Supporting Information

Single Molecule Level and Label-Free Determination of MultiBiomarkers with an Organic Field-Effect Transistor Platform in Early Cancer Diagnosis

Chenfang Sun,^{†a} Guangyuan Feng,^{†a} Yaru Song,^a Shanshan Cheng,^{*a,b,c} Shengbin Lei,^{*a,b,c} and Wenping Hu^{*a,b,c,d}

^{a.} Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

^{b.} Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.

^c Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

^{d.} Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

*: Corresponding author

Email address: chengss@tju.edu.cn; shengbin.lei@tju.edu.cn; huwp@tju.edu.cn.

Table of Contents

The Synthesis Route of Pillar[5]arene-COOH	S-2
Characterization of OFET-Based Biosensors	. S-3
The Performance Parameters with Different Integrating Ratios	. S-4

Scheme S1. The synthesis route of pillar[5]arene-COOH (DMP[5]-COOH).

Figure S1. The schematic representation of masks. (a) Mask with a channel length of 1500 μ m and a channel width of 150 μ m, respectively; (b) Mask with an area of 1 mm².

Figure S2. (a) Comparison of π - π absorption peak intensities under the different integrating ratio of DMP[5]-COOH; (b) X-ray photoelectron spectroscopy (XPS) characterization of the film before (0%) and after (15%) integrating DMP[5]-COOH; (c) Atomic force microscopy (AFM) characterization of the film before integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH; (d) Atomic force microscopy (AFM) characterization of the film after integrating DMP[5]-COOH.

Figure S3. IR characterization of antibody immobilization and antigen-antibody recognition event after integrating DMP[5]-COOH.

Integrating Ratios	Mobility / cm ² V ⁻¹ s ⁻¹	$V_{ m TH}$ / V
0% DMP[5]-COOH	0.119	-12.86
2% DMP[5]-COOH	0.135	-6.50
5% DMP[5]-COOH	0.112	-9.70
10% DMP[5]-COOH	0.101	-7.32
15% DMP[5]-COOH	0.093	-3.85
30% DMP[5]-COOH	0.007	-0.90

Table S1. The performance parameters of different integrating ratios for DMP[5]-COOH.