Supporting information for:

Small-Molecular Adjuvants with Weak Membrane Perturbation Potentiate Antibiotics against Gram-Negative Superbugs

Geetika Dhanda ${ }^{[a]}$, Riya Mukherjee ${ }^{[a]}$, Debajyoti Basak ${ }^{[a]}$ and Jayanta Haldar ${ }^{[a],[b]}$
${ }^{[a]}$ Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
${ }^{[b]}$ School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India

E-mail: jayanta@jncasr.ac.in

Table of Contents

1. Characterization details S2
2. In vitro assays S14
3. Results S16

Characterization details

\boldsymbol{N}^{1}-Boc- \boldsymbol{N}^{3}-(3-(Boc-amino) propyl) propane-1,3-diamine (1a): Yield-50\%, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}: 5.178$ ($\mathrm{s},-\mathrm{NHBoc}, 2 \mathrm{H}$), $3.205-3.098\left(\mathrm{~m}, \mathrm{NH}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NHBoc}\right)_{2}\right.$, $4 \mathrm{H}), 2.658-2.625\left(\mathrm{~m}, \mathrm{NH}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 4 \mathrm{H}\right), 1.672-1.607\left(\mathrm{~m}, \mathrm{NH}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{NHBoc})_{2}, 4 \mathrm{H}\right), 1.443$ (s, $\left.\mathrm{NH}\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}-\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}, 18 \mathrm{H}\right)$. Formula: $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$, HRMS (m/z): $332.2539\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $332.2549\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
$\boldsymbol{N}, \boldsymbol{N}$-bis(3-(Boc-amino)propyl) decanamide (1b): Yield-78\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}: 5.388(\mathrm{~s},-N \underline{H B o c}, 1 \mathrm{H}), 4.707(\mathrm{~s},-N \underline{H B o c}, 1 \mathrm{H}), 3.386-3.000\left(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 8 \mathrm{H}\right), 2.267\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{2}-\right.$ of R group, 2 H), 1.777-1.611 (m , $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ of R group, 6 H$), 1.407$ (s, R-CO-N(- $\left.\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}-\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}$, 18 H), 1.241 (bs, $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - of R group, 12 H$), 0.854\left(\mathrm{t}, J=7.08 \mathrm{~Hz}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{7}-\right.$ CH_{2} - of R group, 3 H). Formula: $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{5}$, HRMS (m/z): $486.3899\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $486.3907\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
$\boldsymbol{N}, \mathrm{N}$-bis(3-(Boc-amino)propyl) dodecanamide (1c): Yield-90\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , CDCl_{3}) $\delta / \mathrm{ppm}: 5.377(\mathrm{~s},-N \underline{H B o c}, 1 \mathrm{H}), 4.654(\mathrm{~s},-N \underline{H B o c}, 1 \mathrm{H})$, 3.393-3.006 (m, R-CO-N(-$\left.\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 8 \mathrm{H}\right), 2.271\left(\mathrm{t}, J=7.44 \mathrm{~Hz}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{9}-\mathrm{CH}_{2}-\right.$ of R group, 2 H$)$, 1.783-1.570 (m, $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$-of R group, 6 H), $1.422\left(\mathrm{~s}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{3}\right.\right.$-NH-$\left.\left.\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}, 18 \mathrm{H}\right), 1.242\left(\mathrm{bs}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ - of R group, 16 H$), 0.863(\mathrm{t}, J=7.2$ $\mathrm{Hz}, \quad \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{9}-\mathrm{CH}_{2}-$ of R group, 3 H). Formula: $\mathrm{C}_{28} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{5}$, HRMS (m/z): 514.4208 $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $514.4220\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
