Supporting Information

Amphiphilic Perylene Bisimide-Polymer Conjugates by Cysteine-Based Orthogonal Strategy: Vesicular Aggregation, DNA Binding, and Cell Imaging

Mahuya Kar^a, Md. Anas^{#a}, Palash Banerjee^{#a}, Arpana Singh^b, Prosenjit Sen^b, and Tarun K.

Mandal*^a

^aSchool of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

^bSchool of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India Email: psutkm@iacs.res.in

Contents

Page No.

Table S1.	Molecular weight characterization and polymerization conditions	S 3
Figure S1.	FTIR spectra of PDA, Cys-PVim-I and PBI-(Cys-PVim-I) ₂	S 4
Figure S2.	¹ H-NMR spectrum of Cys-PVim-I	S 5
Figure S3.	MALDI-TOF-MS spectrum of Cys-PVim-I	S 6
Figure S4.	FTIR spectra of Cys-PVim-II and PBI-(Cys-PVim-II)2	S7
Figure S5.	¹ H-NMR spectrum of Cys-PVim-II	S 8
Molecular we	ight determination of Cys-PVim from ¹ H-NMR spectrum	S 9
Figure S6.	MALDI-TOF-MS spectrum of Cys-PVim-II	S10
Figure S7.	¹ H-NMR spectrum of PBI-(Cys-PVim-I) ₂	S 11
Figure S8.	¹³ C-NMR spectrum of PBI-(Cys-PVim-I) ₂	S12
Figure S9.	¹ H-NMR spectrum of PBI-(Cys-PVim-II) ₂	S13
Figure S10.	Concentration variation UV-vis spectra of ctDNA	S14
Figure S11.	SEC chromatographs of PBI-(Cys-PVim) ₂ conjugates	S15
Figure S12.	Emission spectra of PBI-(Cys-PVim-II) ² at different excitation.	S16
Figure S13.	Images of PBI-(Cys-PVim-II) ₂ under ambient light and UV lamp	S17
Table S2.	Quantum yield (ϕ) measurements of PBI-(Cys-PVim) ₂	S18
Figure S14.	Concentration-dependent UV-vis spectra of PBI-(Cys-PVim-I) ₂	S19
Figure S15.	Concentration-dependent emission spectra of PBI-(Cys-PVim-I)2	S20

Scheme S1.	Aggregation of PBI-(Cys-PVim) ₂ conjugates under acidic medium	S21
Figure S16.	¹ H-NMR spectrum of PBI-(Cys-PVim-II) ₂ in D ₂ O in presence of HCl	S22
Figure S17.	pH variation images of PBI-(Cys-PVim-II) ² under ambient and UV light	S23
Figure S18.	pH variation UV-Vis and emission spectra of PBI-(Cys-PVim-I)2	S24
Figure S19.	D_h vs pH plot of the aqueous solution of PBI-(Cys-PVim-II) ₂	S25
Figure S20.	D_h vs pH plot of the aqueous solution of PBI-(Cys-PVim-I) ₂	S26
Figure S21.	DLS curves of PBI-(Cys-PVim-I)2 and PBI-(Cys-PVim-II)2	S27
Figure S22.	CAC measurement plots of PBI-(Cys-PVim-I)2	S28
Figure S23.	DLS curves of PBI-(Cys-PVim-II) ² in water at different time intervals	S29
Figure S24.	FESEM image of PBI-(Cys-PVim-II)2	S30
Figure S25.	TEM images of aggregated PBI-(Cys-PVim-I)2/PBI-(Cys-PVim-II)2	S31
Figure S26.	Confocal images of aggregated PBI-(Cys-PVim-I)2/PBI-(Cys-PVim-II)2	S32
Figure S27.	Time-dependent fluorescence microscopic live cell imaging of HeLa cells	S33
Figure S28.	Mean fluorescence intensity vs time plot of incubated HeLa cells	S34
Figure S29.	pH-dependent fluorescence microscopy live cell imaging of HeLa cells	S35
Figure S30.	Mean fluorescence intensity vs pH plot of incubated HeLa cells	S36
Figure S31.	Zeta potential (ξ) curve of PBI-(Cys-PVim-II) ² in water	S37
Scheme S2.	Binding of ctDNA with PBI-(Cys-PVim) ₂ conjugate	S38
Figure S32.	DLS plot of PBI-(Cys-PVim-II) ₂ at different concentrations of ctDNA	S39
Figure S33.	Gel image of PBI-(Cys-PVim) ₂ -ctDNA polyplex	S40
Figure S34.	Gel image of PBI-(Cys-PVim) ₂ -Plasmid DNA polyplex	S41
Figure S35.	ITC measurement plot of ctDNA with PBI-(Cys-PVim-II) ₂	S42

