Supplementary Information for:

Crystal chemistry and thermodynamics of HREE (Er, Yb) mixing in xenotime solid solution

Andrew C. Strzelecki^{1,2,3,4}, Margaret Reece^{1,2}, Xiaodong Zhao^{1,2}, Wendy Yu^{1,2}, Chris Benmore⁵, Yang Ren^{5,6}, Christopher Alcorn⁴, Artaches Migdisov⁴, Hongwu Xu^{4,7}, Xiaofeng Guo^{1,2,3,*}

¹ Department of Chemistry, Washington State University, Pullman, Washington 99164, United States

- ² Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
- ³ Materials Science and Engineering, Washington State University, Pullman, Washington 99164, United States
- ⁴ Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- ⁵ X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439, United States
- ⁶ Department of Physics, City University of Hong Kong, Kowloon Hong Kong, China
- ⁷ School of Molecular Sciences, Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States

* e-mail: <u>x.guo@wsu.edu</u>

S1: Supplementary Figures and Tables Referred to in the Main Text:

Figure S1 XRF spectra collected for the first batch of $Er_{(x)}Yb_{(1-x)}PO_4$

Figure S2 XRF spectra collected for the second batch of $Er_{(x)}Yb_{(1-x)}PO_4$

Empirical	Er	Yb
Formula	(apfu)	(apfu)
ErPO ₄	1.0000	0.0000
ErPO ₄	1.0000	0.0000
$Er_{0.89}Yb_{0.11}PO_4$	0.88585 ± 0.00004	0.11415 ± 0.00004
$Er_{0.88}Yb_{0.12}PO_4$	0.8787 ± 0.0001	0.1213 ± 0.0001
$Er_{0.76}Yb_{0.24}PO_4$	0.7576 ± 0.0002	0.2424 ± 0.0002
$Er_{0.75}Yb_{0.25}PO_4$	0.7465 ± 0.0001	0.2535 ± 0.0001
$Er_{0.63}Yb_{0.37}PO_4$	0.6343 ± 0.0002	0.3657 ± 0.0002
$Er_{0.62}Yb_{0.38}PO_4$	0.6175 ± 0.0001	0.3825 ± 0.0001
$Er_{0.49}Yb_{0.51}PO_4$	0.4945 ± 0.0001	0.5055 ± 0.0001
$Er_{0.47}Yb_{0.53}PO_4$	0.4693 ± 0.0004	0.5307 ± 0.0004
$Er_{0.36}Yb_{0.64}PO_4$	0.3640 ± 0.0001	0.6360 ± 0.0001
$Er_{0.35}Yb_{0.65}PO_4$	0.3507 ± 0.0002	0.6493 ± 0.0002
$Er_{0.23}Yb_{0.77}PO_4$	0.2340 ± 0.0002	0.7660 ± 0.0002
$Er_{0.22}Yb_{0.78}PO_4$	0.2208 ± 0.0002	0.7792 ± 0.0002
YbPO ₄	0.0000	1.0000

Table S1 Atoms per formula units for Er and Yb, as determine by XRF for the pristine $Er_{(x)}Yb_{(1-x)}PO_4$ samples.

Figure S3 FTIR spectra recorded in the $600 - 1300 \text{ cm}^{-1}$ range for pristine $\text{Er}_{(x)}\text{Yb}_{(1-x)}\text{PO}_4$. The *blue* curve indicates the data, and the *red* curve indicates the fitting.

Figure S4 FTIR spectra recorded in the $600 - 1300 \text{ cm}^{-1}$ range for the $\text{Er}_{(x)}\text{Yb}_{(1-x)}\text{PO}_4$ recovered after the TGA-DSC experiments to 1200°C. The *blue* curve indicates the data, and the *red* curve indicates the fitting.

Figure S5 FTIR spectra recorded in the $1300 - 4000 \text{ cm}^{-1}$ range for pristine $\text{Er}_{(x)}\text{Yb}_{(1-x)}\text{PO}_4$. The *blue* curve indicates the data, and the *red* curve indicates the fitting.

Sample		$v_{as}(PO_4)$			$v_{s}(PO_{4})$		$\delta_{as}(PO_4)$
ErPO ₄	1124.3	1072.5	1028.3	988.9	939.6	865.0	631.7
error	0.8	1.6	2.5	1.8	2.9	3.6	0.2
Er _{0.88} Yb _{0.22} PO ₄	1125.9	1075.5	1032.7	993.5	946.0	865.7	634.7
error	0.7	1.6	2.3	1.5	3.0	4.2	0.2
Er _{0.75} Yb _{0.25} PO ₄	1122.9	1075.6	1035.1	996.3	954.6	871.5	634.7
error	0.9	1.4	1.9	1.3	4.0	3.6	0.1
Er _{0.62} Yb _{0.38} PO ₄	1111.0	1070.7	1039.6	1008.2	981.0	866.0	635.7
error	1.3	1.1	1.2	1.0	1.9	4.3	0.1
Er _{0.47} Yb _{0.53} PO ₄	1121.1	1074.0	1038.7	1004.2	971.9	882.0	636.1
error	1.0	1.3	1.4	1.3	2.4	4.6	0.1
Er _{0.35} Yb _{0.65} PO ₄	1119.1	1070.9	1037.6	1004.4	974.2	937.7	633.5
error	1.0	1.5	1.6	1.6	2.0	5.8	0.1
Er _{0.22} Yb _{0.78} PO ₄	1128.7	1081.1	1039.8	1001.0	964.5	880.1	638.6
error	0.8	1.4	1.9	1.4	4.6	4.9	0.1
YbPO ₄	1130.5	1084.0	1042.9	1004.6	970.6	881.6	640.4
error	0.7	1.3	1.7	1.3	3.3	6.5	0.1

Table S2 Location of the internal vibrational modes (cm⁻¹) of PO₄ in batch #2 of the pristine $Er_{(x)}Yb_{(1-x)}PO_4$, as determined by deconvolution via a Lorentz function.

Table S3 Location of the normal vibrational modes (cm⁻¹) of H_2O , OH, and CO_2 in batch #2 of the pristine $Er_{(x)}Yb_{(1-x)}PO_4$, as determined by deconvolution via a Lorentz function.

										v_{as}
Sample	δ(OH)	$v_{s}(CO_{2})$	$\delta(H_2O)$	$v_{as}(0)$	$CO_2)$		v(OH)		v_{s} (H ₂ O)	(H_2O)
ErPO ₄	1378.8	1446.8	1649.8	2041.5	2478.1	2904.1	3133.0	3293.4	3424.0	3535.1
error	0.5	1.0	0.6	7.1	8.1	5.6	3.4	2.0	1.2	1.1
Er _{0.88} Yb _{0.22} PO ₄	1380.4	1478.1	1641.1	2028.6	2351.8	2980.3	3202.2	3354.3	3459.5	3553.8
error	0.3	0.7	0.3	1.3	2.2	4.9	3.9	2.7	1.6	1.1
Er _{0.75} Yb _{0.25} PO ₄	1391.9	1488.5	1630.5	2062.1	2348.1	2865.6	3107.2	3290.8	3429.7	3538.6
error	0.3	1.0	0.8	3.0	2.1	5.8	2.9	2.0	1.1	1.0
Er _{0.62} Yb _{0.38} PO ₄	1384.6	1455.4	1520.8	-	2355.5	-	3190.0	-	3470.2	3561.5
error	0.2	0.2	1.2	-	0.6	-	3.3	-	2.8	1.5
Er _{0.47} Yb _{0.53} PO ₄	1383.9	1465.8	1566.1	2067.2	-	2820.9	3112.4	3344.0	3474.5	3562.1
error	0.2	0.4	1.4	1.8	-	18.6	3.6	2.4	1.0	0.9
Er _{0.35} Yb _{0.65} PO ₄	1390.2	1465.8	1571.6	2070.1	-	2863.6	3145.1	3350.9	3475.2	3561.2
error	0.4	1.0	1.6	2.1	-	7.9	2.9	1.7	0.8	0.9
Er _{0.22} Yb _{0.78} PO ₄	1390.4	1482.2	1629.4	-	2317.4	2936.1	3163.6	3343.9	3465.1	3560.9
error	0.2	0.9	0.9	-	7.8	7.2	2.9	2.0	1.2	1.0
YbPO ₄	1386.1	1482.0	1630.3	2065.5	2379.2	-	3053.7	3315.4	3464.9	3565.1
error	0.2	0.4	0.9	2.6	2.4	_	4.0	3.6	1.1	0.9

Sample		$v_{as}(PO_4)$			$v_{s}(PO_{4})$		$\delta_{as}(PO_4)$
ErPO ₄	1123.2	1063.6	1028.2	994.1	946.8	871.2	639.8
error	1.7	2.9	2.1	1.5	3.2	4.7	0.1
Er _{0.88} Yb _{0.22} PO ₄	1126.1	1064.4	1028.2	993.1	949.6	870.1	640.6
error	1.3	2.9	1.9	1.2	3.7	4.7	0.1
Er _{0.75} Yb _{0.25} PO ₄	1126.2	1071.1	1031.7	997.1	953.7	872.9	641.9
error	1.1	2.6	1.3	0.8	2.1	3.6	0.1
Er _{0.62} Yb _{0.38} PO ₄	1113.0	1069.1	1033.3	996.2	957.3	866.9	639.8
error	1.4	1.5	1.1	0.7	4.1	3.5	0.1
Er _{0.47} Yb _{0.53} PO ₄	1128.4	1083.0	1037.5	996.9	965.6	854.8	642.7
error	0.8	1.3	0.9	0.6	3.7	5.8	0.1
Er _{0.35} Yb _{0.65} PO ₄	-	-	-	-	-	-	-
error	-	-	-	-	-	-	-
Er _{0.22} Yb _{0.78} PO ₄	1139.6	1096.0	1048.9	999.5	942.5	874.8	643.3
error	0.8	1.8	1.1	0.7	2.8	4.4	0.1
YbPO ₄	1139.2	1097.8	1047.1	998.3	945.7	864.0	645.0
error	0.8	1.3	1.0	0.6	4.2	4.4	0.1

Table S4 Location of the internal vibration modes of PO_4 in batch #2 of $Er_{(x)}Yb_{(1-x)}PO_4$ after TGA-DSC to 1200°C, as determined by deconvolution via a Lorentz function.

Figure S6 Variation in the P-O Raman stretching modes in pristine $Er_{(x)}Yb_{(1-x)}PO_4$ as a function of *x*.

Figure S7 Variation in the P-O Raman stretching modes in the recovered $Er_{(x)}Yb_{(1-x)}PO_4$ post TGA-DSC to 1200°C as a function of *x*.