$\boldsymbol{N}, \mathrm{N}$-bis(3-(Boc-amino)propyl) naphthyl ethanamide (1d): Yield-55\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}: 7.936-7.771\left(\mathrm{~m}, H_{A r}, 3 \mathrm{H}\right), 7.553-7.331\left(\mathrm{~m}, H_{A r}, 4 \mathrm{H}\right), 5.268(\mathrm{~s},-\mathrm{N} \underline{H B o c}$, $1 \mathrm{H}), 4.484(\mathrm{~s},-\mathrm{N} \underline{\mathrm{HBoc}}, 1 \mathrm{H}), 4.133\left(\mathrm{~s}, \mathrm{ArCH}_{\underline{2}}-\right.$ of R group, 2 H$), 3.461-3.037(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}(-$ $\left.\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 8 \mathrm{H}\right), 1.709-1.679$ (m, R-CO-N((-CH2$\left.\left.-\underline{C H}_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 4 \mathrm{H}\right)$, 1.4075 (s, R-CO-N(-(CH2 $\left.\left.)_{3}-\mathrm{NH}-\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}, 18 \mathrm{H}\right)$. Formula: $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5}$, $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})$: $522.2935\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(Observed), $522.2944\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$(Calculated).
$\boldsymbol{N}, \boldsymbol{N}$-bis(3-(Boc-amino)propyl) 3,3-diphenyl propanamide (1e): Yield-74\%; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}: 7.288-7.284\left(H_{A r}, 3 \mathrm{H}\right), 7.252-7.154\left(\mathrm{~m}, H_{A r}, 7 \mathrm{H}\right), 5.227(\mathrm{~s},-\mathrm{N} \underline{H B o c}$, $1 \mathrm{H}), 4.714\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{ArCHCH}_{2}-\right.$ of R group , 1H), $4.560(\mathrm{~s},-\mathrm{N} \underline{H B o c}, 1 \mathrm{H}), 3.337-3.055$ and 2.783-2.739 (m, R-CO-N(-C난 $\left.\left.-\mathrm{CH}_{2}-\underline{C H}_{2}-\mathrm{NHBoc}\right)_{2}, 8 \mathrm{H}\right), 3.026(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $\mathrm{ArCHCH} \underline{H}_{2}-$ of R group, 2H), 1.636-1.439 (m, R-CO-N(-CH2 $\left.\left.-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 4 \mathrm{H}\right), 1.434$
(s, R-CO-N(-($\left.\left.\left.\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}-\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}, 18 \mathrm{H}\right)$. Formula: $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{5}$, HRMS (m/z): $540.3400\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $540.3437\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
N-(Adamantan-2-yl)-2-bromoethanamide (1f): ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{\delta} / \mathrm{ppm}: 6.914$ ($\mathrm{s}, \mathrm{Ad}-\mathrm{N} \underline{H}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{Br}, 1 \mathrm{H}$), 4.046-4.025 ($\mathrm{m}, \underline{H}_{A d}, 1 \mathrm{H}$), 3.912 ($\mathrm{s}, \mathrm{Ad}-\mathrm{NH}-\mathrm{CO}-\underline{C H}_{2} \mathrm{Br}, 2 \mathrm{H}$), 1.944-1.612 (m, $\left.\underline{H}_{A d}, 14 \mathrm{H}\right)$. Formula: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrNO}$, $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}): 272.0575\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ (Observed), $272.0650\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