Table S1.Molecular weight characterization and polymerization conditions of thedifferent Cys-PVims and perylene bisimide-polymer conjugates.

Polymer	[M]0/[I]0	Mn, theo (Da)	M _n , H-NMR (Da)	M _n , MALDI (D a)	Mn, GPC (Da)	Dispersity (D)
Cys-PVim-I	10	1060	1400	1640 ^a	1200 ^c	1.17 ^a
Cys-PVim-II	20	2000	2200	2400 ^a	2500 ^c	1.14 ^a
PBI-(Cys-PVim-I) ₂	-	2500	3200 ^e	3600 ^d	2800 ^b	1.64 ^b
PBI-(Cys-PVim-II)2	-	4400	4700 ^e	5100 ^d	5400 ^b	1.67 ^b

Condition for polymerization: Solvent = Water; Time =24 h; Temperature = 70 °C.

 $M_{n, \text{ theo}} = [\text{Vim}]_0 \times M_{\text{Vim}} / [\text{Cys}]_0 + M_{\text{Cys}}$

^aData obtained from MALDI-TOF-MS analysis.

^bData obtained from SEC analysis.

^cUnable to measured directly from SEC, but they were back calculated from the equation

 $M_{\rm n}$ of Cys-PVim = $[M_{\rm n, GPC}$ of PBI-(PVim)₂ - $M_{\rm PBI}]/2$.

^dUnable to measured directly from MALDI-TOF-MS, but they were calculated from the equation: M_n of PBI-(Cys-PVim)₂ = [2× $M_{n, MALDI}$ of PVim + M_{PBI}].

^eCalculated from the equation: M_n of PBI-(Cys-PVim)₂ = $[2 \times M_{n, HNMR} \text{ of PVim} + M_{PBI}]$.

