3. Experimental speeds of sound for the binary system of ethanol (1) + isooctane (2) at different mole fractions as a function of temperature at p = 5.0 MPa: \square , $x_1 = 0.100$; \square , $x_1 = 0.300$, \triangle , $x_1 = 0.500$; \square , $x_1 = 0.700$; \square , $x_1 = 0.900$.

Figure S4. Plots of excess acoustic impedance against mole fraction at 3.0 MPa: \square , T = 298.15 K; \square , T = 400.15 K.

Figure S5. Plots of excess acoustic impedance against mole fraction at 3.0 MPa: \square , T = 298.15 K; \square , T = 400.15 K.

Figure S6. Plots of excess isothermal compressibility against mole fraction at 3.0 MPa: \square , T = 298.15 K; \square , T = 400.15 K.