Supporting Information

Nontoxic tumor-targeting optical agent for intraoperative breast tumor imaging

Samer Naffouje^{1,2}, Masahide Goto¹, Lori U. Coward³, Gregory S. Gorman³, Konstantin Christov¹, Jing Wang⁴, Albert Green¹, Anne Shilkaitis¹, Tapas K. Das Gupta¹, and Tohru Yamada^{1,5,*}

¹ Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA.

²Current address: Surgical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA

³ McWhorter School of Pharmacy, Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL 35229, USA

⁴ Department of Mathematics, Statistics and Computer Science, University of Illinois College of Liberal Arts and Sciences, IL 60612, USA

⁵ Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Medicine and Engineering, Chicago, IL 60607, USA.

* Corresponding author: tohru@uic.edu

Table of Contents

Overall structure of p28 parent molecule, azurin	S3
Calibration standard of ICG-p28	S4
PK parameters and biodistribution of ICG-p28 in MDA-MB-231	S5
PK parameters and biodistribution of ICG-p28 in IOWA-1T	S6
Potential membrane toxicity of ICG alone and p28 alone	S7
Potential cellular toxicity of ICG alone and p28 alone	S8
Primary and secondary sequence of p28, AA3H and scramble p28	
peptides	S9

Supplemental data

Figure S1

Figure S1. Full-length azurin. The α -helical domain incorporated into p28 (aa 50-77) is highlighted in **red**. The β -barrel structure is oriented vertically.

Figure S2

Figure S2. The representative calibration standard of ICG-p28 recovered from mouse serum. Each sample was analyzed by LC/MS/MS. r²=0.999.

Figure S3. PK parameters and biodistribution of ICG-p28 in MDA-MB-231 xenografted mice. A. Levels of ICG-p28 in MDA-MB-231 cells were determined by LC/MS. **B.** PK parameters were calculated from the levels of p28 (**A**). **C.** The fluorescence intensities of each organ from animals bearing MDA-MB-231 xenografts were determined at each exposure time, and the AUC was analyzed based on the intensities (**D**). Mean+SD.

Figure S4. PK parameters and biodistribution of ICG-p28 in IOWA-1T xenografted mice. A. Levels of ICG-p28 in IOWA-1T cells were determined by LC/MS. **B.** PK parameters were calculated from the levels of p28 (**A**). **C.** The fluorescence intensities of each organ from animals bearing IOWA-1T xenografts were determined at each exposure time, and the AUC was analyzed based on the intensities (**D**). Mean+SD.

Figure S5. Membrane toxicity. Either ICG alone (**A**) or p28 alone (**B**) was applied to human breast cancer cell lines and normal cell lines to determine membrane toxicity via LDH leakage assays. Paclitaxel was used as a positive control compound. Mean+SD. #: P<0.001 (ANOVA).

Figure S6. Cellular toxicity. Either ICG alone (**A**) or p28 alone (**B**) was applied to human breast cancer cell lines and normal cell lines to determine cellular toxicity via MTT assays. Paclitaxel was used as a positive control compound. Mean+SD. #: P<0.001 (ANOVA).

Figure S7. Primary and secondary sequence comparisons among p28, AA3H and scramble p28 peptides. Multiple sequence alignment via Clustal W 2.1 (A) and secondary structural analysis via Quick2D (H: α -helix, E: β -sheet) (B).