Er (x)	[apfu]	v ₁ (A	1g) [cm ⁻	1]	v ₃ (B ₂	g) [cm ⁻	-1]	adj. R ²
1.0000 ±	0.0000	1001.65	±	0.08	1061.54	±	0.23	0.972
$0.8787 \pm$	0.0001	1002.54	±	0.08	1062.60	±	0.22	0.969
$0.7465 \pm$	0.0001	1001.39	±	0.08	1062.89	±	0.29	0.973
$0.6175 \pm$	0.0001	1001.51	±	0.06	1064.35	±	0.33	0.981
$0.4693 \pm$	0.0004	1002.42	±	0.08	1065.14	±	0.42	0.967
$0.3507 \pm$	0.0002	1002.31	±	0.06	1065.33	±	0.33	0.983
0.2208 ±	0.0002	1003.80	±	0.07	1066.63	±	0.28	0.975
0.0000 ±	0.0000	1004.73	±	0.09	1067.09	±	0.31	0.977

Table S5 Location of the internal vibrational modes (cm⁻¹) of PO₄ in batch #2 of the pristine $Er_{(x)}Yb_{(1-x)}PO_4$, as determined by deconvolution via a Lorentz function.

Table S6 Location of the internal vibration modes of PO₄ in batch #2 of $Er_{(x)}Yb_{(1-x)}PO_4$ after TGA-DSC to 1200°C, as determined by deconvolution via a Lorentz function.

Er	(x) [a	pfu]	$v_1(A_{1g})$ [cm ⁻¹]		$v_3(B_{2g})$ [cm ⁻¹]			$v_3(E_g)$	adj. R ²			
1.0000	±	0.0000	1005.89	±	0.02	1062.94	±	0.03	1026.60	±	0.14	0.989
0.8787	±	0.0001	1006.67	±	0.02	1063.90	±	0.03	1027.48	±	0.11	0.993
0.7465	±	0.0001	1007.35	±	0.02	1064.66	±	0.03	1028.04	±	0.13	0.991
0.6175	±	0.0001	1007.83	±	0.02	1065.41	±	0.05	1028.79	±	0.17	0.989
0.4693	±	0.0004	1009.12	±	0.02	1066.82	±	0.04	1029.92	±	0.17	0.991
0.2208	±	0.0002	1009.98	±	0.01	1068.04	±	0.03	1031.15	±	0.15	0.995
0.0000	±	0.0000	1011.36	±	0.02	1069.88	±	0.05	1032.83	±	0.26	0.988

Figure S8 SEM image of Pristine ErPO₄

Figure S9 SEM image of ErPO₄ recovered after TGA-DSC to 1200°C.

Figure S10 SEM image of Pristine $Er_{0.75}Yb_{0.25}PO_4$

Figure S11 SEM image of $Er_{0.75}Yb_{0.25}PO_4$ recovered after TGA-DSC to 1200°C.

Figure S12 SEM image of Pristine $Er_{0.47}Yb_{0.53}PO_4$

Figure S13 SEM image of $Er_{0.47}Yb_{0.53}PO_4$ recovered after TGA-DSC to 1200°C.

Figure S14 SEM image of Pristine $Er_{0.22}Yb_{0.78}PO_4$

Figure S15 SEM image of $Er_{0.22}Yb_{0.78}PO_4$ recovered after TGA-DSC to 1200°C.

Figure S16 SEM image of Pristine YbPO₄

Figure S17 SEM image of YbPO₄ recovered after TGA-DSC to 1200°C.

Figure S18 Representative fitted synchrotron XRD patterns from at 6 ID-D of the APS at ANL collected of the second batch of (a) pristine $ErPO_4$ and (b) $ErPO_4$ recovered after the TGA-DSC experiment to 1200°C.

Figure S19 Representative fitted synchrotron XRD patterns from at 11 ID-C of the APS at ANL collected of the second batch of (a) pristine $ErPO_4$ and (b) $ErPO_4$ recovered after the TGA-DSC experiment to 1200°C.

												Rwp	Batch	
E	Er (x	:)	a-a	axis	(Å)	C-a	ixis	(Å)	Volur	ne (ų)	%	#	Condition
1.0000	±	0.0000	6.9238	±	0.0005	5.9966	±	0.0006	287.47	±	0.04	3.100	1	Pristine
0.8859	±	0.0000	6.9204	±	0.0005	5.9952	±	0.0005	287.12	±	0.04	2.846	1	Pristine
0.7576	±	0.0002	6.9032	±	0.0005	5.9899	±	0.0005	285.44	±	0.04	2.677	1	Pristine
0.6343	±	0.0002	6.8928	±	0.0005	5.9742	±	0.0005	283.84	±	0.04	2.711	1	Pristine
0.4945	±	0.0001	6.8881	±	0.0006	5.9705	±	0.0006	283.28	±	0.05	2.984	1	Pristine
0.3640	±	0.0001	6.8763	±	0.0005	5.9666	±	0.0006	282.13	±	0.04	2.743	1	Pristine
0.2340	±	0.0002	6.8693	±	0.0006	5.9572	±	0.0007	281.11	±	0.05	2.900	1	Pristine
0.0000	±	0.0000	6.8623	±	0.0006	5.9526	±	0.0006	280.31	±	0.05	2.648	1	Pristine
1.0000	±	0.0000	6.9147	±	0.0047	6.0136	±	0.0058	287.53	±	0.42	3.019	2	Pristine
0.8787	±	0.0001	6.8949	±	0.0011	6.0072	±	0.0013	285.58	±	0.10	5.340	2	Pristine
0.7465	±	0.0001	6.8978	±	0.0013	5.9976	±	0.0015	285.36	±	0.11	4.813	2	Pristine
0.6175	±	0.0002	6.8882	±	0.0004	5.9806	±	0.0004	283.76	±	0.04	3.197	2	Pristine
0.4693	±	0.0004	6.8815	±	0.0005	5.9799	±	0.0005	283.18	±	0.04	3.454	2	Pristine
0.3507	±	0.0002	6.8820	±	0.0055	5.9627	±	0.0061	282.41	±	0.46	3.695	2	Pristine
0.2208	±	0.0002	6.8567	±	0.0005	5.9634	±	0.0005	280.37	±	0.04	2.977	2	Pristine
1.0000	±	0.0000	6.8531	±	0.0013	6.0116	±	0.0015	282.33	±	0.11	8.337	2	Calcinated
0.8787	±	0.0001	6.8483	±	0.0007	6.0022	±	0.0008	281.50	±	0.06	5.349	2	Calcinated
0.7465	±	0.0001	6.8401	±	0.0007	5.9937	±	0.0008	280.42	±	0.06	5.389	2	Calcinated
0.6175	±	0.0002	6.8395	±	0.0005	5.9918	±	0.0006	280.29	±	0.04	4.397	2	Calcinated
0.4693	±	0.0004	6.8286	±	0.0004	5.9823	±	0.0005	278.96	±	0.04	3.570	2	Calcinated
0.2208	±	0.0002	6.8178	±	0.0008	5.9752	±	0.0009	277.74	±	0.07	5.495	2	Calcinated
0.0000	±	0.0000	6.8077	±	0.0007	5.9631	±	0.0008	276.36	±	0.06	4.966	2	Calcinated

Table S7 Lattice parameters, as determined by Rietveld analysis of the synchrotron powder X-raydiffraction data collected at sector 6 ID-D of the APS at ANL.

													Batch	
I	Er (x	()	a-a	axis	(Å)	C-a	c-axis (Å)		Volume (ų)			Rwp %	#	Condition
1.0000	±	0.0000	6.9120	±	0.0004	6.0171	±	0.0004	287.466	±	0.029	2.9340	2	Pristine
0.8787	±	0.0001	6.8963	±	0.0003	6.0048	±	0.0003	285.583	±	0.023	4.0720	2	Pristine
0.7465	±	0.0001	6.8990	±	0.0002	5.9967	±	0.0003	285.424	±	0.018	4.311	2	Pristine
0.6175	±	0.0002	6.8885	±	0.0001	5.9796	±	0.0001	283.742	±	0.009	5.029	2	Pristine
0.4693	±	0.0004	6.8823	±	0.0001	5.9785	±	0.0001	283.177	±	0.009	4.51	2	Pristine
0.3507	±	0.0002	6.8825	±	0.0002	5.9744	±	0.0002	283.002	±	0.013	3.676	2	Pristine
0.2208	±	0.0002	6.8601	±	0.0002	5.9635	±	0.0002	280.649	±	0.014	4.176	2	Pristine
1.0000	±	0.0000	6.8510	±	0.0002	6.0004	±	0.0002	281.632	±	0.012	8.001	2	Calcinated
0.8787	±	0.0001	6.8502	±	0.0001	5.9994	±	0.0002	281.526	±	0.010	6.915	2	Calcinated
0.7465	±	0.0001	6.8448	±	0.0001	5.9934	±	0.0001	280.797	±	0.007	5.973	2	Calcinated
0.6175	±	0.0002	6.8402	±	0.0001	5.9910	±	0.0001	280.313	±	0.007	5.121	2	Calcinated
0.4693	±	0.0004	6.8293	±	0.0001	5.9816	±	0.0001	278.975	±	0.007	4.982	2	Calcinated
0.2208	±	0.0002	6.8193	±	0.0002	5.9739	±	0.0002	277.806	±	0.012	7.465	2	Calcinated
0.0000	±	0.0000	6.8112	±	0.0001	5.9683	±	0.0002	276.886	±	0.010	5.055	2	Calcinated

Table S8 Lattice parameters, as determined by Rietveld analysis of the synchrotron powder X-raydiffraction data collected at sector 11 ID-C of the APS at ANL.

Table S9 RE₂O₃ impurity as identified by synchrotron XRD.

Er [apfu]	Weight fraction RE ₂ O ₃ Impurity	RE ₂ O ₃ normalized mols.
1.0000	0.125 ± 0.005	0.098
0.8787	0.094 ± 0.003	0.071
0.7465	0.138 ± 0.003	0.109
0.6175	0.097 ± 0.003	0.074
0.4693	0.095 ± 0.003	0.071
0.2208	0.143 ± 0.003	0.113
0.0000	0.101 ± 0.003	0.076

Formula	$\Delta H_{ m ds,\ uncorrected}$	$\Delta H_{ m ds,\ corrected}$
Formula	(kJ/mol)	(kJ/mol)
ErPO ₄	$137.08^{a} \pm 4.30^{b} (5)^{c}$	147.42 ± 4.37
Er _{0.88} Yb _{0.22} PO ₄	138.03 ± 4.94 (6)	145.48 ± 4.99
Er _{0.75} Yb _{0.25} PO ₄	132.04± 2.25 (5)	143.36 ± 2.42
Er _{0.62} Yb _{0.38} PO ₄	134.57 ± 3.80 (6)	142.13 ± 3.88
Er _{0.47} Yb _{0.53} PO ₄	133.99±4.39(7)	141.25 ± 4.45
Er _{0.22} Yb _{0.78} P	131.30±2.33(5)	142.64 ± 2.55
YbPO ₄	138.17±2.78 (6)	145.67 ± 2.91

Table S10 Enthalpies of Drop Solution of $Er_{(x)}Yb_{(1-x)}PO_4$ from Binary Oxides and Elements.

