Supporting Information

Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production.

Cyrille Costentin, ${ }^{* a, b}$ Fakourou Camara, ${ }^{a}$ Jérôme Fortage, ${ }^{a}$ and Marie-Noëlle Collomb ${ }^{a}$
${ }^{a}$ Univ Grenoble Alpes, DCM, CNRS, 38000 Grenoble, France. ${ }^{b}$ Université Paris Cité, 75013 Paris, France.

1. Derivation of equations

1.1. Ideal system

We consider a simple kinetic scheme for a photocatalytic process with reductive quenching including a photosensitizer (PS), a sacrificial donor (SD), a catalyst ($\mathrm{Cat}_{\mathrm{ox}}$ and $\mathrm{Cat}_{\mathrm{red}}$) and a substrate $\left(\mathrm{S}_{\mathrm{ox}}\right)$ leading the product $\left(\mathrm{P}_{\mathrm{red}}\right)$ (Scheme S 1).

We make the following simplification assumptions:

- SD is in excess so that its concentrations remain constant throughout the experiment.
- S_{ox} is in excess so that its concentrations remain constant throughout the experiment.
- No back reaction between the final product and the oxidized sacrificial donor.
- The irradiation is constant so that the excitation of PS can be described as a pseudo-first order process with a rate constant $k_{a b s}$.
- All intermediate are at steady-state which implies that the rate determining step is the quenching process.

Scheme S1

Kinetic equations:
$\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
and
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{*}\right]}{d t}=k_{a b s}[\mathrm{PS}]-k_{b}\left[\mathrm{PS}^{*}\right]-k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0} \approx 0$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
Resolution
Because $\mathrm{Cat}_{\text {red }}$ is at steady state, it does not accumulate and $\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} ;\left[\mathrm{Cat}_{\mathrm{ox}}\right]$ and the steady-state approximations lead to:
$\left[\mathrm{PS}^{*}\right]=\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
and

$$
\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)}\left[\mathrm{PS}^{*}\right]=\left[\mathrm{PS}^{\bullet-}\right]
$$

Therefore:

$$
\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

with
$[\mathrm{PS}]_{0}=[\mathrm{PS}]+\left[\mathrm{PS}^{*}\right]+\left[\mathrm{PS}^{\bullet-}\right]$
Thus:

We also have:
$\left[\mathrm{Cat}_{\mathrm{red}}\right]=k_{E T}\left[\mathrm{PS}^{\bullet-}\right] \frac{\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \approx \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$ leading
to:
$\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)[\mathrm{PS}]_{0}}{\left(\frac{1}{k_{a b s}}+\frac{1}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]\right)+\frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}$
Now we need to get $\left[\mathrm{SD}^{\bullet+}\right]_{t}$
We have:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
Combined with $\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
We obtain:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
Combined with:
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
We obtain:

$$
\begin{aligned}
& \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\text {red }}\right] \\
& \text { therefore: } \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{d\left[\mathrm{P}_{\text {red }}\right]}{d t} \text { and hence }\left[\mathrm{SD}^{\bullet+}\right]_{t}=\left[\mathrm{P}_{\text {red }}\right]_{t} \text { because }\left[\mathrm{SD}^{\bullet+}\right]_{0}=\left[\mathrm{P}_{\text {red }}\right]_{0}=0
\end{aligned}
$$

thus:

$$
\left.\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)[\mathrm{PS}]_{0}}{\left.\frac{1}{k_{\text {abs }}}+\frac{1}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}+\frac{1}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}\right) \text { thus: }
$$

Which can be rearranged to:
which integration gives:

$$
\begin{aligned}
& {\left[\mathrm{SD}^{\bullet+}\right]+\left(\frac{k_{\text {betc }}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}+\frac{\left(1+\frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right) k_{\text {bet }}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}\right) \frac{\left[\mathrm{SD}^{\bullet+}\right]^{2}}{2}} \\
& +\frac{k_{\text {betc }}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}\left(\frac{\left(1+\frac{k_{\text {abs }}}{k_{b}+k_{Q}\left[\mathrm{SD}_{0}\right.}\right)}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}\left[\mathrm{SD}_{0}\right.}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}} k_{\text {bet }}\right) \frac{\left[\mathrm{SD}^{\bullet+}\right]^{3}}{3} \\
& =\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}} \times t
\end{aligned}
$$

Recalling that $\left[\mathrm{P}_{\text {red }}\right]_{t}=\left[\mathrm{SD}^{\bullet+}\right]_{t}$, we finally obtain the turnover number $\operatorname{TON}_{\text {cat }}=\frac{\left[\mathrm{P}_{\mathrm{red}}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}$

$$
\text { In most cases } \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} \ll 1 \text {, thus: }
$$

$$
\operatorname{TON}_{c a t}+\left(\frac{k_{b e t c}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}+\frac{k_{b e t}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}\right) \frac{\left(\operatorname{TON}_{\text {cat }}\right)^{2}}{2}+\frac{k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}\left(\frac{k_{b e t}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}\right) \frac{\left(\operatorname{TON}_{\text {cat }}\right)^{3}}{3}=\frac{\frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0} k_{a b s}[\mathrm{PS}]_{0}}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}} \times t
$$

Thus, introducing: $T O F_{c a t, 0}=\gamma p_{Q} k_{a b s} \gamma=\frac{[\mathrm{PS}]_{0}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}, p_{\text {bet }}=\frac{k_{\text {bet }}}{k_{E T}}, p_{\text {betc }}=\frac{k_{\text {betc }}[\mathrm{PS}]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}}$ and $p_{Q}=\frac{k_{Q}[\mathrm{SD}]}{k_{b}+k_{Q}[\mathrm{SD}]}$, we obtain:

$$
T O N_{c a t}+\left(p_{\text {bet }}+\frac{p_{\text {betc }}}{\gamma}\right) \frac{\left(T O N_{\text {cat }}\right)^{2}}{2}+p_{\text {bet }} \frac{p_{\text {betc }}}{\gamma} \frac{\left(T O N_{\text {cat }}\right)^{3}}{3}=\gamma p_{Q} k_{a b s} \times t=T O F_{c a t, 0} \times t
$$

1.2. Deactivation of the catalyst

The same system as in section 1.1. is considered (with similar assumptions) excepted that the reduced form of the catalyst can now irreversibly degrades via a first order process (Scheme S2).