N-(Adamantan-2-yl)-2-[N^{\prime}, N^{\prime}-\{bis-(3-Boc-amino) propyl\} amino] ethanamide (1g): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}: 4.747$ (br, $\left.-\mathrm{N} \underline{H B o c}, 2 \mathrm{H}\right), 4.126-4.040\left(\mathrm{~m}, \underline{H_{A d}}, 1 \mathrm{H}\right), 3.178-$ 3.087 (br, Ad-NH-CO-C $\left.\underline{H}_{2}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NHBoc}\right)_{2}, 6 \mathrm{H}\right), 2.560\left(\mathrm{br}, \mathrm{Ad}-\mathrm{NH}-\mathrm{CO}_{2}-\mathrm{CH}_{2}-\mathrm{N}(-\right.$ $\left.\left.\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NHBoc}\right)_{2}, 4 \mathrm{H}\right), 1.903-1.664\left(\mathrm{br}, \underline{\mathrm{H}_{A d}}\right.$ and $\mathrm{Ad}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ NHBoc $\left.)_{2}, 17 \mathrm{H}\right), 1.432\left(\mathrm{~s}, \mathrm{Ad}-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}-\mathrm{COO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}, 18 \mathrm{H}\right)$. Formula: $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{5}$, $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}): 523.3971\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $523.3859\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
\mathbf{N}, \mathbf{N}-bis((3-amino)propyl)decanamide bis(trifluoroacetate) (NC10): Yield-Quantitative. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \quad\right.$ DMSO-d 6) δ / ppm : 8.589-7.886 (br, R-CO-N $\left.\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 6 \mathrm{H}\right)$,
 of R group, 2 H), 1.910-1.464 (m, $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ of R group, 6 H$), 1.239\left(\mathrm{bs}, \mathrm{CH}_{3}-\right.$ $\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - of R group, 12 H), $0.857\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{CH}_{2}\right.$ - of R group, 3 H$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO-d 6$): 172.7$ (R- $\underline{\mathrm{CO}}-\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)$, 1 C), 44.8 , (R-CO-$\left.\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, \quad 2 \mathrm{C}\right), \quad 44.0 \quad\left(\mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, \quad 2 \mathrm{C}\right), \quad 39.5$ $\left.\left((\underline{C D})_{3}\right)_{2} \mathrm{SO}\right), 36.2,35.5,35.3,31.2,28.9,28.8,28.7,28.6,26.1,25.2,23.8,22.1,13.9$ (36.213.9 signifies aliphatic region). FT-IR (cm^{-1}): 3254 ($\mathrm{N}-\mathrm{H}$ str. of 1° amine), $3080(\mathrm{~N}-\mathrm{H}$ str. of 1° amine), 2909 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ str.), 2849 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ str.), 1674 ($\mathrm{C}=\mathrm{O}$ str. of 3° amide). Formula: $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}$, HRMS (m/z): $286.2850\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $286.2858\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