^a Average. ^b Two standard deviations of the average value. ^c Number of measurements.

Table S11 Thermochemical cycles used for calculations of the enthalpy of formation from binary oxides and the standard enthalpy of formation of $Er_{(x)}Yb_{(1-x)}PO_4$ based on the data of drop solution calorimetry in molten sodium molybdate at 700°C.

Reaction	ΔH (kJ/mol)
(1) $\operatorname{Er}_{(x)} \operatorname{Yb}_{(1-x)} \operatorname{PO}_{4(s, 25^{\circ}C)} + y(\operatorname{Er}_{(2x)} \operatorname{Yb}_{(2-2x)} O_3)_{(s, 25^{\circ}C)} \rightarrow [0.5+y](\operatorname{Er}_{(2x)} \operatorname{Yb}_{(2-x)} V_3)_{(s, 25^{\circ}C)}$	$\Delta H_1 = \Delta H_{\rm ds, uncorrected}^{a,b}$
$_{2x}O_3)_{(sln, 700^{\circ}C)} + 0.5P_2O_{5(sln, 700^{\circ}C)}$	
(2) $\operatorname{Er}_{(x)} \operatorname{Yb}_{(1-x)} \operatorname{PO}_{4(s, 25^{\circ}C)} \rightarrow 0.5(\operatorname{Er}_{(2x)} \operatorname{Yb}_{(2-2x)} O_3) + 0.5 \operatorname{P}_2 O_{5(sln, 700^{\circ}C)}$	$\Delta H_2 = \Delta H_{\rm ds, \ corrected}{}^{\rm a,b}$
(3) $Er_2O_{3(s, 25^{\circ}C)} \rightarrow Er_2O_{3(sln, 700^{\circ}C)}$	$\Delta H_3 = -105.26^{\rm c} \pm 2.48^{\rm d}$
	(10) ^{e, ref1}
(4) $Yb_2O_{3(s, 25^{\circ}C)} \rightarrow Yb_2O_{3(sln, 700^{\circ}C)}$	$\Delta H_4 = -98.46 \pm 3.20$
	(12) ^{ref1}
(5) $P_2O_{5(s, 25^{\circ}C)} \rightarrow P_2O_{5(sln, 700^{\circ}C)}$	$\Delta H_5 = -164.60 \pm 0.85$
	(12) ^{ref1}
(6) $2\text{Er}_{(s, 25^{\circ}\text{C})} + 1.5\text{O}_{2(g, 25^{\circ}\text{C})} \rightarrow \text{Er}_2\text{O}_{3(s, 25^{\circ}\text{C})}$	$\Delta H_6 = -1900.1 \pm 6.5$ ref2
(7) $2Yb_{(s, 25^{\circ}C)} + 1.5O_{2(g, 25^{\circ}C)} \rightarrow Yb_2O_{3(s, 25^{\circ}C)}$	$\Delta H_7 = -1814.5 \pm 6.0$ ref2
(8) $2P_{(s, 25^{\circ}C)} + 2.5O_{2(g, 25^{\circ}C)} \rightarrow P_2O_{5(s, 25^{\circ}C)}$	$\Delta H_8 = -1504.9 \pm 0.5$ ref3

Corrected enthalpy of drop solution assuming Er_(2x)Yb_(2-2x)O₃ mixes as an ideal mixture:

$$\Delta H_2 = \Delta H_1 - (x \cdot y \cdot \Delta H_3) - ((1 - x) \cdot y \cdot \Delta H_4)$$

Enthalpy of Mixing of $Er_{(x)}Yb_{(1-x)}PO_4$ from $ErPO_4$ and $YbPO_4$ solution:

 $\Delta H_{mix}(\text{Er}_{(x)}\text{Yb}_{(1-x)}\text{PO}_4) = -\Delta H_2 + x\Delta H_{ds}(\text{ErPO}_4) + (1-x)\Delta H_{ds}(\text{YbPO}_4)$

Enthalpy of formation of Er_(x)Yb_(1-x)PO₄ from Er₂O₃, Er₂O₃, and P₂O₅

 $\Delta H_{f,ox}(\mathrm{Er}_{(x)}\mathrm{Yb}_{(1-x)}\mathrm{PO}_4) = -\Delta H_2 + 0.5(x)\Delta H_3 + 0.5(1-x)\Delta H_4 + 0.5\Delta H_5$

Standard enthalpy of formation of Er_(x)Yb_(1-x)PO₄

 $\Delta H_{f}(\mathrm{Er}_{(x)}\mathrm{Yb}_{(1-x)}\mathrm{PO}_{4}) = \Delta H_{f, ox} + 0.5(x)\Delta H_{6} + 0.5(1-x)\Delta H_{7} + 0.5\Delta H_{8}$

^a Values of Δ*H*₁ and Δ*H*₂ are reported in table 1. ^b values of *x* and *y* are tabulated in table S1 and S4. ^c
^c Average. ^d Two standard deviations of the average. ^e Number of measurements.
^{Ref 1} Ushakov, S. V.; Helean, K. B.; Navrotsky, A.; Boatner, L. A. Thermochemistry of Rare-Earth Orthophosphates. *J. Mater. Res.* 2001, *16* (9), 2623–2633.
^{Ref 2}: Konings, R. J. M.; Beneš, O.; Kovács, A.; Manara, D.; Sedmidubskỳ, D.; Gorokhov, L.; Iorish, V. S.; Yungman, V.; Shenyavskaya, E.; Osina, E. The Thermodynamic Properties of the F-Elements and Their Compounds: Part 2. The Lanthanide and Actinide Oxides. *J. Phys. Chem. Ref. Data* 2014, *43* (1).
^{Ref 3}: Robie, Richard A.;Hemingway, B. S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. *U.S. Geol. Surv. Bull.* 1995, *2131*

Chemistry of A Site	Avg. Ionic Radii	\mathbf{v}_1	V3	Reference
	of A Site	(A_{1g})	(B _{2g})	
		[cm ⁻¹]	[cm ⁻¹]	
Y	1.019	1001	1058	41
TL	1.040	005	1040	41
10	1.040	995	1049	
Dv	1.027	998	1054	41
	1.027	,,,0	1021	
Но	1.015	1001	1055	41
Er	1.004	1004	1061	41
		1005	1051	
Tm	0.994	1006	1064	41
Vh	0.085	1000	1069	41
10	0.965	1009	1008	
Lu	0.977	1011	1069	41
Gd	1.053	984	1046	42
Y	1.019	1001	1058	43
С- С-	0.970	1027	1092	43
Sc	0.870	1027	1085	15
Th	1 040	995	1049	44
	1.010	,,,,,	10.5	
Tb	1.040	996	1051	44
Gd _{0.6} Dy _{0.4}	1.043	995	1051	44
	1.040	000	1054	
$Gd_{0.5}Dy_{0.5}$	1.040	999	1054	44
Gd. Dv.	1.037	006	1053	44
Gu _{0.4} Ly _{0.6}	1.037	330	1055	

 Table S12 Raman position of synthetic and natural xenotimes.

Dy	1.027	998	1054	44
Y	1.019	995	1049	45
Er	1.004	1000	1062	45
Tm	0.994	1006	1062	45
Er	1.004	1006	1063	This Study
Er _{0.88} Yb _{0.12}	1.002	1007	1064	This Study
Er _{0.75} Yb _{0.25}	0.999	1007	1065	This Study
Er _{0.62} Yb _{0.35}	0.997	1008	1065	This Study
Er _{0.47} Yb _{0.35}	0.994	1009	1067	This Study
Er _{0.22} Yb _{0.78}	0.989	1010	1068	This Study
Yb	0.985	1011	1070	This Study
Er	1.004	1002	1062	This Study
Er _{0.88} Yb _{0.12}	1.002	1003	1063	This Study
Er _{0.75} Yb _{0.25}	0.999	1001	1063	This Study
Er _{0.62} Yb _{0.35}	0.997	1002	1064	This Study
Er _{0.47} Yb _{0.35}	0.994	1002	1065	This Study
Er _{0.35} Yb _{0.65}	0.992	1002	1065	This Study
Er _{0.22} Yb _{0.78}	0.989	1004	1067	This Study
Yb	0.985	1005	1067	This Study
$Y_{0.65} Dy_{0.08} Er_{0.06} Yb_{0.06} U_{0.03} Lu_{0.03} Gd_{0.02} Ho_{0.02} Th_{0.01} Tm_{0.01} Tb_{0.01} Sm_{0.01}$	1.017	999	1057	46
$Y_{0.64} Dy_{0.08} Er_{0.08} Yb_{0.08} Lu_{0.03} Gd_{0.03} Ho_{0.02} U_{0.02} Tm_{0.01} Tb_{0.01} Sm_{0.01} Nd_{0.01}$	1.016	997		46
$\hline Y_{0.61}Ca_{0.11}Dy_{0.04}Th_{0.04}Yb_{0.03}Er_{0.03}Zr_{0.03}Gd_{0.02}U_{0.02}Fe_{0.02}Sm_{0.01}Ho_{0.01}Tm_{0.01}Nd_{0.01}Tb_{0.01}$	1.018	992	1057	47
$Y_{0.72} Dy_{0.05} U_{0.04} Y b_{0.04} Er_{0.03} Zr_{0.03} T h_{0.03} G d_{0.02} Sm_{0.01} H o_{0.01} N d_{0.01} L u_{0.01} T b_{0.01} T m_{0.01}$	1.015	993	1057	47
$Y_{0.74} Dy_{0.05} Yb_{0.04} Er_{0.04} Zr_{0.03} Gd_{0.02} U_{0.02} Th_{0.01} Sm_{0.01} Ho_{0.01} Tm_{0.01} Tb_{0.01} Lu_{0.01} Nd_{0.01}$	1.013	994	1056	47
$Y_{0.79} Dy_{0.05} Er_{0.04} Yb_{0.01} Gd_{0.03} Sm_{0.01} Ho_{0.01} Tm_{0.01} Lu_{0.01} U_{0.01} Nd_{0.01} Tb_{0.01}$	1.019	995	1053	47
$Y_{0.74} Dy_{0.09} Gd_{0.06} Er_{0.04} Yb_{0.02} Ho_{0.01} Tb_{0.01} Sm_{0.01} Eu_{0.01}$	1.022	998	1056	48
Y _{0.85} Dy _{0.11} Yb _{0.04}	1.019	999	1056	49

Figure S20 Empirical model for determining S° from V_m for all minerals. References for all phases is reported in Table S7.