Kinetic equations:

$$
\begin{aligned}
& \operatorname{TON}_{c a t}+\left(\frac{k_{b e t c}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}+\frac{\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right) k_{\text {bet }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{\left.\left.k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right) \frac{\left(\text { TON }_{\text {cat }}\right)^{2}}{2}\right)}\right. \\
& +\frac{k_{b e t c}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}\left(\frac{\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right) k_{\text {bet }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{\left.\left.k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right) \frac{\left(\text { TON }_{\text {cat }}\right)^{3}}{3}\right)}\right. \\
& =\frac{k_{E T} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{a b s} \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}} \times t
\end{aligned}
$$

$\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
and
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-\left(k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}\right)\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{*}\right]}{d t}=k_{a b s}[\mathrm{PS}]-k_{b}\left[\mathrm{PS}^{*}\right]-k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0} \approx 0$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
$\frac{d\left[\mathrm{Cat}_{\text {dead }}\right]}{d t}=k_{c}\left[\mathrm{Cat}_{\text {red }}\right]$
Resolution:
The steady-state approximations lead to:
$\left[\mathrm{PS}^{*}\right]=\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
and
$\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.}\left[\mathrm{PS}^{*}\right]=\left[\mathrm{PS}^{\bullet-}\right]$
Therefore:
$\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
with
$[\mathrm{PS}]_{0}=[\mathrm{PS}]+\left[\mathrm{PS}^{*}\right]+\left[\mathrm{PS}^{\bullet-}\right]$
Thus:
$[\mathrm{PS}]=\frac{[\mathrm{PS}]_{0}}{\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}+\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}$
We also have:
$\left[\mathrm{Cat}_{\mathrm{red}}\right]=k_{E T}\left[\mathrm{PS}^{\bullet-}\right] \frac{\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \approx \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
leading to:
$\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)[\mathrm{PS}]_{0}}{\left(\frac{1}{k_{a b s}}+\frac{1}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)+\frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}$
Now we need to get $\left[\mathrm{SD}^{\bullet+}\right]_{t}$ and $\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{t}$
We have:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
Combined with $\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right]\left[\mathrm{SD}_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0\right.$
We obtain:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
Combined with:
$\frac{d\left[\mathrm{Cat}_{\text {red }}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-\left(k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}\right)\left[\mathrm{Cat}_{\text {red }}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right] \approx 0$
We obtain:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\left(k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}\right)\left[\mathrm{Cat}_{\mathrm{red}}\right]$
therefore: $\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\left(\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}\right) \frac{d\left[\mathrm{P}_{\text {red }}\right]}{d t}$ and hence $\left[\mathrm{SD}^{\bullet+}\right]_{t}=\left(\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}\right)\left[\mathrm{P}_{\text {red }}\right]_{t}$ because $\left[\mathrm{SD}^{\bullet+}\right]_{0}=\left[\mathrm{P}_{\text {red }}\right]_{0}=0$ thus:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)[\mathrm{PS}]_{0}}{\left.\left.\frac{1}{k_{\text {abs }}}+\frac{1}{k_{b}+k_{Q}\left[\mathrm{SD}_{0}\right.}+\frac{1}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}$
We also have:
$\left[\mathrm{Cat}_{\mathrm{red}}\right]+\left[\mathrm{Cat}_{\mathrm{ox}}\right]+\left[\mathrm{Cat}_{\mathrm{dead}}\right]=\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}$ and $\frac{d\left[\mathrm{Cat}_{\text {red }}\right]}{d t}=0$
Hence:
$\frac{d\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{d t}=-\frac{d\left[\mathrm{Cat}_{\mathrm{dead}}\right]}{d t}=-k_{c}\left[\mathrm{Cat}_{\mathrm{red}}\right]$
We end up with:
$\frac{d\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{d\left[\mathrm{SD}^{++}\right]}=-\frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}$

Thus: $\left[\mathrm{Cat}_{\mathrm{ox}}\right]=\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}-\frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\left[\mathrm{SD}^{\bullet+}\right]$
Hence, we just need to get $\left[\mathrm{SD}^{\bullet+}\right]_{t}$ via resolution of:

$$
\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{a b s} \frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left\{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}-\frac{k_{c}\left[\mathrm{SD}^{\bullet+}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right\}_{E T}[\mathrm{PS}]_{0} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}{\left.\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+\left(k_{b e t}-k_{E T} \frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right)\left[\mathrm{SD}^{\bullet+}\right]\right)+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{Q}[\mathrm{SD}]_{0}\right)}
$$

We consider $\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} \ll 1$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{a b s} \frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]} \frac{\left\{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}-\frac{k_{c}\left[\mathrm{SD}^{\bullet+}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right\} k_{E T}[\mathrm{PS}]_{0} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+\left(k_{b e t}-k_{E T} \frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right)\left[\mathrm{SD}^{\bullet+}\right]\right)}$
Rearranged to:
$\left(\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{c}}\right) \frac{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+\left(k_{\text {bet }}-k_{E T} \frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right)\left[\mathrm{SD}^{\bullet+}\right]\right.}{k_{E T}\left\{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}-\frac{k_{c}\left[\mathrm{SD}^{\bullet+}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}+k_{c}}\right\}} d\left[\mathrm{SD}^{\bullet+}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{\text {abs }}[\mathrm{PS}]_{0} d t$
We introduce $p_{c}=\frac{k_{c}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}$ and $\frac{\left[\mathrm{SD}^{\bullet+}\right]_{t}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}=\left(1+p_{c}\right) T O N_{c a t}^{c}$, hence:
$\left(\frac{1+\frac{p_{\text {betc }}}{\gamma}\left(1+p_{c}\right) \text { TON }_{c a t}}{1+p_{c}}\right) \frac{\left(1+\left(p_{\text {bet }}-\frac{p_{c}}{1+p_{c}}\right)\left(1+p_{c}\right) T O N_{c a t}\right)}{\left(1-\frac{p_{c}}{1+p_{c}}\left(1+p_{c}\right) T O N_{c a t}\right)}\left(1+p_{c}\right) d\left(T O N_{c a t}\right)=\gamma p_{Q} k_{a b s} \times d t$
Rearranged to:

$=\gamma p_{Q} k_{a b s} \times d t$

Which integration gives:

$$
\left(T O N_{c a t}+\frac{p_{\text {betc }}}{\gamma}\left(1+p_{c}\right) \frac{\text { TON }_{\text {cat }}{ }^{2}}{2}\right)+\left(p_{\text {bets }}\left(1+p_{c}\right)\right) \int_{0}^{t} \frac{T O N_{c a t}}{\left(1-p_{c} T O N_{c a t}\right)} d\left(\operatorname{TON}_{\text {cat }}\right)+\left(p_{\text {bet }} \frac{p_{\text {betc }}}{\gamma}\left(1+p_{c}\right)^{2}\right) \int_{0}^{t} \frac{T O N_{c a t}^{2}}{\left(1-p_{c} T O N_{c a t}\right)} d\left(T O N_{c a t}\right)
$$

$$
=\gamma p_{Q} k_{a b s} \times t
$$

We finally obtain; noting that $\operatorname{TON}_{c a t}<T O N_{c a t}^{\lim , c}=\frac{1}{p_{c}}$:
$\left(\operatorname{TON}_{c a t}+\frac{p_{\text {betc }}}{\gamma}\left(1+p_{c}\right) \frac{\text { TON }_{\text {cat }}{ }^{2}}{2}\right)-\left(p_{\text {bet }}\left(1+p_{c}\right)\right)\left\{\frac{\operatorname{TON}_{\text {cat }}}{p_{c}}+\frac{1}{p_{c}^{2}} \ln \left(1-p_{c}\right.\right.$ TON $\left.\left._{c a t}\right)\right\}$
$-\left(p_{\text {bet }} \frac{p_{\text {betc }}}{\gamma}\left(1+p_{c}\right)^{2}\right) \frac{1}{p_{c}^{3}}\left\{\frac{\left(1-p_{c} T O N_{c a t}\right)^{2}}{2}-2\left(1-p_{c} T O N_{c a t}\right)+\ln \left(1-p_{c} T O N_{c a t}\right)+\frac{3}{2}\right\}$
$=\gamma p_{Q} k_{a b s} \times t$

1.3. Deactivation of the photocatalyst

The same system as in section 1.1. is considered (with similar assumptions) excepted that the reduced form of photosensitizer can now irreversibly degrades via a first order process (Scheme S3).

Scheme S3

Kinetic equations:
$\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
and
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{i}\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{*}\right]}{d t}=k_{a b s}[\mathrm{PS}]-k_{b}\left[\mathrm{PS}^{*}\right]-k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0} \approx 0$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{--}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
$\frac{d\left[\mathrm{PS}_{\text {dead }}\right]}{d t}=k_{i}\left[\mathrm{PSS}^{-}\right]$
Resolution
Because Cat $_{\text {red }}$ is at steady state, it does not accumulate and $\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}$; [$\left.\mathrm{Cat}_{\mathrm{ox}}\right]$
The steady-state approximations lead to:
$\left[\mathrm{PS}^{*}\right]=\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
and
$\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{i}\right)}\left[\mathrm{PS}^{*}\right]=\left[\mathrm{PS}^{\bullet-}\right]$
Therefore:
$\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]+k_{i}\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
$\left[\mathrm{Cat}_{\mathrm{red}}\right]=\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\left[\mathrm{PS}^{\bullet-}\right]$
Then:

$$
\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t}=k\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{i}\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

with
$[\mathrm{PS}]_{0}=[\mathrm{PS}]+\left[\mathrm{PS}^{*}\right]+\left[\mathrm{PS}^{\bullet-}\right]+\left[\mathrm{PS}_{\text {dead }}\right]$
Hence:

$$
\frac{d[\mathrm{PS}]}{d t}=-\frac{d\left[\mathrm{PS}_{\mathrm{dead}}\right]}{d t}=-k_{i}\left[\mathrm{PS}^{\bullet-}\right]=-k_{i} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]+k_{i}\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

We need $\left[\mathrm{SD}^{\bullet+}\right]_{t}$. Combination of the kinetic equations leads to:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{d\left[\mathrm{P}_{\text {red }}\right]}{d t}+k_{i}\left[\mathrm{PS}^{\bullet-}\right]$ thus we can make the approximation $\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t} \approx \frac{d\left[\mathrm{P}_{\text {red }}\right]}{d t}$ and therefore $\left[\mathrm{SD}^{\bullet+}\right] \approx\left[\mathrm{P}_{\text {red }}\right]$
We have:

$$
\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=-\left(1+\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}} \frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\right) \frac{d[\mathrm{PS}]}{d t}
$$

Leading to:

$$
\left.\left(\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]+k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right)}+\frac{k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}{k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]+k\left[\mathrm{~S}_{\mathrm{ox}}\right]\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right.}\right)\right) d\left[\mathrm{SD}^{\bullet+}\right]=-d[\mathrm{PS}] \text { which integration }
$$

gives (considering $\left[\mathrm{SD}^{\bullet+}\right]_{0}=0$):

$$
\left[\mathrm{SD}^{\bullet+}\right]-\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right) \ln \left(1+\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right.}\right)=[\mathrm{PS}]_{0}-[\mathrm{PS}]
$$

Leading to:

$$
\left.\left.\begin{array}{l}
\frac{d\left[\mathrm{P}_{\mathrm{red}}\right]}{d t} \approx \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\left(k\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right) \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.} \frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} \\
\times\left\{[\mathrm{PS}]_{0}-\left[\mathrm{SD}^{\bullet+}\right]+\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right) \ln \left(1+\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right.}\right)\right.
\end{array}\right)\right\} \text {, }
$$