N, N-bis((3-amino)propyl)dodecanamide bis(trifluoroacetate) (NC12): YieldQuantitative, HPLC Purity- 97%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) $\delta / \mathrm{ppm}: 7.894$ (bs, R-CO-$\left.\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}_{\underline{3}}{ }^{+}\right)_{2}, 6 \mathrm{H}\right), 3.300-3.265\left(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right), 2.864-2.696(\mathrm{~m}$, R-CO-N($\left.\left.-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right), 2.276\left(\mathrm{t}, J=7.2 \mathrm{~Hz} \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{9}-\mathrm{CH}_{\underline{2}}-\right.$ of R group, 2 H$)$, $1.850-1.481\left(\mathrm{~m}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ - of R group, 6 H$), 1.237\left(\mathrm{~s}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right.$ - of R group, 16 H), $0.850\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$ of R group, 3 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 172.7\left(\mathrm{R}-\underline{\mathrm{CO}}-\mathrm{N}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 1 \mathrm{C}\right), 44.8,44.3,44.0,41.8,39.5$
$\left(\left(C^{2}\right)_{2} \mathrm{SO}\right), 36.6,36.4,36.2,35.5,35.3,31.9,31.3,29.0,29.0,28.8,28.7,26.6,26.1,25.6$, 25.2, 25.0, 23.8, 22.1, 13.9 (44.8-13.9 signifies aliphatic region). FT-IR (cm^{-1}): $3458(\mathrm{~N}-\mathrm{H}$ str. of 1° amine), 3084 ($\mathrm{N}-\mathrm{H}$ str. of 1° amine), 2928 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ str.), 2852 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ str.), 1677 ($\mathrm{C}=\mathrm{O}$ str. of 3° amide). Formula: $\mathrm{C}_{18} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}$, $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}): 314.3172\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $314.3171\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
N, N-bis((3-amino)propyl)naphthyl ethanamide bis(trifluoroacetate) (NNaph): YieldQuantitative, HPLC Purity- $99 \% .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right) \delta / \mathrm{ppm}: 7.913-7.824$ (m, R-CO-N(-($\left.\left.\mathrm{CH}_{2}\right)_{3}-\underline{N \underline{H}}_{3}^{+}\right)_{2}$ and $\underline{H_{A r}}, 8 \mathrm{H}$), $7.542-7.329$ ($\mathrm{m}, \underline{H_{A r}}, 5 \mathrm{H}$), 4.176 ($\mathrm{s}, \mathrm{ArC} \mathrm{\underline{H}} \underline{2}^{-}$of R group, 2H), 3.556-3.339 (m, R-CO-N(-(CH2)2-Cㅐㅏㄴ $\left.\left.-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right), 2.901-2.729(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}-$ $\left.\left(\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right), 1.987-1.767\left(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (100 MHz, DMSo-d ${ }_{6}$): 170.9-170.6 (R- $\left.\underline{C O}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 1 \mathrm{C}\right)$, 133.3-124.1 ($C_{A r}$, 7C) , 44.8, 42.2, $\left.39.5\left((\underline{C D})_{2}\right)_{2} \mathrm{SO}\right), 36.8,36.7,36.5,26.7,25.7,23.8$ (44.8-23.8 signifies aliphatic region). FT-IR $\left(\mathrm{cm}^{-1}\right): 3013\left(\mathrm{~N}-\mathrm{H}\right.$ str. of 1° amine), $1674\left(\mathrm{C}=\mathrm{O}\right.$ str. of 3° amide). Formula: $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$, HRMS (m/z): $300.2070\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $300.2076\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ (Calculated).