Figure S21 Empirical model for determining S° from V_m for phosphate minerals. References for all phases is reported in Table S7.

Name	Chemistry	Anion	V _m (cm ³)	S° ₂₉₈ (J/mol·K)	Ref S° ₂₉₈	Ref. V _m
olivenite	Cu ₂ (AsO ₄)(OH)	AsO ₄	63.7131	179.5	16	16
powellite	CaMoO ₄	MoO ₄	47	122.6	17	17
wulfenite	PbMoO ₄	MoO ₄	53.86	166.1	17	17
berlinite	AlPO ₄	PO ₄	46.58	90.8	17	17
whitlockite	Ca ₃ (PO4) ₂	PO ₄	97.62	236	17	17
fluoroapatite	Ca ₅ (PO4) ₃ F	PO ₄	157.56	387.9	17	17
hydroxyapatite	Ca ₅ (PO4) ₃ OH	PO ₄	159.6	390.4	17	17
strengite	FePO ₄ :2H ₂ O	PO ₄	64.5	171.3	17	17
xenotime-(Tb)	TbPO ₄	PO ₄	44.08	138.1	18	19
xenotime-(Dy)	Dy) DyPO ₄ PO ₄ 43.57		43.57	116.6	18	19
xenotime-(Ho)	$PO_4 PO_4 43.07$		142.3	18	19	
xenotime-(Er)	ErPO ₄	PO ₄	42.6	116.6	18	19
xenotime-(Tm)	TmPO ₄	PO ₄ 42.2 138.1		138.1	18	19
xenotime-(Yb)	YbPO ₄	PO ₄	41.78	133.9	18	19
xenotime-(Lu)	LuPO ₄	PO ₄	41.43	117.2	18	19
xenotime-(Y)	YPO ₄	PO ₄	42.96	108.8	18	19
monazite-(La)	LaPO ₄	PO ₄	46.02	108.3	18	19
monazite-(Ce)	CePO ₄	PO ₄	45.27	120	18	19
monazite-(Pr)	PrPO ₄	PO ₄	44.65	123.2	18	19
monazite-(Nd)	NdPO ₄	PO ₄	43.99	122.9	18	19
monazite-(Sm)	SmPO ₄	PO ₄	43	122.5	18	19
monazite-(Eu)	EuPO ₄	PO ₄	42.49	117.2	18	19
monazite-(Gd)	GdPO ₄	PO ₄	42.15	124.6	18	19
farringtonite	Mg ₃ (PO4) ₂	PO ₄	95.37	189.2	20	21
moneite	CaHPO4	PO ₄	46.58	111.4	20	22
brushite	CaHPO4·2H2O	PO ₄	73.15	189.45	20	23
variscite	AlPO ₄ ·2H ₂ O	PO ₄	60.98	134.5	20	24

Table S13 Molar Volume and Standard Entropy Data used in Figures S3 and S4 used inEmpirical model for determining S° from V_m for phosphate minerals.

gallium orthophosphate	GaPO ₄ PO ₄		46.19	105	20	25
lead phosphate	Pb ₃ (PO4) ₂	PO ₄	108.84	353.34	20	26
minyulite	KAI ₂ (PO ₄) ₂ (OH)·2H ₂ O	PO ₄	151.26	294.68	20	27
trolleite	Al ₄ (OH) ₃ [PO ₄] ₃	PO ₄	143.72	270.7	20	28
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	775.7	20	29
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	780.7	20	29
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	795.8	20	30
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	768	31	29
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	781.1	31	29
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	780.8	31	29
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	797.9	31	29
hydroxylapatite	Ca ₁₀ (PO ₄) ₆ (OH) ₂	PO ₄	318.75	785	31	29
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	765	31	29
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	776.5	31	29
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	775.8	31	29
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	766.4	31	29
fluorapatite	Ca ₁₀ (PO ₄) ₆ F ₂	PO ₄	315.6	771.8	31	29
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	914	31	30
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	800.2	31	30
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	801.2	31	30
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	808	31	30
chloroapatite	$Ca_{10}(PO_4)_6Cl_2$	PO ₄	327.8	804.3	31	30
chloroapatite	Ca ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	327.8	796.2	31	30
barium chlorapatite	Ba ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	422.15	1044	31	32
strontium chlorapatite	Sr ₁₀ (PO ₄) ₆ Cl ₂	PO ₄	366.17	904	31	33
bromoapatite	$Ca_{10}(PO_4)_6Br_2$	PO ₄	334.97	827.3	31	34
saleeite	Mg(UO ₂) ₂ (PO ₄) ₂ ·10(H ₂ O)	PO ₄	291.37	756	35	36
meta-autunite	$Ca(UO_2)_2(PO_4)_2 \cdot 6(H_2O)$	PO ₄	245.13	667	35	37
libethenite	Cu ₂ (PO ₄)(OH)	PO ₄	60.1501	60.1501 162.2		16

pseudomalachite	Cu ₅ (PO ₄) ₂ (OH)	PO ₄	132.147	392.7	16	16
newberyite	MgHPO ₄ ·3H ₂ O	PO ₄	82.2	195.9	38	38
phosphorrosslerite	MgHPO ₄ ·7H ₂ O	PO ₄	141.6	361.8	38	38
k-struvite	MgKPO ₄ ·6H ₂ O	PO ₄	142.5	350.1	38	38
farringtonite	Mg ₃ (PO4) ₂	PO ₄	95.2	189.2	38	38
cattiite	$Mg_3(PO_4)_2 \cdot 22H_2O$	PO ₄	401.9	1046.6	38	38
wollanstonite	CaSiO ₃	SiO ₄ - C&B	39.9	81.7	17	17
pseudowollanstonite	CaSiO ₃	SiO ₄ - C&B	40.08	87.2	17	17
wollanstonite glass	CaSiO ₃	SiO ₄ - C&B	40.13	94.8	17	17
Ca-Al pyroxene	CaAl ₂ SiO ₆	SiO ₄ - C&B	63.57	141	17	17
Ca-Al pyroxene glass	CaAl ₂ SiO ₆	SiO ₄ - C&B	78.13	155.3	17	17
ferrobustamite	CaFeSi ₂ O ₆	SiO ₄ - C&B	73	180.5	17	17
hedenbergite	CaFeSi ₂ O ₆	SiO ₄ - C&B	67.95	174.2	17	17
hedenbergite glass	CaFeSi ₂ O ₆	SiO ₄ - C&B		185.7	17	17
diopside	CaMgSi ₂ O ₆	SiO ₄ - C&B	66.09	142.7	17	17
diopside glass	CaMgSi ₂ O ₆	SiO ₄ - C&B	76.09	166	17	17
ferrosilite	FeSiO ₃	SiO ₄ - C&B	33	94.6	17	17
α-spodumene	LiAlSi ₂ O ₆	SiO ₄ - C&B	58.37	129.3	17	17
β-spodumene	LiAlSi ₂ O ₆	SiO ₄ - C&B	78.25	154.4	17	17
enstatite	MgSiO ₃	SiO ₄ - C&B	31.31	66.3	17	17
enstatite glass	MgSiO ₃	SiO ₄ - C&B	36.6	74.1	17	17

clinoenstatite	MgSiO ₃	SiO ₄ - C&B	31.28	67.9	17	17
MgSiO ₃ - pervoskite	MgSiO ₃	SiO ₄ - C&B	24.5	63.6	17	17
MgSiO ₃ - ilmenite	MgSiO ₃	SiO ₄ - C&B	26.36	60.4	17	17
hypersthene	(Mg _{0.85} Fe _{0.15})SiO ₃	SiO ₄ - C&B	31.53	69	17	17
rhodonite	MnSiO ₃	SiO ₄ - C&B	34.94	100.5	17	17
pyromagite	MnSiO ₃	SiO ₄ - C&B	34.72	99.4	17	17
jadeite	NaAlSi ₂ O ₆	SiO ₄ - C&B	60.4	133.5	17	17
jadeite glass	NaAlSi ₂ O ₆	SiO ₄ - 170.5 C&B		17	17	
acmite	NaFeSi ₂ O ₆	SiO ₄ - C&B	B 64.6 170.6		17	17
tremolite	$\begin{array}{ c c c c c c } Ca_2Mg_5Si_8O_{22}(OH)_2 & SiO_4 - & 272.9 \\ C\&B & C\&B & \end{array}$		272.9	548.9	17	17
grunerite	Fe ₇ Si ₈ O ₂₂ (OH) ₂	SiO ₄ - C&B	278.7	725	17	17
anthrophyllite	Mg ₇ Si ₈ O ₂₂ (OH) ₂	SiO ₄ - C&B	265.4	534.5	17	17
riebeckite	NaFe ₃ Fe ₂ Si ₈ O ₂₂ (OH) ₂	SiO ₄ - C&B	274.7	691	17	17
glaucophane	$Na_2Mg_3Al_2Si_8O_{22}(OH)_2$	SiO ₄ - C&B	262.1	541.2	17	17
pargasite	NaCa ₂ Mg ₄ Al(Al ₂ Si ₆)O ₂₂ (OH) ₂	SiO ₄ - C&B	272	582	17	17
fluoropargasite	NaCa ₂ Mg ₄ Al(Al ₂ Si ₆)O ₂₂ F ₂	SiO ₄ - C&B	270.6	583	17	17
edingtonite (ordered)	BeAl ₂ Si ₃ O ₁₀ ·3H ₂ O	SiO ₄ - F	180.4	434.8	17	17
anorthite	CaAl ₂ Si ₂ O ₈	SiO ₄ - F	100.79	199.3	17	17
hexagonal anorthite	CaAl ₂ Si ₂ O ₈	SiO ₄ - F	99.85	214.8	17	17
anorthite glass	CaAl ₂ Si ₂ O ₈	SiO ₄ - F	103	237.3	17	17