Therefore, introducing $p_{i}=\frac{k_{i}}{k_{E T}[\mathrm{PS}]_{0}}$, we obtain:

$$
\frac{d T O N_{\text {cat }}}{d t}=\left(\frac{1}{1+\frac{p_{\text {betc }}}{\gamma} T O N_{\text {cat }}}+p_{i} \gamma\right) \frac{\gamma p_{Q} k_{\text {abs }}}{\left(1+p_{\text {bet }} T O N_{\text {cat }}\right)} \times\left\{1-\frac{T O N_{\text {cat }}}{\gamma}+\frac{1}{p_{\text {betc }}} \frac{1}{p_{i} \gamma} \ln \left(1+\frac{T O N_{\text {cat }}}{\frac{\gamma}{p_{\text {betc }}}\left(\frac{1}{p_{i} \gamma}+1\right)}\right)\right\}
$$

Maximal turnover number: TON $N_{\text {cat }}^{\lim , i}$
We have: $\left.\left[\mathrm{SD}^{\bullet+}\right]-\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right) \ln \left(1+\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right.}\right)\right)=[\mathrm{PS}]_{0}-[\mathrm{PS}]$ with $\left[\mathrm{SD}^{\bullet+}\right] \approx\left[\mathrm{P}_{\text {red }}\right]$
Hence the reaction stops when $[\mathrm{PS}]=0$, i.e.

$$
\left.\left[\mathrm{P}_{\mathrm{red}}\right]_{\max }-\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right) \ln \left(1+\frac{\left[\mathrm{P}_{\mathrm{red}}\right]_{\text {max }}}{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right.}\right)\right)=[\mathrm{PS}]_{0}
$$

For small values of k_{i}, this simplifies to:

$$
\left.\left[\mathrm{P}_{\mathrm{red}}\right]_{\max }+\frac{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right)_{1}}{\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right)} \frac{1}{2} \frac{\left[\mathrm{P}_{\mathrm{red}}\right]_{\mathrm{max}}}{\frac{k\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{\text {betc }}}}\right)^{2}=[\mathrm{PS}]_{0}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}+1\right) \approx[\mathrm{PS}]_{0}\left(\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\right)
$$

Thus: $\operatorname{TON}_{\text {cat }}^{\lim , i}+\frac{k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k\left[\mathrm{~S}_{\mathrm{ox}}\right]} \frac{1}{2}\left(\operatorname{TON}_{\text {cat }}^{\mathrm{lim}, i}\right)^{2}=\frac{k_{E T}[\mathrm{PS}]_{0}}{k_{i}}$ leading to:
$T O N_{\text {cat }}^{\lim , i}=\frac{\gamma}{p_{\text {betc }}}\left(-1+\sqrt{1+2 \frac{p_{\text {betc }}}{\gamma p_{i}}}\right)$

1.4. Ideal two electron system for H_{2} production

We consider a kinetic scheme for a photocatalytic process with reductive quenching involving a two electron process to form the product H_{2} (Scheme S 4).

The same assumptions as in the previous sections are made. We also assume that the intermediate species I is at steady-state.
Scheme S4

Kinetic equations:
We consider and ECEC mechanism where the second reduction (rate constant k_{2}) is slower than the second chemical step leading to H_{2} formation.
$\frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{2}[\mathrm{I}]\left[\mathrm{PS}^{\bullet-}\right]$
and
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{2}[\mathrm{I}]\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{*}\right]}{d t}=k_{a b s}[\mathrm{PS}]-k_{b}\left[\mathrm{PS}^{*}\right]-k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0} \approx 0$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
$\frac{d[\mathrm{I}]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{2}[\mathrm{I}]\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
Thus:
$\frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
Resolution:
Because Cat $_{\text {red }}$ is at steady state, it does not accumulate and $\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} ;\left[\mathrm{Cat}_{\mathrm{ox}}\right]$ and the steady-state approximations lead to:

$$
\left[\mathrm{PS}^{*}\right]=\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

and

$$
\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]+k_{2}[\mathrm{I}]\right)}\left[\mathrm{PS}^{*}\right]=\left[\mathrm{PS}^{\bullet-}\right]
$$

Therefore:
$\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]+k_{2}[\mathrm{I}]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
With $k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{\left[\mathrm{Cat}_{\mathrm{red}}\right]}{\left[\mathrm{PS}^{\bullet-}\right]}=k_{2}[\mathrm{I}]$
Thus $\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{\left[\mathrm{Cat}_{\mathrm{red}}\right]}{\left[\mathrm{PS}^{\bullet-}\right]}\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
And $\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}=\frac{\left[\mathrm{Cat}_{\mathrm{red}}\right]}{\left[\mathrm{PS}^{\bullet-}\right]}$
Hence: $\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(1+\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\right)+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right)} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
with
$[\mathrm{PS}]_{0}=[\mathrm{PS}]+\left[\mathrm{PS}^{*}\right]+\left[\mathrm{PS}^{\bullet-}\right]$
Thus:
$\left.\left.[\mathrm{PS}]=\frac{[\mathrm{PS}]_{0}}{\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}+\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(1+\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]}\right)+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]\right.}\right)}\right)^{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)$

And

$$
\left.\left[\mathrm{Cat}_{\mathrm{red}}\right]=\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(1+\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\right)+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\right.}\right)
$$

leading to:

$$
\begin{aligned}
& \frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \\
& \frac{d\left[\mathrm{H}_{2}\right]}{d t}=\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]_{0}}{\left(\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(1+\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}\right)+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]\right)+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}
\end{aligned}
$$

Now we need to get $\left[\mathrm{SD}^{\bullet+}\right]_{t}$
Combination of kinetic equations gives:

$$
\begin{aligned}
& \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \\
& \text { therefore: } \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=2 \frac{d\left[\mathrm{H}_{2}\right]}{d t} \text { and hence }\left[\mathrm{SD}^{\bullet+}\right]_{t}=2\left[\mathrm{H}_{2}\right]_{t}
\end{aligned}
$$

thus:

$$
\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]} k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]_{0}}{\left(\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(1+\frac{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]}\right)+k_{b e t}\left[\mathrm{SD}^{\bullet+}\right]\right)+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}
$$

rearranged to:

$$
\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{\left(1+\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\right)+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left(k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]\right)\right)+\left(k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c}\left[\mathrm{SD}^{\bullet+}\right]\right)}
$$

