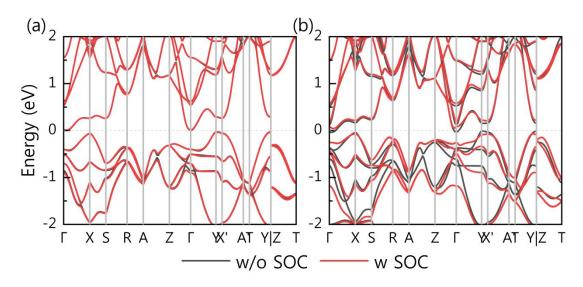
Supporting Information

Remarkable thermoelectric performance in K₂CdPb crystal with 1D building blocks via structure particularity and bond heterogeneity

Jie Zhang¹, Dan He¹, Hailong Jiang¹, Xiaohong Xia^{1,*}, Yun Gao^{1,*}, Zhongbing Huang^{2,*}

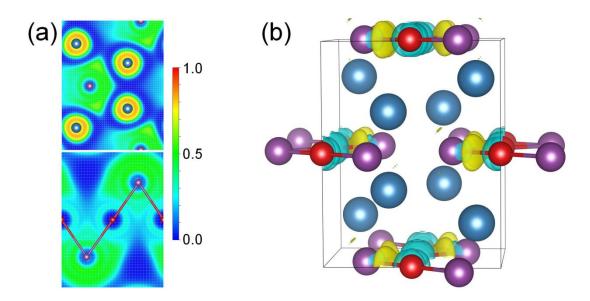
¹ School of Materials Science and Engineering, Hubei University, Wuhan

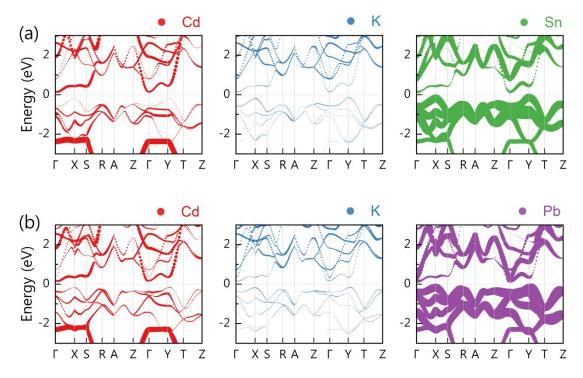

430062, China

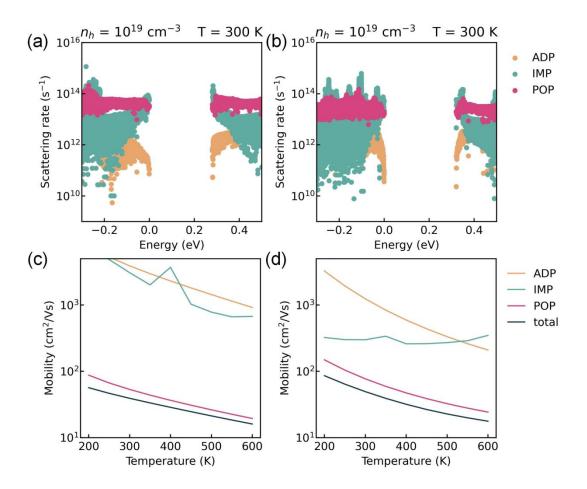
² School of Physics and Electronic Technology, Hubei University, Wuhan 430062, China


Corresponding Author

* E-mail: Xiaohong Xia (xhxia@hubu.edu.cn); Yun Gao (gaoyun@hubu.edu.cn);


Zhongbing Huang (huangzb@hubu.edu.cn).


Figure S1 Comparison of band structure calculated with (red line) and without (black line) spin-orbit coupling (SOC) effect for (a) K₂CdSn and (b) K₂CdPb.


Figure S2 Convergence test of the lattice thermal conductivity (κ_L) with respect to (a) (b) q-mesh and (c) (d) interaction cutoff for K₂CdSn (upper panel) and K₂CdPb (lower panel), respectively. The red, blue and green lines indicate the κ_L along the x-, y- and z-direction, respectively.