\mathbf{N}, \mathbf{N}-bis((3-amino)propyl)3,3-diphenyl propanamide bis(trifluoroacetate) (NDiphe): Yield- Quantitative, HPLC Purity- 96\%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO-d ${ }_{6}$) $\delta / \mathrm{ppm}: 7.845-7.648$ (br, R-CO-N $\left.\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 6 \mathrm{H}\right), 7.326-7.140\left(\mathrm{~m}, \underline{H_{A r}}, 10 \mathrm{H}\right), 4.536(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\mathrm{ArC} \underline{H} \mathrm{CH}_{2}-$ of R group, 1 H$), 3.384-3.202\left(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right), 3.109(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, \mathrm{ArCHCH}_{2}-$ of R group, 2 H$), 2.972-2.816\left(\mathrm{~m}, \mathrm{R}-\mathrm{CO}-\mathrm{N}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right)$, 1.808-1.578 (m, R-CO-N(-CH2-C2 $\left.\left.\underline{H}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz} \text {, DMSo-d })_{6}$: $170.8\left(\mathrm{R}-\underline{C} \mathrm{O}-\mathrm{N}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 1 \mathrm{C}\right), 144.5-144.1\left(C_{A r}\right), 128.3-126.1\left(C_{A r}\right), 46.8,44.1$, 41.8, $39.5\left(\left(\underline{C} \mathrm{D}_{3}\right)_{2} \mathrm{SO}\right), 37.4,36.3,36.3,36.1,26.6,25.4,23.8$ (46.8-23.8 signifies aliphatic region). FT-IR (cm^{-1}): 3428 ($\mathrm{N}-\mathrm{H}$ str. of 1° amine), $3035\left(\mathrm{~N}-\mathrm{H}\right.$ str. of 1° amine), $1677(\mathrm{C}=\mathrm{O}$ str. of 3° amide). Formula: $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}$, HRMS (m/z): $340.2379\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $340.2389\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).
N-(Adamantan-2-yl)-2-[$N^{\prime}, N^{\prime}-\{b i s-(3-a m i n o) \quad$ propyl $\} \quad$ amino $] \quad$ ethanamide tris(trifluoroacetate) (NAda): Yield- Quantitative, HPLC Purity- 96%. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta / \mathrm{ppm}: 8.391$ (br, $\left.\operatorname{AdN} \underline{H} \mathrm{COCH}_{2}-\mathrm{NH}^{+}\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 1 \mathrm{H}\right), 7.937$ (br, AdNHCOCH $\left.2-\mathrm{NH}^{+}\left(-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{NH}_{3}^{+}\right)_{2}, 6 \mathrm{H}\right)$, 3.922-3.905 (br, $\left.\underline{H}_{A d}, 1 \mathrm{H}\right), 2.990-2.860$ (br, AdNHCOCH $\left.\underline{H}_{2}-\mathrm{NH}^{+}\left(-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 6 \mathrm{H}\right), 1.959-1.704$ ($\mathrm{m}, \underline{\mathrm{H}_{4 d}}$ and $\mathrm{AdNHCOCH}_{2}{ }^{-}$ $\left.\mathrm{NH}^{+}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, \quad 18 \mathrm{H}\right), \quad 1.545-1.235 \quad\left(\mathrm{~m}, \quad \mathrm{AdNHCOCH}_{2}-\mathrm{NH}^{+}\left(-\mathrm{CH}_{2}-\mathrm{C}_{2}-\mathrm{CH}_{2}-\right.\right.$
$\left.\left.\mathrm{NH}_{3}{ }^{+}\right)_{2}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.\mathrm{d}_{6}\right): 158.6$, $53.4\left(\mathrm{AdNHCOCH}_{2}-\mathrm{NH}^{+}\left(-\mathrm{CH}_{2}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 1 \mathrm{C}\right)$, , $53.1\left(\mathrm{AdNHCOCH} 2-\mathrm{NH}^{+}\left(-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{NH}_{3}{ }^{+}\right)_{2}, 2 \mathrm{C}\right), 51.4,44.0,39.5$ $\left((\underline{C D} 3)_{2} \mathrm{SO}\right), 37.0,36.7,36.2,31.3,30.9,26.6,26.6,23.9,23.8$ (51.4-23.8 signifies aliphatic region). FT-IR (cm^{-1}): 3410 ($\mathrm{N}-\mathrm{H}$ str. of primary amine), 3051 ($\mathrm{N}-\mathrm{H}$ str. of 1° amine), 2916 (sp ${ }^{3} \mathrm{C}-\mathrm{H}$ str.), 2852 ($\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ str.), 1678 ($\mathrm{C}=\mathrm{O}$ str. of 2° amide). Formula: $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N} 4 \mathrm{O}$, HRMS $(\mathrm{m} / \mathrm{z}): 323.2791\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Observed), $323.2811\left[(\mathrm{M}+\mathrm{H})^{+}\right]$(Calculated).