Simplification: $\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} \ll 1$

$$
\begin{aligned}
& \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\left(k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]+2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\right)+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left(k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\right)+\left(k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\right) k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}} \\
& {\left[\begin{array}{l}
1+\frac{\left(k_{\text {betc }} k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }} k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }} k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right.}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}\left[\mathrm{SD}^{\bullet+}\right] \\
+\frac{k_{\text {bet }} k_{\text {betc }}}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}\left(\left[\mathrm{SD}^{\bullet+}\right]^{2}\right)
\end{array}\right] \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{\left(2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}}
\end{aligned}
$$

Which integration gives:

$$
\left[\begin{array}{l}
{\left[\mathrm{SD}^{\bullet+}\right]+\frac{\left(k_{b e t c} k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{b e t} k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }} k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)} \frac{\left[\mathrm{SD}^{\bullet+}\right]^{2}}{2}} \\
+\frac{k_{\text {bet }} k_{\text {betc }}}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}\left(\frac{\left[\mathrm{SD}^{\bullet+}\right]^{3}}{3}\right)
\end{array}\right]=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{\left(2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)} \times t
$$

Then, taking into account: $\left[\mathrm{H}_{2}\right]_{t}=\frac{1}{2}\left[\mathrm{SD}^{\bullet+}\right]_{t}$ and $\operatorname{TON}_{c a t}=\frac{\left[\mathrm{H}_{2}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}$, thus $2 \operatorname{TON}_{c a t}=\frac{\left[\mathrm{SD}^{\bullet+}\right]_{t}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}$ we have:

$$
\left[\begin{array}{l}
\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}+\frac{\left(k_{b e t c} k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }} k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{b e t c} k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} \frac{\left(\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}\right)^{2}}{2} \\
\left.+\frac{\left(\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}\right)^{2}}{3}\right) \\
\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)
\end{array}\right]=\frac{2 k_{E T} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0} k_{a b s}[\mathrm{PS}]_{0}}}{\left(2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}
$$

$2 \operatorname{TON}_{c a t}+\frac{\left(k_{\text {betc }} k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }} k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }} k_{Q}[\mathrm{SD}]_{0} \frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} \frac{4\left(\text { TON }_{\text {cat }}\right)^{2}}{2}$
$+\frac{k_{\text {bet }} k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}^{2}}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)} \frac{8\left(\text { TON }_{\text {cat }}\right)^{3}}{3}$
$=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right] \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{\left(2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{Q}[\mathrm{SD}]_{0} \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right)} \times t$
In most cases $\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} \ll 1$, thus:

$$
\begin{aligned}
& 2 \text { TON }_{\text {cat }}+\frac{\left(k_{\text {betc }} k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }} k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\right)}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\right)}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0} \frac{4\left(\text { TON }_{\text {cat }}\right)^{2}}{2}+\frac{k_{\text {bet }} k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}^{2}}{\left(2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\right)} \frac{8\left(\text { TON }_{\text {cat }}\right)^{3}}{3} \\
& =\frac{2 k_{E T} \frac{k_{Q}[\mathrm{SD}]_{0}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}} k_{a b s}[\mathrm{PS}]_{0}}{\left(2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}\right)} \times t
\end{aligned}
$$

Thus:
$\operatorname{TON}_{\text {cat }}+\left(\frac{p_{\text {bet }, 2}}{\gamma}+\frac{p_{\text {bet }}}{2}\right)\left(\text { TON }_{\text {cat }}\right)^{2}+\frac{4}{3} p_{\text {bet }} \frac{p_{\text {betc }, 2}}{\gamma}\left(\text { TON }_{\text {cat }}\right)^{3}=\frac{p_{Q} k_{a b s} \gamma}{2} \times t$
with parameters $\gamma=\frac{[\mathrm{PS}]_{0}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}, p_{\text {bet }}=\frac{k_{\text {bet }}}{k_{E T}}, p_{\text {betc }, 2}=\frac{k_{\text {betc }}[\mathrm{PS}]_{0}}{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}}$ and $p_{Q}=\frac{k_{Q}[\mathrm{SD}]}{k_{b}+k_{Q}[\mathrm{SD}]}$

1.5. Two electron system for $\mathbf{H}_{\mathbf{2}}$ production with degradation of the photosensitizer

The same system as in section 1.4. is considered (with similar assumptions) excepted that the reduced form of photosensitizer can now irreversibly degrades via a first order process (Scheme S5).

Scheme 55

Kinetic equations:
$\frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{2}[\mathrm{I}]\left[\mathrm{PS}^{\bullet-}\right]$
and
$\frac{d\left[\mathrm{Cat}_{\mathrm{red}}\right]}{d t}=k_{E T}\left[\mathrm{PS}^{\bullet-}\right]\left[\mathrm{Cat}_{\mathrm{ox}}\right]-k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right] \approx 0$
$\frac{d[\mathrm{I}]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]-k_{2}[\mathrm{I}]\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
Thus:
$\frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]\left[\mathrm{Cat}_{\mathrm{red}}\right]$
And
$\frac{d\left[\mathrm{PS}^{\bullet-}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{2}[\mathrm{I}]+k_{i}\right)\left[\mathrm{PS}^{\bullet-}\right] \approx 0$
$\frac{d\left[\mathrm{PS}^{*}\right]}{d t}=k_{a b s}[\mathrm{PS}]-k_{b}\left[\mathrm{PS}^{*}\right]-k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0} \approx 0$
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=k_{Q}\left[\mathrm{PS}^{*}\right][\mathrm{SD}]_{0}-k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{PS}^{\bullet-}\right]-k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]\left[\mathrm{Cat}_{\text {red }}\right]$
$\frac{d\left[\mathrm{PS}_{\text {dead }}\right]}{d t}=k_{i}\left[\mathrm{PS}^{\bullet-}\right]$
Resolution
Because Cat $_{\text {red }}$ is at steady state, it does not accumulate and $\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}$; [$\left.\mathrm{Cat}_{\mathrm{ox}}\right]$
The steady-state approximations lead to:
$\left[\mathrm{PS}^{*}\right]=\frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
and
$\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{2}[\mathrm{I}]+k_{i}\right)}\left[\mathrm{PS}^{*}\right]=\left[\mathrm{PS}^{\bullet-}\right]$
Therefore:
$\left.\left[\mathrm{PS}^{\bullet-}\right]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{\left[\mathrm{Cat}_{\mathrm{red}}\right]}{\left[\mathrm{PS}^{\bullet-}\right]}+k_{i}\right.}\right) \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]$
And $\frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}=\frac{\left[\mathrm{Cat}_{\mathrm{red}}\right]}{\left[\mathrm{PS}^{\bullet-}\right]}$
Hence:

$$
\left.[\mathrm{PS} \cdot]=\frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right.}\right) \frac{k_{a b s}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

Then:

$$
\left.\frac{d\left[\mathrm{H}_{2}\right]}{d t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right.}\right) \frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

with
$[\mathrm{PS}]_{0}=[\mathrm{PS}]+\left[\mathrm{PS}^{*}\right]+\left[\mathrm{PS}^{\bullet-}\right]+\left[\mathrm{PS}_{\text {dead }}\right]$
Hence:

$$
\left.\frac{d[\mathrm{PS}]}{d t}=-\frac{d\left[\mathrm{PS}_{\text {dead }}\right]}{d t}=-k_{i}\left[\mathrm{PS}^{--}\right]=-k_{i} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right.}\right) \frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}[\mathrm{PS}]
$$

We now need $\left[\mathrm{SD}^{\bullet+}\right]_{t}$:
Combination of the kinetic equations gives:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=2 \frac{d\left[\mathrm{H}_{2}\right]}{d t}+k_{i}\left[\mathrm{PS}^{\bullet-}\right]$ thus we can make the approximation $\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t} \approx 2 \frac{d\left[\mathrm{H}_{2}\right]}{d t}$ and therefore $\left[\mathrm{SD}^{\bullet+}\right] \approx 2\left[\mathrm{H}_{2}\right]$
We thus have:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]} \frac{k_{Q}[\mathrm{SD}]_{0}}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{++}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right)} \frac{k_{\text {abs }}}{\left.k_{b}+k_{Q} \mathrm{SD}\right]_{0}}[\mathrm{PS}]$
therefore:
$\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=-\frac{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}}{k_{i}} \frac{d[\mathrm{PS}]}{d t}$
which integration gives (taking into account $\left[\mathrm{SD}^{\bullet+}\right]_{0}=0$):
$\left(1+\frac{k_{\text {betc }}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}\left[\mathrm{SD}^{\bullet+}\right]\right) \frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=-\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}} \frac{d[\mathrm{PS}]}{d t}$
$\left(\left[\mathrm{SD}^{\bullet+}\right]+\frac{k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]^{2}}{k_{1}\left[\mathrm{Sox}_{\mathrm{ox}}\right]}{ }^{2}\right)=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\left([\mathrm{PS}]_{0}-[\mathrm{PS}]\right)$
Leading to:

$$
\left.\frac{d\left[\mathrm{SD}^{\bullet+}\right]}{d t}=\frac{\left.2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}[\mathrm{SD}} \mathrm{SD}^{\bullet+}\right]\left[\mathrm{kD}_{Q} \frac{k_{\text {abs }}}{k_{b}+k_{Q}[\mathrm{SD}]_{0}}\right.}{\left(k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}+k_{\text {bet }}\left[\mathrm{SD}^{\bullet+}\right]+k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right] \frac{k_{E T}\left[\mathrm{Catox}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]+k_{\text {betc }}\left[\mathrm{SD}^{\bullet+}\right]}+k_{i}\right.}\right)\left\{[\mathrm{PS}]_{0}-\frac{\left(\left[\mathrm{SD}^{\bullet+}\right]+\frac{k_{\text {betc }}\left[\mathrm{SD}^{\bullet \bullet}\right]^{2}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]}{ }^{2}\right)}{\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}}\right\}
$$

And thus, taking into account $\frac{\left[\mathrm{SD}^{\bullet+}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}} \approx 2 \frac{\left[\mathrm{H}_{2}\right]}{\left[\mathrm{Cat}_{\mathrm{ox}]_{0}}\right.}=2 T O N_{\text {cat }}$

Hence, introducing the dimensionless parameters already defined $\left(\gamma=\frac{[\mathrm{PS}]_{0}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}, \quad p_{\text {bet }}=\frac{k_{\text {bet }}}{k_{E T}}, \quad p_{\text {betc }}=\frac{k_{\text {betc }}[\mathrm{PS}]_{0}}{2 k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}}\right.$,
$\left.p_{Q}=\frac{k_{Q}\left[\mathrm{HA}^{-}\right]}{k_{b}+k_{Q}\left[\mathrm{HA}^{-}\right]}, p_{i}=\frac{k_{i}}{k_{E T}[\mathrm{PS}]_{0}}\right)$ we obtain:
$\frac{d T O N_{c a t}}{d t}=k_{\text {abs }} p_{Q} \gamma \frac{1-p_{i}\left(\operatorname{TON}_{\text {cat }}+2 \frac{p_{\text {betc }, 2}}{\gamma} \text { TON }_{\text {cat }}{ }^{2}\right)}{\left(1+2 p_{\text {bet }} T O N_{\text {cat }}+p_{i} \gamma\right)\left(1+4 \frac{p_{\text {betc }, 2}}{\gamma} \text { TON }_{\text {cat }}\right)+1}$