stilbite	$Ca_{1.02}Na_{0.14}K_{0.01}(Al_{2.18}Si_{6.82}O_{18})\cdot 7.33H_2O$	SiO ₄ - F	333.4	805.9	17	17
heulandite	$Ca_{0.59}Sr_{0.18}Ba_{0.06}Na_{0.38}K_{0.13}Al_{2.16}Si_{6.84}O_{18}\cdot 6H_2O$	SiO ₄ - F	317.6	767.2	17	17
wairakite	$CaAl_2Si_4O_{12}$ ·2H ₂ O	SiO ₄ - F	190.4	440	17	17
laumontite	$CaAl_2Si_4O_{12}\cdot 4H_2O$	SiO ₄ - F	211.3		17	17
scolecite	$CaAl_2Si_3O_{10}$ · $3H_2O$	SiO ₄ - F	172.3	367.4	17	17
leonhardite	$Ca_2Al_4Si_8O_{24}$ ·7H ₂ O	SiO ₄ - F	409.3	922.2	17	17
bicchulite	Ca ₂ Al ₂ SiO ₆ (OH) ₂	SiO ₄ - F	103.68	213.1	17	17
meionite (Al/Si ordered)	Ca ₄ Al ₆ Si ₆ O ₂₄ CO ₃	SiO ₄ - F	340.36	715.2	17	17
danburite	CaB ₂ Si ₂ O ₈	SiO ₄ - F	82.2	155.3	17	17
clinoptilolite	$(Na_{0.56}K_{0.98}Ca_{1.50}Mg_{1.23})(Al_{6.7}Fe_{0.3})Si_{29}O_{72}\cdot 22H_2O$	SiO ₄ - F	1267.6	2872.3	17	17
pollucite	$(Cs_{0.65}Na_{0.19}Rb_{0.03})Al_2Si_4O_{12} \cdot H_2O \qquad SiO_4-F \qquad 83 \qquad 207.2$					17
mircocline	KAlSi ₃ O ₈	SiO ₄ - F	108.72	214.2	17	17
sanidine	KAlSi ₃ O ₈	SiO ₄ - F	109.05	232.8	17	17
K-feldspar glass	KAlSi ₃ O ₈	SiO ₄ - F	116.5	261.6	17	17
kaliophillite	KAlSiO ₄	SiO ₄ - F	59.89	133.3	17	17
leucite	KAlSi ₂ O ₆	SiO ₄ - F	88.27	200.2	17	17
eucryptite	LiAlSiO ₄	SiO ₄ - F	53.63	103.8	17	17
petalite	LiAlSi ₄ O ₁₀	SiO ₄ - F	128.4	233.2	17	17
albite	NaAlSi ₃ O ₈	SiO ₄ - F	100.07	207.4	17	17
analbite	NaAlSi ₃ O ₈	SiO ₄ - F	100.43	225.6	17	17
albite glass	NaAlSi ₃ O ₈	SiO ₄ - F	110.1	251.9	17	17
Na-K feldspar ss.	Na _{0.85} K _{0.15} AlSi ₃ O ₈	SiO ₄ - F	102.18	231.3	17	17
Na-K feldspar ss.	$Na_{0.55}K_{0.45}AlSi_3O_8$	SiO ₄ - F	105.22	237	17	17
na-k feldspar ss.	Na _{0.25} K _{0.75} AlSi ₃ O ₈	SiO ₄ - F	107.37	237.4	17	17
nepheline	NaAlSiO ₄	SiO ₄ - F	54.19	124.4	17	17
carnegieite	NaAlSiO ₄	SiO ₄ - F	56.03	118.7	17	17
nepheline glass	NaAlSiO ₄	SiO ₄ - F	56.86	134.5	17	17
analcime	NaAlSi ₂ O ₆ ·H ₂ O	SiO ₄ - F	97.4	227.7	17	17
dehydrated analcime	NaAlSi ₂ O ₆	SiO ₄ - F		172.5	17	17

natrolite	$Na_2Al_2Si_3O_{10}$ ·2H ₂ O	SiO ₄ - F	169.2	359.7	17	17
phillpsite	$(Na_{1.1}K_{0.8})Al_{1.9}Si_{6.1}O_{16}\cdot 6H_2O$	SiO ₄ - F	303	771.9	17	17
mesolite	$Na_{0.68}Ca_{0.66}(Al_{1.99}Si_{3.01}O_{10}) \cdot 2.65H_2O$	SiO ₄ - F	171.1	363	17	17
mordenite	$Na_{0.36}Ca_{0.29}Al_{0.94}Si_{5.06}O_{12}\cdot 3.47H_2O$	SiO ₄ - F	209.8	486.5	17	17
dehydrated mordenite	$Na_{0.36}Ca_{0.29}Al_{0.94}Si_{5.06}O_{12}$	SiO ₄ - F		299.1	17	17
merlinoite	Na _{0.81} K _{0.19} AlSi _{1.94} O _{5.88} ·2.13H ₂ O	SiO ₄ - F	150.6	282.4	17	17
merlinoite	$K_{0.80}Na_{0.20}AlSi_{1.94}O_{5.88}\cdot 1.88H_2O$	SiO ₄ - F	152.2	276.6	17	17
merlinoite	KAISi _{1.94} O _{5.88} ·1.69H ₂ O	SiO ₄ - F	151.2	274.3	17	17
merlinoite	$K_{0.81}Na_{0.19}AlSi_{1.81}O_{5.62}\cdot 2.18H_2O$	SiO ₄ - F	153.6	274.6	17	17
merlinoite	$K_{0.91}Na_{0.09}AlSi_{1.81}O_{5.62}\cdot 1.79H_2O$	SiO ₄ - F	151.5	260.5	17	17
merlinoite	KAlSi _{1.81} O _{5.62} ·1.69H ₂ O	SiO ₄ - F	149.8	259.7	17	17
topaz	Al ₂ SiO ₄ F ₂	SiO ₄ - O&R	51.53	105.4	17	17
kyanite	Al ₂ SiO ₅	SiO ₅ SiO ₄ - 44.15 82.8 O&R 44.15		82.8	17	17
andalusite	Al ₂ SiO ₅	SiO ₄ - O&R	51.52	91.4	17	17
sillmanite	Al ₂ SiO ₅	SiO ₄ - O&R	49.86	95.4	17	17
mullite	Al ₆ Si ₂ O ₁₃	SiO ₄ - O&R	134.55	275	17	17
dumortierite	Al _{6.75} 0 _{0.25} Si ₂ BO _{17.25} (OH) _{0.75}	SiO ₄ - O&R	168.4	334.9	17	17
euclase	BeAlSiO ₄ (OH)	SiO ₄ - O&R	46.86	89.1	17	17
phenakite	Be ₂ SiO ₄	SiO ₄ - O&R	37.18	63.4	17	17
beryl	$Be_{3}Al_{2}(Si_{6}O_{18})$	SiO ₄ - O&R	203.3	346.7	17	17
bertrandite	Be ₄ Si ₂ O ₇ (OH) ₂	SiO ₄ - O&R	91.8	172.1	17	17
epidote	Ca ₂ Al ₂ FeSi ₃ O ₁₂ (OH)	SiO ₄ - O&R 138.1 328.9		17	17	
lawsonite	onite $Ca_2Al_2[Si_2O_7(OH)_2]H_2O$		101.32	230	17	17

gehlenite	CaAl ₂ SiO ₇	SiO ₄ - O&R	90.15	210	17	17
zoisite	Ca ₂ Al ₃ Si ₃ O ₁₂ (OH)	SiO ₄ - O&R	136.5	295.9	17	17
grossular	Ca ₃ Al ₂ Si ₃ O ₁₂	SiO ₄ - O&R	125.28	260.1	17	17
grossular _(glass)	Ca ₃ Al ₂ Si ₃ O ₁₂	SiO ₄ - O&R	158.8	329.2	17	17
datolite	CaB(SiO ₄)(OH)	SiO ₄ - O&R	53.32	110.2	17	17
ilvaite	CaFe ₂ Fe(Si ₂ O ₇)O(OH)	SiO ₄ - O&R	101.07	292.3	17	17
andradite	Ca ₃ Fe ₂ Si ₃ O ₁₂	SiO ₄ - O&R	132.04	316.4	17	17
monticellite	CaMgSiO ₄	SiO ₄ - O&R	51.3	108.1	17	17
akermanite	Ca ₂ MgSi ₂ O ₇	SiO ₄ - O&R	92.54	212.5	17	17
merwinite	Ca ₃ Mg(SiO ₄) ₂	SiO ₄ - O&R	98.5	253.1	17	17
titanite	CaTiSiO ₅	SiO ₄ - O&R	55.74	129.2	17	17
larnite	α-Ca ₂ SiO ₄	SiO ₄ - O&R	51.6	127.6	17	17
calcio-olivine	γ-Ca ₂ SiO ₄	SiO ₄ - O&R	58.01	120.5	17	17
haturite	Ca ₃ SiO ₅	SiO ₄ - O&R	72.74	168.6	17	17
rankinite	Ca ₃ Si ₂ O ₇	SiO ₄ - O&R	96.51	210.6	17	17
rosenhahnite	Ca ₃ Si ₃ O ₈ (OH) ₂	SiO ₄ - O&R	126.46	281.8	17	17
spurrite	Ca ₅ (SiO ₄) ₂ CO ₃	SiO ₄ - O&R	146.97	331	17	17
tilleyite	$Ca_5Si_2O_7(CO_3)_2$	SiO ₄ - O&R	170.5	394	17	17
cobalt-olivine	Co ₂ SiO ₄	SiO ₄ - O&R	44.49	142.6	17	17

fayalite	Fe ₂ SiO ₄	SiO ₄ - O&R	46.31	151	17	17
almandine	Fe ₃ Al ₂ Si ₃ O ₁₂	SiO ₄ - O&R	115.32	342.6	17	17
staurolite	$Fe_4Al_{18}Si_8O_{46}(OH)_2$	SiO ₄ - O&R	445.9	985	17	17
osumilite	$KMg_2Al_3[Si_{10}Al_2O_{30}]\cdot H_2O$	SiO ₄ - O&R	379.2		17	17
cordierite	$Mg_2Al_3(AlSi_5O_{18})$	SiO ₄ - O&R	233.22	407.2	17	17
sapphirine	Mg ₂ Al ₄ O ₆ (SiO ₄)	SiO ₄ - O&R	98.9	197.5	17	17
forsterite	Mg ₂ SiO ₄	SiO ₄ - O&R	43.65	94.1	17	17
ругоре	$Mg_3Al_2Si_3O_{12}$	SiO ₄ - O&R	113.12	266.3	17	17
pyrope _{glass}	$Mg_3Al_2Si_3O_{12}$	SiO ₄ - O&R	146.1	346.3	17	17
pyrope-grossular ss.	$(Mg_{1.8}Ca_{1.2})Al_2Si_3O_{12}$	SiO ₄ - O&R	118.35	268.3	17	17
pyrope-grossular ss. _{glass}	$(Mg_{1.5}Ca_{1.5})Al_2Si_3O_{12}$	SiO ₄ - O&R	152.5	311.8	17	17
tephroite	Mn ₂ SiO ₄	SiO ₄ - O&R	48.99	155.9	17	17
liebenbergite	Ni ₂ SiO ₄	SiO ₄ - O&R	42.57	128.1	17	17
nickel spinel	Ni ₂ SiO ₄	SiO ₄ - O&R	39.81	124.1	17	17
willmenite	Zn ₂ SiO ₄	SiO ₄ - O&R	52.42	131.4	17	17
zircon	ZrSiO ₄	SiO ₄ - O&R	39.26	84	17	17
coffinite	USiO ₄	SiO ₄ - O&R	45.99	136	39	39
thorite	ThSiO ₄	SiO ₄ - O&R	48.61	147.05	40	40
dickite	Al ₂ Si ₂ O ₅ (OH) ₄	SiO ₄ - S	98.56	197.1	17	17
kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	SiO ₄ - S	99.34	200.4	17	17