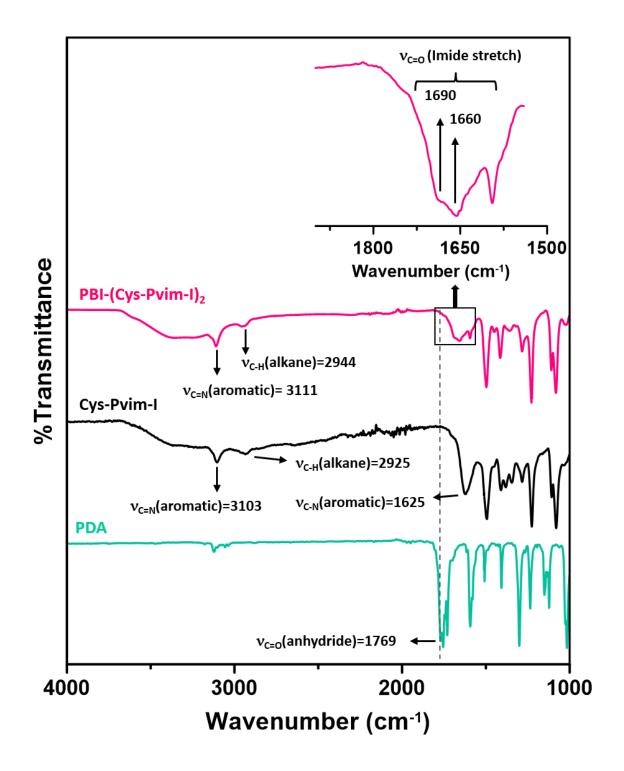
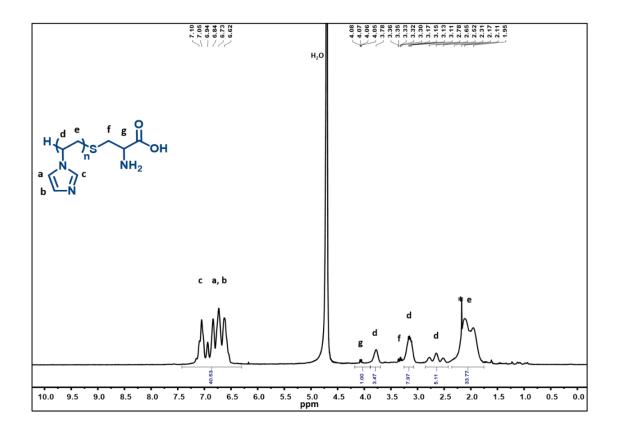
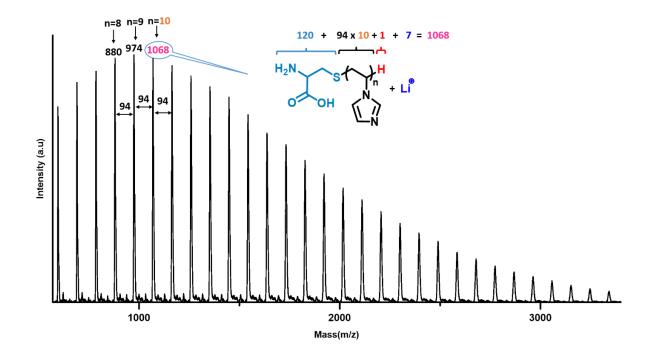




Figure S1. FTIR spectra of PDA, Cys-PVim-I, and PBI-(Cys-PVim-I)₂ respectively.

Figure S2. ¹H-NMR spectrum of **Cys-PVim-I** in D₂O (*acetone).

¹H-NMR (400 MHz, D₂O, TMS, δ ppm), Cys-PVim-I: 1.77-2.30 (-CH₂ of PVim backbone at position 'e'), 2.45-3.90 (-CH of PVim backbone at position 'd'), 3.36 (methylene proton of cysteine residue at position 'f'), 4.06 (methine proton of cysteine residue at position 'g'), 6.47-7.26 (imidazole ring protons at positions 'a', 'b' and 'c').

Figure S3. MALDI-TOF-MS spectrum of **Cys-PVim-I** in MeOH using DHB matrix and NaI.

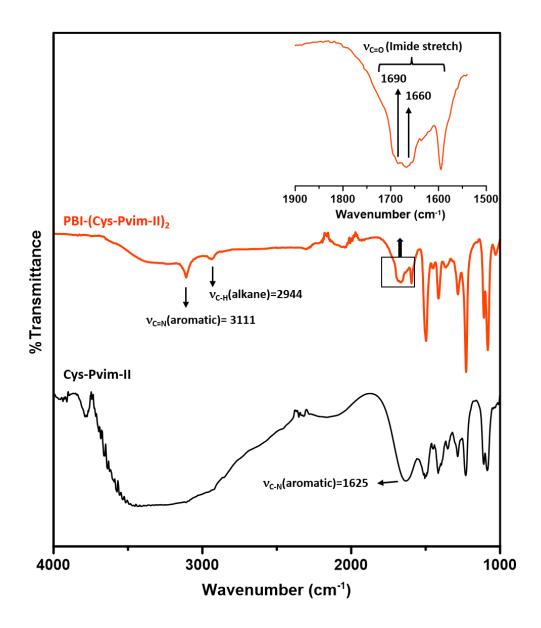
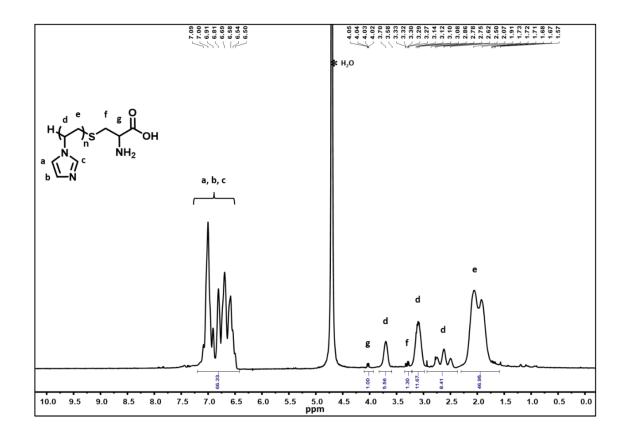