Maximal turnover number: TON $_{\text {cat }}^{\mathrm{lim}, i}$
We have: $\left(\left[\mathrm{SD}^{\bullet+}\right]+\frac{k_{\text {betc }}}{k_{1}\left[\mathrm{~S}_{\text {ox }}\right]} \frac{\left[\mathrm{SD}^{\bullet+}\right]^{2}}{2}\right)=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}\left([\mathrm{PS}]_{0}-[\mathrm{PS}]\right)$
Hence the reaction stops when $[\mathrm{PS}]=0$, i.e.
$\left(\left[\mathrm{SD}^{\bullet+}\right]_{\text {max }}+\frac{k_{\text {betc }}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]} \frac{\left[\mathrm{SD}^{\bullet+}\right]_{\text {max }}^{2}}{2}\right)=\frac{2 k_{E T}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{i}}[\mathrm{PS}]_{0}$
thus:
$\left(\frac{\left[\mathrm{SD}^{\bullet+}\right]_{\text {max }}}{\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}+\frac{k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]} \frac{\left[\mathrm{SD}^{\bullet+}\right]_{\text {max }}^{2}}{2\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}^{2}}\right)=\frac{2 k_{E T}}{k_{i}}[\mathrm{PS}]_{0}$
i.e.
$2 T O N_{c a t}^{\mathrm{lim}, i}+\frac{k_{\text {betc }}\left[\mathrm{Cat}_{\mathrm{ox}}\right]_{0}}{k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]} 2\left(\text { TON }_{\text {cat }}^{\mathrm{lim}, i}\right)^{2}=\left(\frac{2 k_{E T}[\mathrm{PS}]_{0}}{k_{i}}\right)$
$\operatorname{TON}_{\text {cat }}^{\mathrm{lim}, i}+2 \frac{p_{\text {betc }, 2}}{\gamma}\left(\operatorname{TON}_{\text {cat }}^{\mathrm{lim}, i}\right)^{2}-\left(\frac{1}{p_{i}}\right)=0$
Leading to:
$\operatorname{TON}_{\text {cat } t}^{\lim , i}=\frac{-1+\sqrt{1+8 \frac{p_{\text {betc }, 2}}{\gamma p_{i}}}}{4 \frac{p_{\text {betc }, 2}}{\gamma}}$

2. Numerical calculations

Numerical resolution of the differential equations:

$$
\frac{d T O N_{c a t}}{d t}=\left(\frac{1}{1+\frac{p_{\text {betc }}}{\gamma} T O N_{c a t}}+p_{i} \gamma\right) \frac{T O F_{c a t, 0}}{\left(1+p_{\text {bet }} T O N_{c a t}\right)} \times\left\{1-\frac{T O N_{c a t}}{\gamma}+\frac{1}{p_{\text {betc }}} \frac{1}{p_{i} \gamma} \ln \left(1+\frac{T O N_{c a t}}{\frac{\gamma}{p_{\text {betc }}}\left(\frac{1}{p_{i} \gamma}+1\right)}\right)\right\}
$$

and
$\frac{d T O N_{c a t}}{d t}=\frac{2 \operatorname{TOF}_{\text {cat }, 0,2}\left[1-p_{i}\left(\operatorname{TON}_{\text {cat }}+2 \frac{p_{\text {betc }, 2}}{\gamma} \text { TON }_{\text {cat }}{ }^{2}\right)\right]}{\left(1+2 p_{\text {bet }} T O N_{c a t}+p_{i} \gamma\right)\left(1+4 \frac{p_{\text {betc }, 2}}{\gamma} \text { TON }_{\text {cat }}\right)+1}$
is simply obtained by discretization of the time $t\left(t_{j}=j \times d t\right.$ with $d t$ being a small time interval) and with consideration that $\left(T O N_{c a t}\right)_{j=0}=0:$
$\left.\left.\left(T O N_{c a t}\right)_{j}=\left(T O N_{c a t}\right)_{j-1}+\left(\frac{1}{1+\frac{p_{\text {betc }}}{\gamma}\left(T O N_{c a t}\right)_{j-1}}+p_{i} \gamma\right) \frac{T O F_{\text {cat }, 0}}{\left(1+p_{\text {bet }}\left(T O N_{c a t}\right)_{j-1}\right)}\left\{1-\frac{\left(T O N_{c a t}\right)_{j-1}}{\gamma}+\frac{1}{p_{\text {betc }}} \frac{1}{p_{i} \gamma} \ln \left(1+\frac{\left(T O N_{c a t}\right)_{j-1}}{\frac{\gamma}{p_{\text {betc }}}\left(\frac{1}{p_{i} \gamma}+1\right)}\right)\right\} d t\right)\right\}$
and
$\left(\operatorname{TON}_{c a t}\right)_{j}=\left(\operatorname{TON}_{c a t}\right)_{j-1}+\frac{2 \operatorname{TOF}_{c a t, 0,2}\left[1-p_{i}\left(\left(\operatorname{TON}_{c a t}\right)_{j-1}+2 \frac{p_{\text {betc }, 2}}{\gamma}\left\{\left(\operatorname{TON}_{c a t}\right)_{j-1}\right\}^{2}\right)\right]}{\left(1+2 p_{\text {bet }}\left(\operatorname{TON}_{c a t}\right)_{j-1}+p_{i} \gamma\right)\left(1+4 \frac{p_{\text {bet }, 2}}{\gamma}\left(\operatorname{TON}_{c a t}\right)_{j-1}\right)+1} d t$

3. Details on experimental data ${ }^{\mathrm{S} 1}$

Photosensitizer TATA ${ }^{+}$
The lifetime of TATA ${ }^{* *}$ in water, at pH 4.5 , was measured to be $14 \mathrm{~ns},{ }^{\text {S1 }}$ thus corresponding to $k_{b}=7.1410^{7} \mathrm{~s}^{-1}$.
The luminescence of TATA ${ }^{+*}$ is quenched by the sacrificial donor HA^{-}with a rate constant $k_{Q}=3.610^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as measured by a Stern-Volmer plot (reference S1, figure S19).

Using nanosecond transient absorption spectroscopy, it was shown that in the presence of sacrificial donor HA- but in the absence of catalyst, the regeneration of TATA ${ }^{+}$can be fitted according to a second-order kinetics with a rate constant $k_{b e t}=3.26$ $10^{9} \mathrm{M}^{-1} \mathrm{~S}^{-1}$ (figures S20 and S21 in reference S 1).

