Supporting Information

Alkynyl Borrowing: Silver Catalyzed Amination of Secondary Propargylic Alcohols via C(sp³)-C(sp) Bond Cleavage

Xin Zhuang, Min Zhu, Chuan-Ming Hong, Zhen Luo, Wan-Fang Li, Qing-Hua Li, Qun-Li Luo* and Tang-Lin Liu*

1.	Optimization of reaction conditions	.S2
2.	Mechanistic Studies	.S4
3.	NMR Spectra of the Products	.S7

1. Optimization of reaction conditions

OH Ph Ph Ph Ph Ph	TsNH ₂ Cat. (20 mol%) toluene, 100 °C, 12 h	Ph Ph Ph Ph 2a
Entry ¹	Cat.	Yield (%)
1	$Pd(acac)_2$	Trace
2	[Rh(OH)(COD)] ₂	Trace
3	$Cu(OAc)_2 \cdot H_2O$	33
4	AgBF ₄	76

 Table S1. Screening of different metals.

Table S2. Screening of different silver.

OH Ph + 1a Ph	TsNH ₂ [Ag] (20 mol%) toluene, 100 °C, 12 h	Ph Ph 2a
Entry	[Ag]	Yield (%)
1	$AgSbF_6$	ND
2	AgOTf	ND
3	AgOAc	NR
4	Ag_2CO_3	NR
5	AgCO ₂ CF ₃	27
6	AgPF ₆	65
7	AgBF ₄	76

Ph + TsNH ₂ Ph 1a		AgBF ₄ (20 n toluene, T ^o C	nol%) C, 12 h Ph 2a	Ph	
•	Entry		T (°C)	Yield (%)	_
	1		100	76	_
	2		70	60	
	3		50	49	

Table S3. Screening of the temperature.

 Table S4. Screening of the solvent.

Ph	OH + Ph 1a	TsNH ₂	AgBF ₄ (20 mol%) solvent, 100 ^o C, 12 b	Ph Ph 2a
_	Entry		Solvent	Yield (%)
	1		HFIP	ND
	2		DMF	trace
	3		<i>p</i> -xylene	trace
	4		o-xylene	78
	5		MeCN	19
	6		THF	50
	7		dioxane	86

 Table S5. Screening of different amounts of catalyst.

OH Ph Ph 1a	H ₂ AgBF ₄ (X mol%) dioxane, 100 °C, 12	h Ph Ph Ph 2a
Entry	X(mol%)	Yield (%)
1	10	82
2	5	75
3	2	70

2. Mechanistic Studies

a. Gram-scale reaction

To a vial equipped with a dried stir bar was added **1a** (3 mmol), $TsNH_2$ (3.6 mmol), $AgBF_4$ (10 mol%), 1,4-dioxane (10 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 °C for 12 hours. The crude reaction mixture was concentrated under reduced pressure and directly purified by silica gel chromatography to give **2a** with the yield of 78%.

b. Rule out the mechanism of hydron borrowing

To a vial equipped with a dried stir bar was added **1a'** (0.1 mmol), $TsNH_2$ (0.12 mmol), AgBF₄ (10 mol%), 1,4-dioxane (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 °C for 12 hours. The desired product **2a'** was not detected.

c. Rule out the mechanism of hydrogen borrowing

To a vial equipped with a dried stir bar was added **1i** (0.1 mmol) and **1a'** (0.1 mmol), $TsNH_2$ (0.12 mmol), $AgBF_4$ (10 mol%), 1,4-dioxane (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 °C for 12 hours. **2i** and **2a** was used to contrast with the reaction mixture by TLC. The desired product **2a** was not detected and **2i** was isolated with the yield of 54%.

Reactions b. and c. could rule out the mechanism of hydrogen borrowing.

d. To verify the cleavage of Csp³-Csp bond

To a vial equipped with a dried stir bar was added **1a** (0.1 mmol), AgBF₄ (10 mol%), 1,4dioxane (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 $^{\circ}$ C for 2.5 hours. The ratio of aldehyde and **1a** was 1.00:0.22, which proved the cleavage of Csp³-Csp bond could taken place with silver.

To a vial equipped with a dried stir bar was added **1a** (0.1 mmol), AgBF₄ (10 mol%), 1,4dioxane (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 o C for 2.5 hours. **2a** and **3** were detected by HRMS.

m/z	Res.	S/N	Ι	I%	FWHM
260.0744	23932	906.5	69809	0.9	0.0109
362.1218	23564	642.3	70598	0.9	0.0154

f. Cross-over reaction

To a vial equipped with a dried stir bar was added **1a** (0.1 mmol), **3** (0.1 mmol), AgBF₄ (10 mol%), 1,4-dioxane (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 100 o C for 12 hours. The desired product was isolated with the yield of 52%, which proved the process that imine was added by the alkynyl-silver intermediate.

3. NMR Spectra of the Products

S9

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR (600 MHz, CDCl₃) of compound **2**l

¹H NMR (600 MHz, CDCl₃) of compound **2ab**