Spectra of final compounds

N, N-bis((3-amino)propyl)decanamide bis(trifluoroacetate) (NC10)

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

HRMS

N, N-bis((3-amino)propyl)dodecanamide bis(trifluoroacetate) (NC12)

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

HRMS

N, N-bis((3-amino)propyl)naphthyl ethanamide bis(trifluoroacetate) (NNaph)

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

HRMS

N, N-bis((3-amino)propyl)3,3-diphenyl propanamide bis(trifluoroacetate) (NDiphe)

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

HRMS

N-(Adamantan-2-yl)-2-[N^{\prime}, N^{\prime}-\{bis-(3-amino) propyl\} amino] ethanamide tris(trifluoroacetate) (NAda)

${ }^{1} \mathrm{H}$-NMR

${ }^{13}$ C-NMR

HRMS

In vitro Antibacterial Assays

a) Antibacterial activity in broth culture media

Water-soluble small molecular adjuvants or antibiotics were assayed in a modified microdilution broth format. Stock solutions of all the adjuvants and antibiotics ($10 \mathrm{mg} / \mathrm{mL}$) were prepared in autoclaved Millipore water except for rifampicin and erythromycin whose stock solutions were made in dimethyl sulphoxide (DMSO). The dilutions of the adjuvants or antibiotics were done in a 96 -well plate using autoclaved water. Bacteria, to be tested, were cultured for 6 h in nutrient broth media. $\sim 10^{8} \mathrm{CFU} / \mathrm{mL}$ bacteria were diluted to $\sim 10^{5} \mathrm{CFU} / \mathrm{mL}$ using Mueller Hinton Broth media to perform the experiments. $150 \mu \mathrm{~L}$ of these diluted bacterial solutions were added to $50 \mu \mathrm{~L}$ of serially diluted adjuvants/antibiotics present in a 96 well plate (Polystyrene). $150 \mu \mathrm{~L}$ of media and $50 \mu \mathrm{~L}$ of adjuvant/antibiotic served as the media control with adjuvant/antibiotic, and $150 \mu \mathrm{~L}$ of bacterial solution and $50 \mu \mathrm{~L}$ of water served as the bacterial control. The plate was then incubated at $37^{\circ} \mathrm{C}$ in an incubator (without shaking) for a period of 18-24 h and the O.D. value was measured at 600 nm using the microplate Reader. MIC value was determined by observing the minimum concentration at which the O.D. was similar to media control. The MIC values were reported as averages of three independent experiments.

Assay for in-vitro mammalian cell toxicity

a) Hemolytic assay

Human red blood cells (hRBCs) were isolated from fresh human blood obtained from a healthy human donor and resuspended in 1X PBS (pH 7.4) to $5 \% \mathrm{v} / \mathrm{v}$. In a 96 -well plate, $150 \mu \mathrm{~L}$ of hRBC suspension was added to $50 \mu \mathrm{~L}$ of serially diluted compound. PBS buffer added to 150 $\mu \mathrm{L}$ of erythrocyte suspension was taken as negative hemolysis control and Triton X-100 (1\% v / v), added to the suspension was used as positive hemolysis control. Incubation was done for 1 h at $37^{\circ} \mathrm{C}$. The plate was then centrifuged at 3500 rpm for $5 \mathrm{~min} .100 \mu \mathrm{~L}$ of the supernatant from each well was transferred to a new 96 -well plate and absorbance was measured at 540 nm using a microplate Reader. Percentage of hemolysis was determined using this formula: ($\mathrm{A}-$ $\left.\mathrm{A}_{0}\right) /\left(\mathrm{A}_{\text {total }}-\mathrm{A}_{0}\right) \times 100$, where A is the absorbance of the test well, A_{0} is the absorbance of the negative controls, and $\mathrm{A}_{\text {total }}$ the absorbance of wells containing Triton X-100. HC_{50} (concentration which causes 50% hemolysis relative to the positive control) was determined by plotting hemolysis versus compound concentration. The HC_{50} values are reported as averages of three technical triplicates. The HC_{50} values for compounds where no hemolysis
was observed were reported as greater than the maximum concentration used. All the experiments were performed following the guidelines approved by institutional biosafety committee at JNCASR (Project no: JNC/IBSC/2020/JH-12).

b) Lactic acid Dehydrogenase (LDH) assay

10^{4} cells/well of HEK cells (maintained in complete DMEM media (from Gibco) supplemented with 10% FBS and Penicillin-Streptomycin solution) were seeded in 96 well plates. Cell adherence was allowed to happen overnight. Media and 0.5% Triton-X were used as untreated and positive controls, respectively. The cells were treated with test compound solutions, starting from a concentration of $512 \mu \mathrm{~g} / \mathrm{mL}$. After 24 h of compound treatment, the plates were centrifuged at 1200 rpm for $5 \mathrm{~min} .100 \mu \mathrm{~L}$ of the supernatant was then transferred to a fresh 96-well plate and absorbance at 490 nm was measured using a microplate Reader. Percentage of cell death was determined using this formula: $\left(\mathrm{A}-\mathrm{A}_{0}\right) /\left(\mathrm{A}_{\text {total }}-\mathrm{A}_{0}\right) \times 100$, where A is the absorbance of the test well, A_{0} is the absorbance of the negative controls, $\mathrm{A}_{\text {total }}$ absorbance of wells treated with triton-X. Percentage of LDH release was plotted versus adjuvant concentration and EC_{50} was determined (concentration which causes 50% LDH release as compared to the positive control).