In the presence of catalyst $\left(\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{CR} 14)\left(\mathrm{OH}_{2}\right)_{2}\right]^{2+}, 200 \mu \mathrm{M}\right)$, the decay of TATA• could be fitted with a monoexponential function (figure S 21 in reference S 1), and taking into account the catalyst concentration, the electron transfer bimolecular rate constant was evaluated to $k_{E T}=7.3510^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

Nanosecond transient absorption spectroscopy also revealed the appearance and decay of the absorbance at 680 nm of the reduced $\mathrm{Co}(\mathrm{I})$ form $\left(\mathrm{Cat}_{\mathrm{red}}\right)$. The decay of $\mathrm{Co}(\mathrm{I})$ with a rate constant of $k_{c a t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}=7.110^{3} \mathrm{~s}^{-1}$ (figure S 22 in reference S 1) was attributed to the catalyst protonation leading to the intermediate hydride (I) which does not accumulate.
As shown in reference S 2 , the decay of $\mathrm{Co}(\mathrm{I})$ actually exhibits a biexponential decay. The first component is attributed to formation of the hydride (see above) whereas the second slower component can be attributed to the back electron transfer from the oxidized sacrificial donor. The corresponding time constant is $\tau_{2}=3.9 \mathrm{~ms}$. We evaluate that the concentration of $\mathrm{SD}^{\bullet+}$ in transient absorption spectroscopy is $10 \mu \mathrm{M}$. Hence, estimate: $k_{\text {betc }}=\frac{10^{5}}{\tau_{2}}=2.610^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Photosensitizer Ru(bpy) ${ }_{3}{ }^{2+}$

The lifetime of $\mathrm{Ru}(\mathrm{bpy}))^{2+*}$ was measured in water in the absence of sacrificial donor as $607 \mathrm{~ns}, \mathrm{~s}_{2}$ thus corresponding to $k_{b}=$ $1.6510^{6} \mathrm{~s}^{-1}$.

The luminescence of $\mathrm{Ru}(\mathrm{bpy})_{3^{2+*}}$ is quenched by the sacrificial donor HA^{-}with a rate constant $k_{Q}=2.510^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as given in reference S2.

The back electron transfer rate constant was evaluated as $3.510^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ in reference S 2 .
The bimolecular electron transfer rate constant between $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{CR} 14)\left(\mathrm{OH}_{2}\right)_{2}\right]^{2+}$ and $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{+}$was evaluated in reference SError! Bookmark not defined. to be $k_{E T}=1.410^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$.

The catalytic rate is the same whatever the catalyst, hence $k_{c a t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}=7.110^{3} \mathrm{~s}^{-1}$.

Table S1. Rate constants

Photosensitizer	TATA $^{+}$	Ru(bpy $)_{3}{ }^{2+}$
$k_{b}\left(\mathrm{~s}^{-1}\right)$	7.1410^{7}	1.6510^{6}
$k_{Q}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	3.610^{9}	2.510^{7}
$k_{\text {bet }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	3.2610^{9}	3.510^{9}
$k_{\text {betc }}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	2.610^{7}	2.610^{7}
$k_{E T}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$	7.3510^{8}	1.410^{9}
$k_{\text {cat }}=k_{1}\left[\mathrm{~S}_{\text {ox }}\right]_{0}\left(\mathrm{~s}^{-1}\right)$	7.110^{3}	7.110^{3}
$k_{\text {abs }}\left(\mathrm{s}^{-1}\right)$	3.1610^{3}	1.310^{3}

4. Simulations with Gepasi software (http://www.gepasi.org/)

Simulations have been performed with the free of charged kinetic simulator Gepasi software considering the same mechanism as the one corresponding to scheme S 4 and the rate constants given in table $\mathrm{S} 1 . k_{2}$ was chosen as very large $\left(10^{10} \mathrm{~s}^{-1}\right)$ so that $k_{2} \gg$ $k_{c a t}=k_{1}\left[\mathrm{~S}_{\mathrm{ox}}\right]_{0}$ with $\left[\mathrm{S}_{\mathrm{ox}}\right]_{0}=1 \mathrm{M}$. Initial concentrations are those indicated in caption of figure S 1 with $[\mathrm{SD}]_{0}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]=$ 0.1 M .

Figure S1. Photocatalytic hydrogen production $\left(T O N_{\text {cat }}\right)$ as a function of time from a deaerated 1 M acetate buffer (5 mL) at pH 4.5 under visible-light irradiation in the presence of TATA ${ }^{+}(0.5 \mathrm{mM}), \mathrm{NaHA} / \mathrm{H}_{2} \mathrm{~A}(0.1 \mathrm{M})$ and various concentration of the catalyst $\left[\mathrm{Co}^{\text {III }}(\mathrm{CR} 14) \mathrm{Cl}_{2}\right]^{+}: 2.5 \mu \mathrm{M}$ (green), $5 \mu \mathrm{M}$ (magenta) and $10 \mu \mathrm{M}$ (red). Dashed lines: simulations according to the analytical model (same as in figure 4 in the text). Full lines: simulations with Gepasi software with constant (thin lines) and nonconstant concentration (thick lines) of the sacrificial donor.

5. References

S1. Gueret, R. ; Poulard, L. ; Oshinowo, M. ; Chauvin, J. ; Dahmane, M. ; Dupeyre, G. ; Lainé, P. P. ; Fortage, J. ; Collomb, MN. Challenging the $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ Photosensitizer with a Triazatriangulenium Robust Organic Dye for Visible-Light-Driven Hydrogen Production in Water. ACS Catal. 2018, 8, 3792-302.

S2. Gueret, R.; Castillo, C. E.; Rebarz, M.; Thomas, F.; Hargrove, A.-A.; Pécaut, J.; Sliwa, M.; Fortage, J.; Collomb, M.-N. Cobalt(III) Tetraaza-Macrocyclic Complexes as Efficient Catalyst for Photoinduced Hydrogen Production in Water: Theoretical Investigation of the Electronic Structure of the Reduced Species and Mechanistic Insight. J. Photochem. Photobiol., B 2015, 152, 82-94.