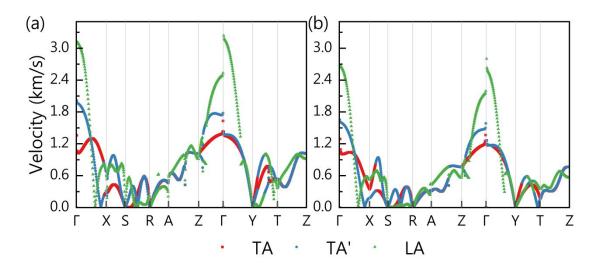

Figure S3 (a) The electron localization function (ELF) in the (100) plane (upper) and (001) plane (lower), and (b) charge density difference of K_2CdPb . The blue, red and purple balls represent K, Cd and Pb atoms, respectively. The accumulative (depleted) electrons are represented by yellow (blue) isosurfaces.

Figure S4 The decomposed band structure of (a) K₂CdSn and (b) K₂CdPb. The red, blue, green and purple circles denote the projected band structure of Cd, K, Sn and Pb element, respectively.

Figure S5 (a) (b) Calculated room temperature scattering rates and (c) (d) variation of mobility with temperature at the hole concentration of 10^{19} cm³ for K₂CdSn (left panel) and K₂CdPb (right panel) limited by acoustic deformation potential (ADP, orange circle or line), ionized impurity (IMP, cyan circle or line) and polar optical phonon (POP, magenta circle or line) scattering processes. The black line indicates the mobility obtained by considering the three scattering mechanisms.

Figure S6 Phonon group velocity (transverse acoustic (TA, TA') and longitudinal acoustic (LA)) along the high symmetry path for (a) K_2CdSn and (b) K_2CdPb . The TA, TA' and LA are colored by red, blue and green, respectively.

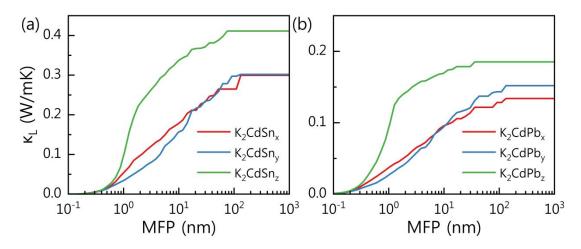



Figure S7 Enlarged phonon spectrum of (a) K_2CdSn and (b) K_2CdPb , the regions marked by red rectangle denote the avoided crossing between the acoustic and optical modes.

Figure S8 Accumulative κ_L with respect to phonon mean free paths (MFP) along different directions for (a) K₂CdSn and (b) K₂CdPb.

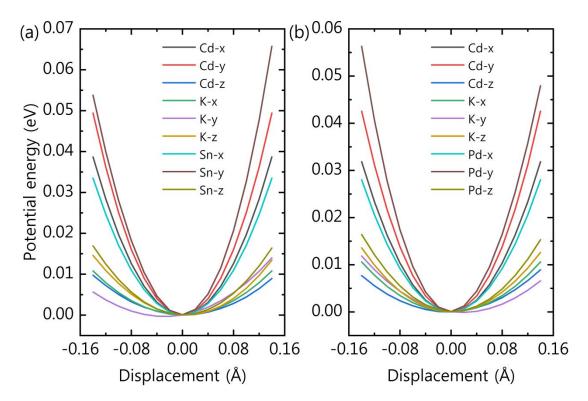


Figure S9 Potential energy of atoms with displacement along x-, y- and zdirections for (a) K_2CdSn and (b) K_2CdPb .

Table S1 The relevant parameters used to compute scattering rate. *C* (in GPa) is elastic tensor, ε_s and ε_{∞} (in ε_0) are static and high-frequency dielectric constants, respectively. ω_{PO} (in THz) is effective polar phonon frequency.

	C ₁₁	C ₂₂	C ₃₃	C ₄	C ₅₅	C ₆	C ₁	C ₁₃	C ₂	ϵ_{s}^{11}	ϵ_{s}^{22}	ϵ_s^{33}	ϵ_{∞}^{11}	$\epsilon_{\rm s}^{22}$	ϵ_{∞}^{33}	ω _{PO}
				4		6	2		3							
K ₂ CdS	30.	31.	22.	6.	14.	6.	5.	12.	5.	20.	15.	22.	14.	12.	15.	2.8
n	7	8	3	4	7	3	9	7	1	6	9	5	6	7	9	4
K ₂ CdP	28.	29.	20.	6.	12.	6.	5.	11.	4.	31.	22.	28.	21.	19.	21.	2.6
b	7	3	1	2	9	0	7	6	7	5	6	3	7	6	5	6