Figure S4. FTIR spectra of Cys-PVim-II and PBI-(Cys-PVim-II)₂ conjugate.

Figure S5. ¹H-NMR spectrum of **Cys-PVim-II** in D_2O .

¹H-NMR (400 MHz, D₂O, TMS, δ ppm), Cys-PVim-II: 1.61-2.30 (-CH₂ of PVim backbone at position 'e'), 2.41-3.81 (-CH of PVim backbone at position 'd'), 3.28 (methylene proton of cysteine residue at position 'f'), 4.01 (methine proton of cysteine residue at position 'g'), 6.41-7.19 (imidazole ring protons at positions 'a', 'b' and 'c').

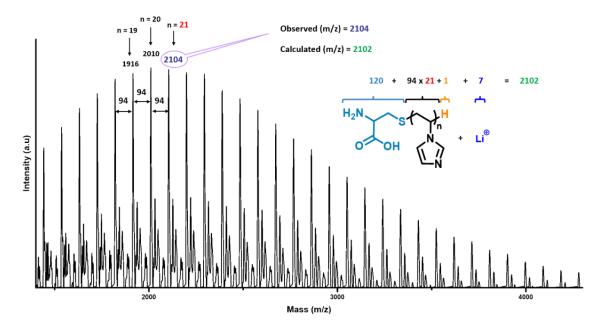
Molecular weight determination from end group analysis.

Comparing the integration area (see Figure S2) of the 'g' proton at ~ δ 4.06 ppm and the imidazole protons ('a', 'b' and 'c') at ~ δ 6.47-7.26 ppm of the ¹H-NMR spectrum of **Cys-PVim-I** degree of polymerization (DP) was calculated by using the following equation.

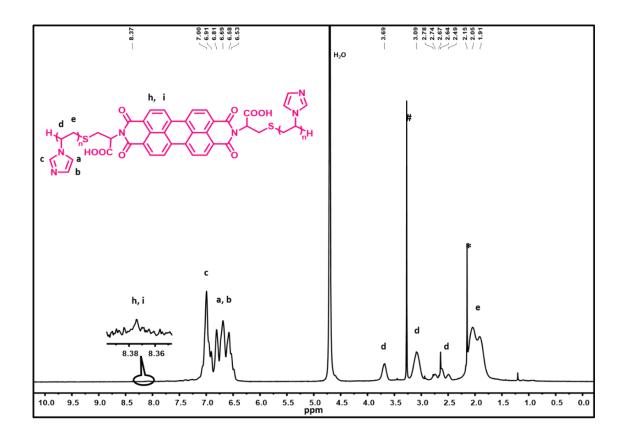
 $DP = Int. \mbox{ of the repeating unit}/N_o \mbox{ of repeating unit} \times N_o \mbox{ of the end group}/Int. \mbox{ of the end group}$

- $=40.53/3 \times 1/1$
- $= 13.51 \approx 14$

Molecular weight (M_n) of **Cys-PVim-I** = $(14 \times 94.05) + 120 + 1 = 1437.7 \approx 1400$ Da


Int. = Integration area, N_0 = Number of protons, Molecular weight of the repeating unit = 94.05, Molecular weight of the Cys residue = 120, Molecular weight of one 'H' atom = 1

Similarly, DP of **Cys-PVim-II** was calculated from the ¹H-NMR spectrum (see Figure S5) and it was found to be 22.