halloysite	Al ₂ Si ₂ O ₅ (OH) ₄	SiO ₄ - S		203	17	17
pyrophyllite	Al ₂ Si ₄ O ₁₀ (OH) ₂	SiO ₄ - S	128.1	239.4	17	17
illite	K ₃ (Al ₇ Mg)(Al ₂ Si ₁₄)O ₄₀ (OH) ₈	SiO ₄ - S	577	1104.2	17	17
margarite	$CaAl_2[Al_2Si_2O_{10}](OH)_2$	SiO ₄ - S	129.63	263.6	17	17
prehnite	CaAl ₂ [AlSi ₃ O ₁₀](OH) ₂	SiO ₄ - S	141.1	292.8	17	17
muscovite (al/si disordered)	KAl ₂ [Al ₂ Si ₃ O ₁₀](OH) ₂	SiO ₄ - S	140.81	306.4	17	17
muscovite (al/si ordered)	KAl ₂ [Al ₂ Si ₃ O ₁₀](OH) ₂	SiO ₄ - S	140.81	287.7	17	17
annite	KFe ₃ [Al ₂ Si ₃ O ₁₀](OH) ₂	SiO ₄ - S	154.3	415	17	17
phlogopite (Al/Si disordered)	ogopite (Al/Si rdered)KMg_3[Al_2Si_3O_{10}](OH)_2SiO_4- S149.65			334.6	17	17
phlogopite (Al/Si disordered)	$KMg_3[Al_2Si_3O_{10}](OH)_2$	SiO ₄ - S	149.65	315.9	17	17
fluorphlogopite (Al/Si disordered)	$KMg_3[Al_2Si_3O_{10}]F_2$	SiO ₄ - S	146.52	336.3	17	17
fluorphlogopite (Al/Si disordered)	$KMg_3[Al_2Si_3O_{10}]F_2$	SiO ₄ - S	146.52	317.6	17	17
talc	Mg ₃ Si ₄ O ₁₀ (OH) ₂ SiO ₄ - S 136.		136.2	260.8	17	17
chrysotile	Mg ₃ Si ₂ O ₅ (OH) ₄	SiO ₄ - S	107.5	221.3	17	17
clinochlore	Mg ₅ Al(AlSi ₃ O ₁₀)(OH) ₈	SiO ₄ - S	211	421	17	17
paragonite (Al/Si disordered)	NaAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	SiO ₄ - S	132.1	295.8	17	17
paragonite (al/si ordered)	NaAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	SiO ₄ - S	132.1	277.1	17	17
aluminum sulfate	Al ₂ (SO ₄) ₃	SO ₄	73.41	239.3	17	17
barite	BaSO ₄	SO ₄	52.1	132.2	17	17
anhydrite	CaSO ₄	SO ₄	46.01	107.4	17	17
gypsum	CaSO ₄ ·2H ₂ O	SO ₄	74.69	193.8	17	17
chalcocyanite	CuSO ₄	SO ₄	40.88	109.5	17	17
chalcanthite	CuSO ₄ ·5H ₂ O	SO ₄	108.97	301.2	17	17
brochanthite	$Cu_4(SO_4)(OH)_6$	SO ₄			17	17
ferric sulfate	$Fe_2(SO_4)_3$	SO ₄	130.8	282.8	17	17
szomolnokite	FeSO ₄ ·H ₂ O	SO ₄			17	17

melanterite	FeSO ₄ ·7H ₂ O	SO ₄	146.5	409.2	17	17
arcanite	K ₂ SO ₄	SO ₄	65.5	175.6	17	17
k-al sulfate	KAl(SO ₄) ₂	SO ₄	92.33	204.6	17	17
alunite	KAl ₃ (OH) ₆ (SO ₄) ₂	SO ₄	293.6	321	17	17
langbeinite	KMg ₃ (SO ₄) ₃	SO ₄	146.95	389.3	17	17
magnesium sulfate	MgSO ₄	SO ₄			17	17
epsomite	MgSO ₄ ·7H ₂ O	SO ₄	146.8	372	17	17
manganese sulfate	MnSO ₄	SO ₄	43.62	127	17	17
mascagnite	(NH ₄) ₂ SO ₄	SO ₄	74.68	220.5	17	17
thenardite	Na ₂ SO ₄	SO ₄	53.33	149.6	17	17
mirabilite	Na ₂ SO ₄ ·10H ₂ O	SO ₄	219.8	591.9	17	17
nickelous sulfate	NiSO ₄	SO ₄	38.57	101.3	17	17
retersite	NiSO ₄ ·6H ₂ O	5H ₂ O SO ₄ 126.6		334.5	17	17
morenosite	NiSO ₄ ·7H ₂ O	I ₂ O SO ₄ 143.8		378.9	17	17
anglesite	PbSO ₄	SO ₄	47.95	148.5	17	17
celestite	SrSO ₄	SO ₄	46.25	117	17	17
zinokiste	ZnSO ₄	SO ₄	41.57	110.5	17	17
bianchite	ZnSO ₄ ·6H ₂ O	SO ₄	130.2	363.6	17	17
goslarite	ZnSO ₄ ·7H ₂ O	SO ₄	145.8	388.7	17	17
borax	Na ₂ B ₄ O ₇ ·10H ₂ O	SO ₄	222.7	586	17	17
kröhnkite	Na ₂ Cu(SO ₄)·2H ₂ O	SO ₄	115.79	315.5	16	16
cyanochroite	$K_2Cu(SO_4)_2 \cdot 6H_2O$	SO ₄	197.84	501.9	16	16
devilline	CaCu ₄ (SO ₄) ₂ (OH) ₆ ·3H ₂ O	SO_4	208.708	581.2	16	16
scheelite	CaWO ₄	WO ₄	47.05	126.4	17	17
ferberite	FeWO ₄	WO ₄	40.38	131.8	17	17
huebnerite	MnWO ₄	WO ₄	41.89	132.5	17	17
stolzite	PbWO ₄	WO ₄	54.1	168.2	17	17
sanmartinite	ZnWO ₄	WO ₄	39.79	119.3	17	17

Er (x)	∆H _{mix} (kJ/mol)	∆H _f (kJ/mol)	S° (J/mol·K)	∆S _{mix, vib} (J/mol·K)	∆S _{mix, config} (J/mol·K)	∆S _{mix, total} (J/mol·K)	∆S _f (J/mol·K)
1.0000	0.00	-1976.9	110.2	0.0	0.0	0.0	-415.7
0.8787	0.05	-1971.1	110.1	0.1	3.1	3.1	-411.0
0.7465	0.08	-1964.8	109.7	0.0	4.7	4.7	-407.8
0.6175	0.10	-1958.6	109.6	0.1	5.5	5.7	-405.1
0.4693	0.11	-1951.6	109.1	-0.1	5.7	5.7	-403.4
0.2208	0.07	-1939.8	108.7	0.0	4.4	4.4	-401.5
0.0000	0.00	-1929.4	108.2	0.0	0.0	0.0	-403.1

Table S14 Thermodynamic functions derived for $ErPO_4$ -YbPO₄ solid solution, ΔH_{mix} is that determined by empirical volumetric method.

Table S15 Free Energy of Mixing for ErPO₄-YbPO₄ solid solution at various temperatures, using volumetrically determined ΔH_{mix}

	ΔG_{mix} (kJ/mol)									
Er(x)	$T = 25^{\circ}C$	$T = 100^{\circ}C$	$T = 250^{\circ}C$	$T = 400^{\circ}C$						
1.0000	0	0	0	0						
0.8787	-0.89	-2.06	-3.70	-5.81						
0.7465	-1.32	-3.07	-5.53	-8.70						
0.6175	-1.59	-3.70	-6.67	-10.48						
0.4693	-1.59	-3.71	-6.68	-10.50						
0.2208	-1.23	-2.86	-5.15	-8.10						
0.0000	0	0	0	0						

Table S16 Free Energy of Mixing for ErPO₄-YbPO₄ solid solution at various temperatures, using experimentally calorimetry determined ΔH_{mix}

	ΔG_{mix} (kJ/mol)								
Er(x)	$T = 25^{\circ}C$	$T = 100^{\circ}C$	$T = 250^{\circ}C$	$T = 400^{\circ}C$					
1.0000	0	0	0	0					
0.8787	0.79	-0.38	-2.03	-4.14					
0.7465	2.22	0.46	-2.00	-5.16					
0.6175	2.93	0.81	-2.15	-5.97					
0.4693	3.55	1.43	-1.54	-5.37					
0.2208	2.12	0.48	-1.81	-4.75					
0.0000	0	0	0	0					

$\operatorname{Er}(x)$	a			b		c			Adj. R ²	
1.0000	55.976	±	1.99177	0.19692	±	0.00704	-7.77E-05	±	5.53E-06	0.99907
0.8787	56.5624	±	1.98058	0.19628	±	0.007	-7.75E-05	±	5.50E-06	0.99907
0.7465	57.20166	±	1.96839	0.19558	±	0.00696	-7.73E-05	±	5.46E-06	0.99907
0.6175	57.82575	±	1.95649	0.19489	±	0.00692	-7.71E-05	±	5.43E-06	0.99907
0.4693	58.54229	±	1.94282	0.19411	±	0.00687	-7.69E-05	Ŧ	5.39E-06	0.99908
0.2208	59.74369	±	1.91991	0.19279	±	0.00679	-7.65E-05	±	5.33E-06	0.99909
0.0000	60.81157	±	1.89954	0.19163	±	0.00671	-7.62E-05	±	5.27E-06	0.99909

Table S17 $C_p = a + bT + cT^2$, derived from Neumann-Koop's rule. T = Temperature in K

Figure S22 Comparison of the C_p derived by NKR versus those reported in the literature that were derived experimentally.

	$\int_{298}^{T} C_p dT [\text{kJ/mol}]$									
T [°C]	ErPO ₄	$\begin{array}{ c c c } Er_{0.88}Yb_{0.12}\\ PO_4 \end{array}$	Er _{0.75} Yb _{0.25} PO ₄	Er _{0.62} Yb _{0.38} PO ₄	Er _{0.47} Yb _{0.53} PO ₄	Er _{0.22} Yb _{0.78} PO ₄	YbPO ₄			
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
27	0.22	0.22	0.22	0.22	0.22	0.22	0.22			
127	11.75	11.79	11.83	11.87	11.92	12.00	12.07			
227	24.63	24.70	24.78	24.86	24.94	25.09	25.23			
327	38.70	38.80	38.91	39.02	39.14	39.35	39.54			
427	53.80	53.93	54.07	54.20	54.36	54.62	54.85			
527	69.79	69.94	70.10	70.26	70.44	70.74	71.01			
627	86.50	86.67	86.85	87.03	87.23	87.57	87.87			
727	103.79	103.97	104.17	104.35	104.58	104.95	105.28			

Table S18 Results from the integration of C_p equation from Table S11.