c) MTT assay

The cells were incubated with MTT for 4 h . After solubilizing the purple crystals formed, the absorbance was measured at 590 nm with a Tecan InfinitePro series M200 Micro plate Reader. Percentage of viable cells was determined as $\left(\mathrm{A}-\mathrm{A}_{0}\right) /\left(\mathrm{A}_{\text {total }}-\mathrm{A}_{0}\right) \times 100$, where A is the absorbance of the test well, A_{0} is the absorbance of the well containing negative control treated with Triton- X (where no cells are present), $\mathrm{A}_{\text {total }}$ is the absorbance of the positive control (without any compound treatment). Percentage toxicity was plotted (after subtracting the \% cell viability obtained from the assay from 100) as a function of concentration and EC_{50} determined where the cell viability was equal to 50% of the untreated positive control.

Results

Table S1. Concentration of adjuvants required to reduce the MIC of antibiotics as per Figure 1D.

Compound	Concentration required the reduce the MIC of antibiotics as per Figure $1 \mathrm{D}(\mu \mathrm{g} / \mathrm{mL})$		
	Minocycline	Fusidic acid	Rifampicin
NC12	128	64	16
NC10	32	64	64
NAda	128	128	128
NDiphe	16	128	128
NNaph	64	128	128

Table S2. Activity of NAda and NDiphe against New-Delhi metallo beta-lactamase producing clinical isolates.

Compound	MIC $(\mu \mathrm{g} / \mathrm{mL})$	
	E. coli R3336	K. pneumoniae R3934
NDiphe	>512	>512
NAda	>512	>512

Table S3. Potentiation efficacy of NAda with various other antibiotics.

Antibiotic	Bacteria	MIC of antibiotic in absence of adjuvant ($\mu \mathrm{g} / \mathrm{mL}$)	MIC of antibiotic in presence of NAda $(\mu \mathrm{g} / \mathrm{mL})$		
			$\begin{gathered} +32 \\ \mu \mathrm{~g} / \mathrm{mL} \end{gathered}$	$\begin{gathered} +64 \\ \mu \mathrm{~g} / \mathrm{mL} \end{gathered}$	$\begin{gathered} +\mathbf{1 2 8} \\ \mu \mathrm{g} / \mathrm{mL} \end{gathered}$
Tetracycline	A. baumannii R674	128	16	16	16
	$\begin{gathered} \text { P. aeruginosa } \\ \text { R590 } \end{gathered}$	128-256	16	16	8
	K. pneumoniae R3934	>512	4	4	2
	E. coli R3336	16	2	2	2
Doxycycline	A. baumannii R674	64	1	0.125	0.125
	$\begin{gathered} \text { P. aeruginosa } \\ \text { R590 } \end{gathered}$	64	8	8	8
	K. pneumoniae R3934	128	32	16	16
	E. coli R3336	64	1	1	0.5
Erythromycin	A. baumannii R674	512	16	16	16
	$\begin{gathered} \text { P. aeruginosa } \\ \text { R590 } \end{gathered}$	512	32	16	16
	K. pneumoniae R3934	>512	32	16	16
	E. coli R3336	>512	>64	>64	>64
Vancomycin	A. baumannii R674	64	32	8	1
	$\begin{aligned} & \text { P. aeruginosa } \\ & \text { R590 } \end{aligned}$	64	64	32	16
	K. pneumoniae	>512	>64	>64	>64
	E. coli R3336	512	>64	>64	>64
Chloramphenicol	A. baumannii R674	128	64	64	32
	$\begin{gathered} \text { P. aeruginosa } \\ \text { R590 } \end{gathered}$	256	64	64	32
	K. pneumoniae R3934	256	8	8	4
	E. coli R3336	>512	>64	>64	>64

Figure S1. (A)-(C) Chequerboard assays of NC12 with fusidic acid, minocycline and rifampicin respectively against A. baumannii R674. (D)-(F) Chequerboard assays of NC10 with fusidic acid, minocycline and rifampicin respectively against A. baumannii R674. (G)-(I) Chequerboard assays of NNaph with fusidic acid, minocycline and rifampicin respectively against A. baumannii R674.