 $66.33/3\times1/1$

 $= 22.11 \approx 22$

Molecular weight (M_n) of **Cys-PVim-II** = (22 × 94.05) + 120 + 1 = 2190.1 ≈ 2200 Da

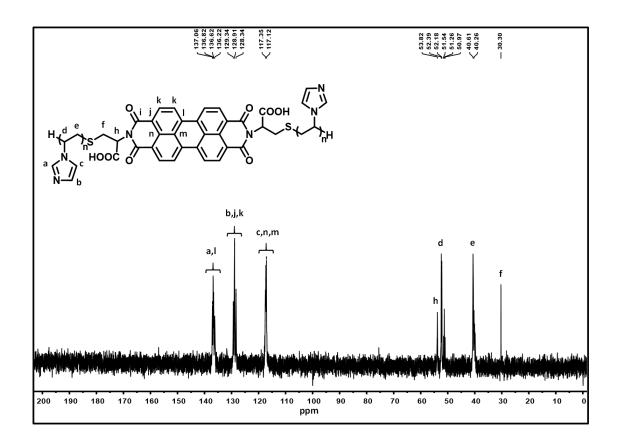
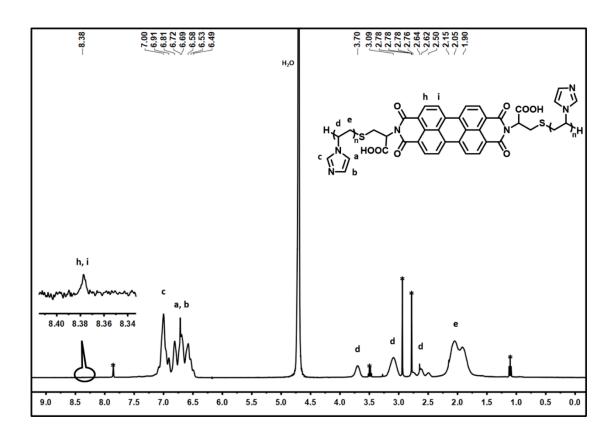
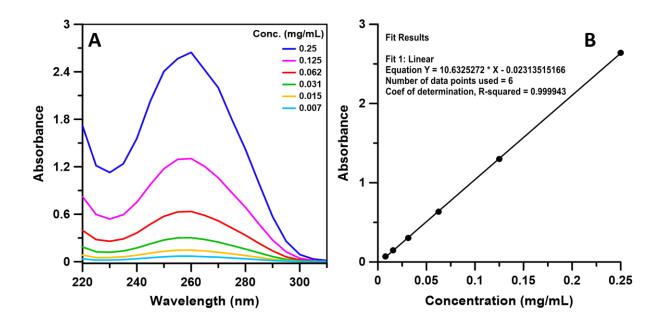


Figure S6. MALDI-TOF-MS spectrum of **Cys-PVim-II** in MeOH using DHB matrix and NaI.


Figure S7. ¹H-NMR spectrum of **PBI-(Cys-PVim-I)**₂ in D_2O (*for acetone, *solvent impurities).

¹**H-NMR (400 MHz, D₂O, TMS, δ ppm), PBI-(Cys-PVim-I)**₂: 1.72-2.24 (-CH₂ of PVim at position 'e'), 2.43-3.80 (-CH of PVim at position 'd'), 6.42-7.19 (imidazole ring protons at positions 'a', 'b' and 'c'), 7.97-8.20 (aromatic protons of perylene unit at position 'h', 'i').


Figure S8. 13 C-NMR spectrum of **PBI-(Cys-PVim-I)**₂ in D₂O.

¹³C-NMR (100 MHz, D₂O, TMS) (δ, ppm), PBI-(Cys-PVim-I)₂: 30.30, 40.26-40.61, 50.97-53.82, 117.12-117.34, 128.34-129.34, 136.22-137.06.