Table S19 $C_p/T = a + bT + cT^2$, derived from Neumann-Koop's rule. T = Temperature in K

$\operatorname{Er}(x)$	a		b		с			Adj. R ²		
1.0000	0.52175	±	0.00965	-6.42E-04	±	3.41E-05	2.99E-07	±	2.68E-08	0.99701
0.8787	0.52455	±	0.00982	-6.48E-04	±	3.47E-05	3.03E-07	±	2.73E-08	0.99695
0.7465	0.52762	±	0.01	-6.54E-04	±	3.53E-05	3.06E-07	±	2.78E-08	0.99688
0.6175	0.5306	±	0.01017	-6.60E-04	±	3.59E-05	3.10E-07	±	2.82E-08	0.99682
0.4693	0.53404	±	0.01037	-6.67E-04	±	3.67E-05	3.14E-07	±	2.88E-08	0.99675
0.2208	0.53979	±	0.01071	-6.79E-04	±	3.79E-05	3.20E-07	±	2.97E-08	0.99662
0.0000	0.5449	±	0.01101	-6.90E-04	±	3.89E-05	3.26E-07	±	3.06E-08	0.99652

	$\int_{298}^{T} \frac{C_p}{T} dT [\text{kJ/mol·K}]$									
T [°C]	ErPO ₄	Er _{0.88} Yb _{0.12} PO ₄	Er _{0.75} Yb _{0.25} PO ₄	Er _{0.62} Yb _{0.38} PO ₄	Er _{0.47} Yb _{0.53} PO ₄	Er _{0.22} Yb _{0.78} PO ₄	YbPO ₄			
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
27	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
127	0.03	0.03	0.03	0.03	0.03	0.03	0.04			
227	0.06	0.06	0.06	0.06	0.06	0.06	0.07			
327	0.09	0.09	0.09	0.09	0.09	0.09	0.09			
427	0.11	0.11	0.11	0.11	0.11	0.11	0.12			
527	0.13	0.13	0.13	0.13	0.13	0.14	0.14			
627	0.15	0.15	0.15	0.15	0.15	0.15	0.16			
727	0.17	0.17	0.17	0.17	0.17	0.17	0.17			

Table S20 Results from the integration of C_p/T equation from Table S13.

		$\Delta G_f(kJ/mol)$									
Temperature		$Er_{0.88}Yb_{0.12}$	$Er_{0.75}Yb_{0.25}$	$Er_{0.62}Yb_{0.38}$	$Er_{0.47}Yb_{0.53}$	Er _{0.22} Yb _{0.78}					
(°C)	ErPO ₄	PO ₄	PO ₄	PO ₄	PO_4	PO ₄	YbPO ₄				
25	-1853.0	-1848.6	-1843.3	-1837.9	-1831.4	-1820.2	-1809.3				
27	-1852.2	-1847.8	-1842.4	-1837.1	-1830.6	-1819.4	-1808.5				
127	-1812.5	-1808.6	-1803.6	-1798.5	-1792.2	-1781.2	-1770.1				
227	-1776.2	-1772.8	-1768.1	-1763.3	-1757.1	-1746.4	-1735.2				
327	-1742.5	-1739.6	-1735.2	-1730.7	-1724.8	-1714.2	-1703.0				
427	-1711.0	-1708.5	-1704.5	-1700.4	-1694.6	-1684.3	-1672.9				
527	-1681.4	-1679.5	-1675.8	-1671.9	-1666.4	-1656.3	-1644.8				
627	-1653.8	-1652.4	-1649.1	-1645.5	-1640.2	-1630.4	-1618.8				
727	-1628.5	-1627.6	-1624.6	-1621.4	-1616.2	-1606.7	-1595.0				

Table S21 Gibbs free energy of formation as a function of T, using volumetrically determined ΔH_{mix} .

Calculated through the following equation:

$$\Delta G_T = \left[\Delta H_{298} + \int_{298}^T C_p dT \right] - \left[T * \left(\Delta S_{298} + \int_{298}^T \frac{C_p}{T} dT \right) \right]$$

		$\Delta G_{\rm f}({ m kJ/mol})$									
Temperature		Er _{0.88} Yb _{0.12}	Er _{0.75} Yb _{0.25}	Er _{0.62} Yb _{0.38}	Er _{0.47} Yb _{0.53}	Er _{0.22} Yb _{0.78}					
(°C)	ErPO ₄	PO_4	PO ₄	PO ₄	PO ₄	PO ₄	YbPO ₄				
	-						-				
25	1860.97	-1854.84	-1847.55	-1841.19	-1833.95	-1824.42	1816.78				
	-						-				
27	1860.14	-1854.02	-1846.73	-1840.37	-1833.15	-1823.61	1815.98				
	-						-				
127	1820.47	-1814.84	-1807.87	-1801.8	-1794.75	-1785.42	1777.63				
	-						-				
227	1784.13	-1778.99	-1772.36	-1766.58	-1759.72	-1750.62	1742.71				
	-						-				
327	1750.43	-1745.78	-1739.5	-1734.01	-1727.35	-1718.49	1710.47				
							-				
427	-1718.9	-1714.75	-1708.81	-1703.63	-1697.17	-1688.55	1680.41				
	-						-				
527	1689.34	-1685.69	-1680.09	-1675.21	-1668.96	-1660.58	1652.33				
	-						-				
627	1661.77	-1658.62	-1653.38	-1648.8	-1642.75	-1634.61	1626.26				
	-										
727	1636.46	-1633.82	-1628.93	-1624.66	-1618.82	-1610.95	-1602.5				

Table S22 Gibbs free energy of formation as a function of T, using experimentally calorimetry determined ΔH_{mix} .

Calculated through the following equation:

$$\Delta G_{T} = \left[\Delta H_{298} + \int_{298}^{T} C_{p} dT \right] - \left[T * \left(\Delta S_{298} + \int_{298}^{T} \frac{C_{p}}{T} dT \right) \right]$$

Reference:

- Mesbah, A.; Clavier, N.; Lozano-Rodriguez, M. J.; Szenknect, S.; Dacheux, N. Incorporation of Thorium in the Zircon Structure Type through the Th1-XErx(SiO4)1x(PO4)x Thorite-Xenotime Solid Solution. *Inorg. Chem.* 2016, 55 (21), 11273–11282. https://doi.org/10.1021/acs.inorgchem.6b01862.
- (2) Bruker Nano GmbH. S2 PicofoxTM. Bruker Nano GmbH: Berlin 2010.
- (3) Bruker Nano GmbH. Spectra 7. Bruker Nano GmbH: Berlin 2010.
- (4) Lenz, C.; Nasdala, L.; Talla, D.; Hauzenberger, C.; Seitz, R.; Kolitsch, U. Laser-Induced REE3+ Photoluminescence of Selected Accessory Minerals - An "Advantageous Artefact" in Raman Spectroscopy. *Chem. Geol.* 2015, 415 (October), 1–16. https://doi.org/10.1016/j.chemgeo.2015.09.001.
- (5) Prescher, C.; Prakapenka, V. B. DIOPTAS: A Program for Reduction of Two-Dimensional X-Ray Diffraction Data and Data Exploration. *High Press. Res.* 2015, *35* (3), 223–230. https://doi.org/10.1080/08957959.2015.1059835.
- (6) Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46 (2), 544–549. https://doi.org/10.1107/S0021889813003531.
- (7) Guo, X.; Szenknect, S.; Mesbah, A.; Labs, S.; Clavier, N.; Poinssot, C.; Ushakov, S. V.; Curtius, H.; Bosbach, D.; Ewing, R. C.; et al. Thermodynamics of Formation of Coffinite, USiO4. *Proc. Natl. Acad. Sci.* **2015**, *112* (21), 6551–6555. https://doi.org/10.1073/pnas.1507441112.
- (8) Tavakoli, A. H.; Maram, P. S.; Widgeon, S. J.; Rufner, J.; Van Benthem, K.; Ushakov, S.; Sen, S.; Navrotsky, A. Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability. *J. Phys. Chem. C* 2013, *117* (33), 17123–17130. https://doi.org/10.1021/jp405820g.
- Guo, X.; Tiferet, E.; Qi, L.; Solomon, J. M.; Lanzirotti, A.; Newville, M.; Engelhard, M. H.; Kukkadapu, R. K.; Wu, D.; Ilton, E. S.; et al. U(v) in Metal Uranates: A Combined Experimental and Theoretical Study of MgUO4, CrUO4, and FeUO4. *Dalt. Trans.* 2016, 45 (11), 4622–4632. https://doi.org/10.1039/c6dt00066e.
- (10) Guo, X.; Wu, D.; Xu, H.; Burns, P. C.; Navrotsky, A. Thermodynamic Studies of Studite Thermal Decomposition Pathways via Amorphous Intermediates UO3, U2O7, and UO4. J. Nucl. Mater. 2016, 478, 158–163. https://doi.org/10.1016/j.jnucmat.2016.06.014.
- (11) Navrotsky, A. Progress and New Directions in Calorimetry: A 2014 Perspective. J. Am. Ceram. Soc. 2014, 97 (11), 3349–3359. https://doi.org/10.1111/jace.13278.
- (12) Strzelecki, A. C.; Ren, Y.; Chong, S.; Riley, B. J.; Xu, H.; McCloy, J. S.; Guo, X. Structure and Thermodynamics of Calcium Rare Earth Silicate Oxyapatites, Ca2RE8(SiO4)6O2 (RE = Pr, Tb, Ho, Tm). *Phys. Chem. Miner.* 2021, *Pending Re.*

