Supporting Information

Nebulization Swab Assisted Photoionization Tandem Miniaturized Ion Trap Mass Spectrometry for On-site Analysis of Nonvolatile Compounds

Weimin Wang¹, Liuyu Jin¹, Fengqing Hu², Fuxing Xu¹, Chuan-Fan Ding^{1, *}

¹ Key Laboratory of Advanced Mass spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
² Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China

*Corresponding Author E-mail: *dingchuanfan@nbu.edu.cn* Tel &Fax: +86-0574-87605710

Paper type: Communication

Molecular structure of analyzed nonvolatile compounds in this article

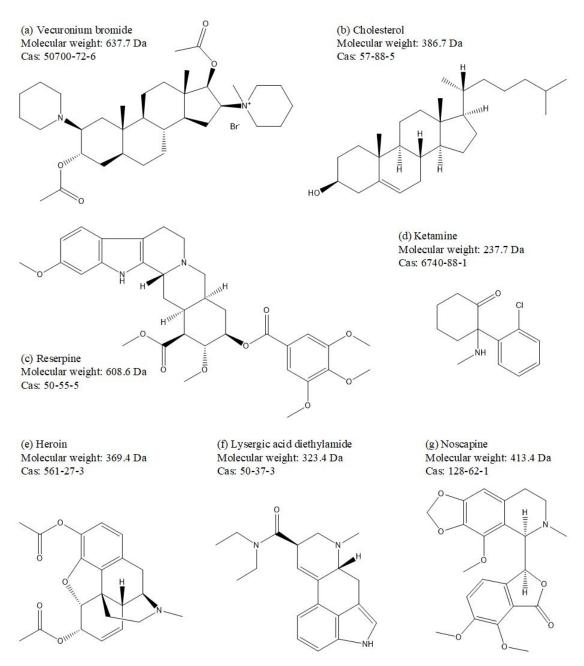


Figure S-1. The molecular structure and cas number of analyzed nonvolatile compounds in this article

Numerical Simulation

A commercial CFD software package ANSYS Fluent (No commercial using) was customized to simulate flow dynamics and ion transport in the NSAP source¹. Turbulent flow and heat transfer were modeled using the pressure-velocity coupled solver for the Navier-Stokes equations. Menter's Shear Stress Transport (SST) k- ω turbulence model was applied for an unsteady/transient Reynolds Averaged N-S (RANS) simulation.

Species transport was manipulated to simulate the mixture of air and acetone. The boundary conditions used in the simulation and the detail simulation process were summarized in Table S-1. The particle motions were modeled via DPM (discrete phase model), which is a Eulerian-Lagrangian technique in which the particulate system was considered a continuum flow of gas containing numerous discrete particle parcels with each parcel comprised of a group of dilute physical particles². Then, solutions for the airflow patterns were found by calculating approximate solutions of the described Navier-Stokes and continuity equations on a grid of control volumes. The simulation model was operated under the ambient pressure and temperature conditions, where the density of the gas was 1.225 kg/m³. The gas viscosity was 1.79×10^{-5} kg/(ms). The gas flow was simulated with second-order implicit unsteady solver with a time step of 0.0001 s. For the processing gas phase, a spatial discretization was performed that used a second-order upwind scheme for all conservation equations. Detail calculation process and equation derivation was not the point of this article, programmed files and project in this article are available for public download from github. (https://github.com/wwm0909501/fluent-nebulization)

Table. S-1 Appli	ed boundary co	onditions and	parameters used	in the fluen	t simulation
rr	· · · · · · · · · · · · · · · · · · ·		r · · · · · · · · · · · ·		

Condition	Boundary condition		
Dopant Inlet/diameter	Velocity inlet/2.5 mm		
Mass fraction of dopant inlet	Acetone (3.7 %), Oxygen (22.3 %), N ₂ (74 %)		
Outlet/diameter	Pressure outlet(1atm)/ 2mm		
Mass fraction of outlet	Oxygen (21 %), N ₂ (79%)		
ionization chamber	Wall/No slip/ (373 K)		
Gas temperature	Constant temperature(300K)		
Calculate type	Steady/Pressure-based		
Turbulence model	SST k-omega		
Species model	Species transport		
Injection Type	Air-blast-atomizer		
Number of Streams	300		
Relative Velocity	1.3 mL/min		

Designed NSAP source and infusion ESI source

Figure S-2. Photograph of designed NSAP source

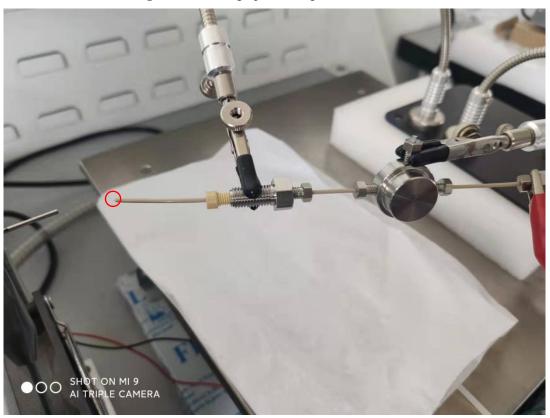
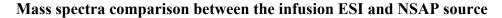



Figure S-3. Photograph of infusion ESI (10 μ L/min)