Figure S2. Chequerboard assays of NAda with fusidic acid, minocycline and rifampicin respectively against (A)-(C) A. baumannii R674, (D)-(F) P. aeruginosa R590, (G)-(I) E. coli R3336, (J)-(L) K. pneumoniae R3934.

Figure S3. Chequerboard assays of NDiphe with fusidic acid, minocycline and rifampicin respectively against (A)-(C) A. baumannii R674, (D)-(F) P. aeruginosa R590, (G)-(I) E. coli R3336, (J)-(L) K. pneumoniae R3934.

Figure S4. Analysis of mitochondrial membrane potential of HEK 293 cells by studying the formation of J-aggregates through confocal microscopy when treated with (A) NDiphe ($100 \mu \mathrm{~g} / \mathrm{mL}$). (B) NC10 ($4 \mu \mathrm{~g} / \mathrm{mL}$). (C) CTAB $(1 \mu \mathrm{~g} / \mathrm{mL})$. Note: Scale bar is $10 \mu \mathrm{~m}$.

Figure S5. (A) Potentiation factors of different antibiotics in presence of $128 \mu \mathrm{~g} / \mathrm{mL}$ of NAda. (B) Potentiation factors of different antibiotics in presence of NDiphe. Potentiation factor $=\mathrm{MIC}_{\text {antibiotic alone }} / \mathrm{MIC}_{\text {antibiotic in }}$ presence of adjuvant.

Figure S6. Trend of potentiation of antibiotics with concentration of NAda against (A) A. baumannii R674. (B) P. aeruginosa R590. (C) E. coli R3336. (D) K. pneumoniae R3934.

Figure S7. Trend of potentiation of antibiotics with concentration of NDiphe against (A) A. baumannii R674. (B) P. aeruginosa R590. (C) E. coli R3336. (D) K. pneumoniae R3934. For $\mathrm{MIC}>64 \mu \mathrm{~g} / \mathrm{mL}$; potentiation factor is taken to be 1 .

Figure S8. Temporal accumulation of minocycline in presence of NAda ($100 \mu \mathrm{~g} / \mathrm{mL}$) and NDiphe ($100 \mu \mathrm{~g} / \mathrm{mL}$) in (A) E. coli R3336 and (B) K. pneumoniae R3934.

Figure S9. (A) Outer membrane permeabilization in A. baumannii R674; and (B) Outer membrane permeabilization in P. aeruginosa R590; in presence of NAda ($100 \mu \mathrm{~g} / \mathrm{mL}$), NDiphe ($100 \mu \mathrm{~g} / \mathrm{mL}$) (C) Membrane depolarization in A. baumannii R674; (D) Membrane depolarization in P. aeruginosa R590; in presence of NAda $(100 \mu \mathrm{~g} / \mathrm{mL})$ and NDiphe ($100 \mu \mathrm{~g} / \mathrm{mL}$). CTAB was used as control. Arrow indicates the time of compound addition.

Figure S10. Chequerboard assays of NAda with chloramphenicol against (A) A. baumannii R674; (B) E. coli R3336; (C) P. aeruginosa R590; Chequerboard assays of NAda with erythromycin against (D) A. baumannii R674; (E) E. coli R3336; (F) P. aeruginosa R590; Chequerboard assays of NAda with doxycycline against (G) K. pneumoniae R3934; (H) P. aeruginosa R590; Chequerboard assays of NAda with tetracycline against (I) A. baumannii R674; (J) E. coli R3336; (K) P. aeruginosa R590; Chequerboard assays of NAda with vancomycin against (L) E. coli R3336; (M) K. pneumoniae R3934; (N) P. aeruginosa R590.