- (13) Strzelecki, A. C.; Kriegsman, K. W.; Estevenon, P.; Goncharov, V.; Bai, J.; Szenknect, S.; Mesbah, A.; Wu, D.; McCloy, J. S.; Dacheux, N.; et al. High-Temperature Thermodynamics of Cerium Silicates, A-Ce2Si2O7 and Ce4.67(SiO4)3O. ACS Earth Sp. Chem. 2020, 4 (11), 2129–2143. https://doi.org/10.1021/acsearthspacechem.0c0023.
- (14) Strzelecki, A. C.; Bourgeois, C.; Kriegsman, K. W.; Estevenon, P.; Wei, N.; Szenknect, S.; Mesbah, A.; Wu, D.; Ewing, R. C.; Dacheux, N.; et al. Thermodynamics of CeSiO4 : Implications for Actinide Orthosilicates. *Inorg. Chem.* 2020, *59* (18), 13174–13183. https://doi.org/10.1021/acs.inorgchem.0c01476.
- (15) Zhang, X.; Reece, M. E.; Cockreham, C. B.; Sun, H.; Wang, B.; Xu, H.; Sun, J.; Guo, X.; Su, H.; Wang, Y.; et al. Formation Energetics and Guest—Host Interactions of Molybdenum Carbide Confined in Zeolite Y. *Ind. Eng. Chem. Res.* 2021. https://doi.org/10.1021/acs.iecr.1c02822.
- (16) Majzlan, J.; Zittlau, A. H.; Grevel, K. D.; Schliesser, J.; Woodfield, B. F.; Dachs, E.; Števko, M.; Chovan, M.; Plášil, J.; Sejkora, J.; et al. Thermodynamic Properties and Phase Equilibria of the Secondary Copper Minerals Libethenite, Olivenite, Pseudomalachite, Kröhnkite, Cyanochroite, and Devilline. *Can. Mineral.* **2016**, *53* (5), 937–960. https://doi.org/10.3749/canmin.1400066.
- (17) Robie, Richard A.;Hemingway, B. S. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1995, 2131.
- (18) Navrotsky, A.; Lee, W.; Mielewczyk-Gryn, A.; Ushakov, S. V.; Anderko, A.; Wu, H.; Riman, R. E. Thermodynamics of Solid Phases Containing Rare Earth Oxides. J. Chem. Thermodyn. 2015, 88, 126–141. https://doi.org/10.1016/j.jct.2015.04.008.
- (19) Ushakov, S. V.; Helean, K. B.; Navrotsky, A.; Boatner, L. A. Thermochemistry of Rare-Earth Orthophosphates. J. Mater. Res. 2001, 16 (9), 2623–2633. https://doi.org/10.1557/JMR.2001.0361.
- (20) Vieillard, P.; Tardy, Y. Thermochemical Properties of Phosphates. *Phosphate Miner*. **1984**, 171–198. https://doi.org/10.1007/978-3-642-61736-2_4.
- (21) Nord, A. G.; Kierkegaard, P. The Crystal Structure of Mg3(PO4)2. Acta Chem. Scand. A **1968**, 22, 1466–1474.
- (22) Catti, M.; Ferraris, G.; Filhol, A. Hydrogen Bonding in the Crystalline State. CaHPO4 (Monetite), P1 or P1? A Novel Neutron Diffraction Study. *Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.* 1977, 33 (4), 1223–1229. https://doi.org/10.1107/s0567740877005706.
- (23) Schofield, P. F.; Knight, K. S.; van der Houwen, J. A. M.; Valsami-Jones, E. The Role of Hydrogen Bonding in the Thermal Expansion and Dehydration of Brushite, Di-Calcium Phosphate Dihydrate. *Phys. Chem. Miner.* **2004**, *31* (9), 606–624. https://doi.org/10.1007/s00269-004-0419-6.
- (24) Kniep, R.; Mootz, D.; Vegas, A. Variscite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1977, 33 (1), 263–265. https://doi.org/10.1107/s056774087700329x.

- (25) Gorfman, S.; Tsirelson, V.; Pucher, A.; Morgenroth, W.; Pietsch, U. X-Ray Diffraction by a Crystal in a Permanent External Electric Field: Electric-Field-Induced Structural Response in α-GaPO4. *Acta Crystallogr. Sect. A Found. Crystallogr.* 2006, 62 (1), 1–10. https://doi.org/10.1107/S0108767305036111.
- (26) Angel, R. J.; Bismayer, U.; Marsha, W. G. Renormalization of the Phase Transition in Lead Phosphate, Pb3(PO4)2, by High Pressure: Structure. J. Phys. Condens. Matter 2001, 13 (22), 5353–5364. https://doi.org/10.1088/0953-8984/13/22/325.
- (27) Kampf, A. R. Minyulite : Its Atomic Arrangement. Am. Mineral. 1977, 62, 256–262.
- (28) Moore, P. B.; Araki, T. Trolleite, Al4(OH)3[PO4]3: A Very Dense Structure with Octahedral Face-Sharing Dimers. *Am. Mineral.* **1974**, *59*, 974–984.
- (29) Bulina, N. V.; Makarova, S. V.; Prosanov, I. Y.; Vinokurova, O. B.; Lyakhov, N. Z. Structure and Thermal Stability of Fluorhydroxyapatite and Fluorapatite Obtained by Mechanochemical Method. *J. Solid State Chem.* 2020, 282 (July 2019), 121076. https://doi.org/10.1016/j.jssc.2019.121076.
- (30) Fang, Y. N.; Ritter, C.; White, T. J. Crystal Chemical Characteristics of Ellestadite-Type Apatite: Implications for Toxic Metal Immobilization. *Dalt. Trans.* 2014, 43 (42), 16031– 16043. https://doi.org/10.1039/c4dt02088j.
- (31) Drouet, C. A Comprehensive Guide to Experimental and Predicted Thermodynamic Properties of Phosphate Apatite Minerals in View of Applicative Purposes. J. Chem. Thermodyn. 2015, 81, 143–159. https://doi.org/10.1016/j.jct.2014.09.012.
- (32) Hata, M.; Marumo, F.; Iwai, S.; Aoki, H. Structure of Barium Chlorapatite. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35 (10), 2382–2384. https://doi.org/10.1107/s0567740879009377.
- (33) Chen, J.; Liang, Y.; Zhu, Y.; Liu, S.; Li, H.; Lei, W. Abnormal Reduction of Eu3+ to Eu2+ in Sr5(PO4)3Cl:Eu Phosphor and Its Enhanced Red Emission by the Charge Compensation. *J. Lumin.* 2019, 214 (May), 116569. https://doi.org/10.1016/j.jlumin.2019.116569.
- (34) Elliott, J. C.; Dykes, E.; Mackie, P. E. Structure of Bromapatite and the Radius of the Bromide Ion. *Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.* **1981**, *37* (2), 435–438. https://doi.org/10.1107/s0567740881003208.
- (35) Suleimanov, E. V.; Chernorukov, N. G.; Veridusova, V. V.; Nipruk, O. V. Physical Chemistry of Barium Uranophosphate and Uranoarsenate. *Radiochemistry* 2006, 48 (2), 155–158. https://doi.org/10.1134/S1066362206020093.
- (36) Miller, S. A. Mg[U02P04]2. **1986**, *253*, 247–253.
- (37) Makarov, E. S.; Ivanov, V. I. The Crystal Structure of Meta-Autunite Ca(UO2)2(PO4)2*6H2O. Dokl. Acad. Sci. USSR, Earth Sci. Sect. 1960, 132, 601–603.
- (38) Lothenbach, B.; Xu, B.; Winnefeld, F. Thermodynamic Data for Magnesium (Potassium) Phosphates. *Appl. Geochemistry* **2019**, *111* (May), 104450. https://doi.org/10.1016/j.apgeochem.2019.104450.

- (39) Szenknect, S.; Mesbah, A.; Cordara, T.; Clavier, N.; Brau, H. P.; Le Goff, X.; Poinssot, C.; Ewing, R. C.; Dacheux, N. First Experimental Determination of the Solubility Constant of Coffinite. *Geochim. Cosmochim. Acta* 2016, 181, 36–53. https://doi.org/10.1016/j.gca.2016.02.010.
- (40) Szenknect, S.; Costin, D. T.; Clavier, N.; Mesbah, A.; Poinssot, C.; Vitorge, P.; Dacheux, N. From Uranothorites to Coffinite: A Solid Solution Route to the Thermodynamic Properties of USiO4. *Inorg. Chem.* 2013, 52 (12), 6957–6968. https://doi.org/10.1021/ic400272s.
- (41) Begun, G. M.; Beall, G. W.; Boatner, L. A.; Gregor, W. J. Raman Spectra of the Rare Earth Orthophosphates. J. Raman Spectrosc. 1982, 11 (4), 273–278. https://doi.org/10.1002/jrs.1250130315.
- (42) Clavier, N.; Mesbah, A.; Szenknect, S.; Dacheux, N. Monazite, Rhabdophane, Xenotime & Churchite: Vibrational Spectroscopy of Gadolinium Phosphate Polymorphs. *Spectrochim.* Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 85–94. https://doi.org/10.1016/j.saa.2018.07.016.
- (43) Giarola, M.; Sanson, A.; Rahman, A.; Mariotto, G.; Bettinelli, M.; Speghini, A.; Cazzanelli, E. Vibrational Dynamics of YPO4 and ScPO4 Single Crystals: An Integrated Study by Polarized Raman Spectroscopy and First-Principles Calculations. *Phys. Rev. B Condens. Matter Mater. Phys.* 2011, *83* (22), 1–8. https://doi.org/10.1103/PhysRevB.83.224302.
- (44) Musselman, M. A.; Wilkinson, T. M.; Haberl, B.; Packard, C. E. In Situ Raman Spectroscopy of Pressure-Induced Phase Transformations in Polycrystalline TbPO4, DyPO4, and GdxDy(1-x)PO4. J. Am. Ceram. Soc. 2018, 101 (6), 2562–2570. https://doi.org/10.1111/jace.15374.
- (45) Stavrou, E.; Tatsi, A.; Salpea, E.; Boulmetis, Y. C.; Kontos, A. G.; Raptis, Y. S.; Raptis, C. Raman Study of Zircon-Structured RPO4 (R = Y, Tb, Er, Tm) Phosphates at High Pressures. *J. Phys. Conf. Ser.* 2008, *121* (PART 4). https://doi.org/10.1088/1742-6596/121/4/042016.
- (46) Maftei, A. E.; Buzatu, A.; Damian, G.; Buzgar, N.; Dill, H. G.; Apopei, A. I. Micro-Raman A Tool for the Heavy Mineral Deposits, Gold Placer-Type (Valley, Pianu). *Minerals* 2020, *10* (988), 1–17. https://doi.org/doi:10.3390/min10110988.
- (47) Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J. Multi-Stage Evolution of Xenotime–(Y) from Písek Pegmatites, Czech Republic: An Electron Probe Micro-Analysis and Raman Spectroscopy Study. *Mineral. Petrol.* 2016, *110* (6), 747–765. https://doi.org/10.1007/s00710-016-0442-6.
- (48) Origlieri, M. Xenotime-(Y) R050178 https://rruff.info/Xenotime-(Y)/R050178 (accessed Oct 12, 2021).
- (49) Obodda, H. Xenotime-(Y) R060428 https://rruff.info/xenotime/display=default/R060428 (accessed Oct 12, 2021).