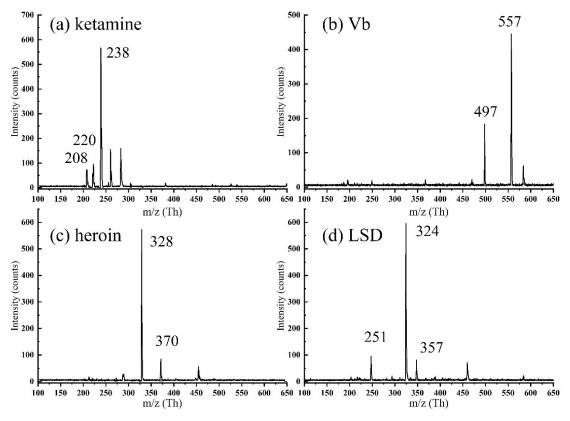


Figure S-4. Mass spectrums of four drugs (a) ketamine (b) Vb (c) heroin (d) LSD with infusion ESI system

	Characteristic ion	LOD		
Target compounds	(m/z, Th)	Absolute amount [*] (pg)	Concentration (ppm)/(RSD %)	
Ketamine	238.4 [M+H]+	3.33	0.02 (1.20 %)	
LSD	324.6 [M+H] ⁺	16.65	0.1 (3.50 %)	
Heroin	328.4 [M+H]+	33.30	0.2 (4.26 %)	
Fentanyl	337.5 [M+H] ⁺	83.30	0.5 (4.77 %)	
Cocaine	304.2 [M+H] ⁺	16.65	0.1 (2.19 %)	
Reserpine	609.7 [M+H] ⁺	166.70	1 (5.67 %)	
Noscapine	414.4 [M+H] ⁺	83.30	0.5 (4.38 %)	
Cholesterol	$369.6 [M-H_2O+H]^+$	83.30	0.5 (3.39 %)	
Norfloxacin	320.3 [M+H]+	33.30	0.2 (4.61 %)	
Chlorotetracycline	479.8 [M-Cl] ⁺	83.30	0.5 (5.67 %)	
Tetracycline	445.5 [M+H] ⁺	16.65	0.1 (1.22 %)	
Oxytetracycline	461.8 [M+H] ⁺	33.30	0.2 (3.50 %)	
Dinonyl phthalate, DOP	419.6 [M+H] ⁺	833	5 (6.85 %)	

Table. S-2 The LODs for measured compounds obtained by using infusion ESI system

Didecyl phthalate, DIDP	447.6 [M+H]+	833	5 (7.90 %)
Bis(2-ethylhexyl) phthalate, DEHP	391.6 [M+H] ⁺	83.30	0.5 (4.11 %)
Vecuronium bromide	557.7 [M-Br] ⁺	83.30	0.5 (4.50 %)
Rocuronium bromide	529.7 [M-Br]+	83.30	0.5 (5.90 %)

Mean particle diameter calculation

Typically, the mean droplet size produced by an ultrasonic nebulizer is expressed by Lang's equation^{3, 4}:

$$D = A(\frac{8\pi\sigma}{\rho f^2})^{1/3} \tag{1}$$

The value of A, an experimentally obtained coefficient, was reported to range between 0.34 and 0.45. ρ is the density of the droplet fluid where 0.787 g/mL was used. In this experiment, f is the frequency of the generated SAWN which is 2.5 MHz. σ is the surface tension of the bulk solution, and was calculated with equation (2):

$$\sigma = y_a \sigma_a + y_b \sigma_b \tag{2}$$

where y_a and y_b are the fractions of components a and b, respectively, and σ_a and σ_b are the surface tensions of the pure component solvents respectively, which were obtained by consulting the Lange's handbook of Chemistry. It is known that the surface tensions of pure water and pure methanol are 72.75 mN/m and 22.6 mN/m, respectively, at 20 °C. Therefore, σ can be calculated to be 47.98 mN/m. Bring the parameters A, σ , f and ρ into equation (1), the mean droplet size D could be calculated to be 2.12 µm.

Signal variation and duration of the ion signal

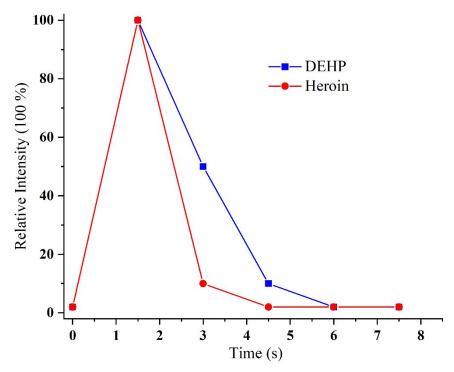


Figure S-5 The TIC of 1 μ g/mL DEHP and 1 μ g/mL heroin standards

References

1. Guide, A. F. T., ANSYS Fluent Tutorial Guide 18. *ANSYS Fluent Tutorial Guide* 18 2018, 15317, 724-746.

2. Poozesh, S.; Jafari, S. M.; Akafuah, N. K., Interrogation of a new inline multibin cyclone for sorting of produced powders of a lab-scale spray dryer. *Powder Technology* **2020**, *373*, 590-598.

3. Song, L.; You, Y.; Evans-Nguyen, T., Surface acoustic wave nebulization with atmospheric-pressure chemical ionization for enhanced ion signal. *Analytical chemistry* **2018**, *91* (1), 912-918.

4. Guo, Y.; Dennison, A.; Li, Y.; Luo, J.; Zu, X.-T.; Mackay, C.; Langridge-Smith, P.; Walton, A.; Fu, Y. Q., Nebulization of water/glycerol droplets generated by ZnO/Si surface acoustic wave devices. *Microfluidics and Nanofluidics* **2015**, *19* (2), 273-282.