Figure S9. ¹H-NMR spectrum of representative **PBI-(Cys-PVim-II)**₂ in D₂O (*for DMF).

¹**H-NMR (400 MHz, D₂O, TMS, δ ppm), PBI-(Cys-PVim-II)**₂: 1.72-2.24 (-CH₂ of PVim at position 'e'), 2.43-3.80 (-CH of PVim at position 'd'), 6.42-7.19 (imidazole ring protons at positions 'a', 'b' and 'c'), 7.97-8.20 (aromatic protons of perylene unit at position 'h', 'i').

Figure S10. Concentration-dependent UV-vis spectra of ctDNA in 10 mM Tris-HCl buffer (A) and absorbance vs concentration calibration plot showing linear fit (B).

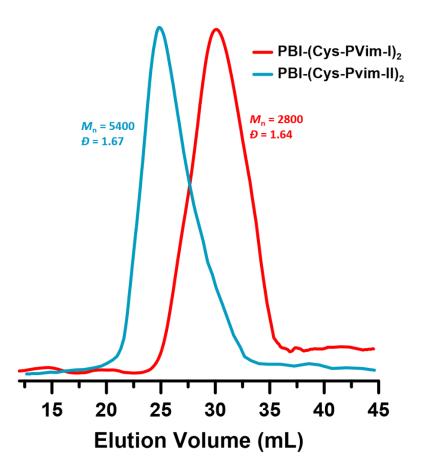
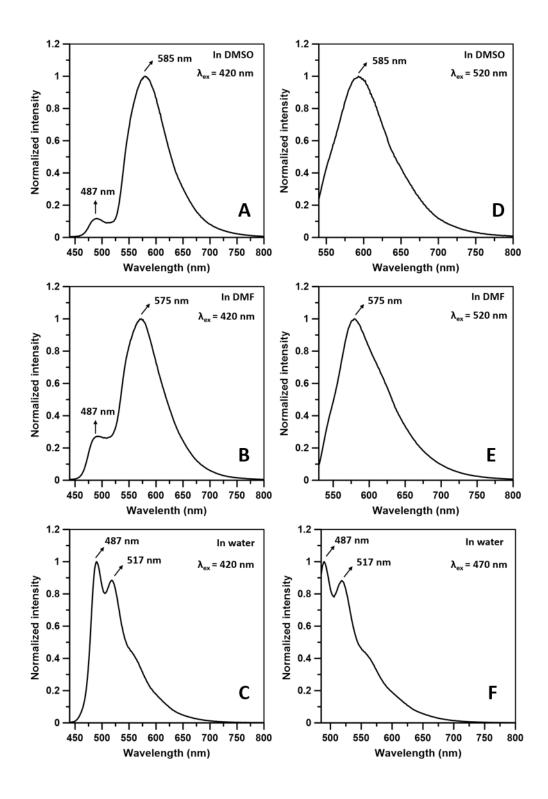



Figure S11. SEC chromatographs of the two different PBI-(Cys-PVim)₂ conjugates.

Figure S12. Emission spectra of **PBI-(Cys-PVim-II)**² in DMSO (A and D), DMF (B and E) using the excitation wavelength of 420 nm and 520 nm and in water (C and F) using the excitation wavelengths of 420 and 470 nm.

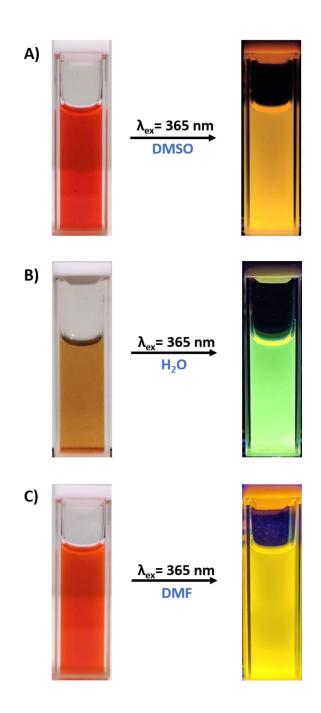
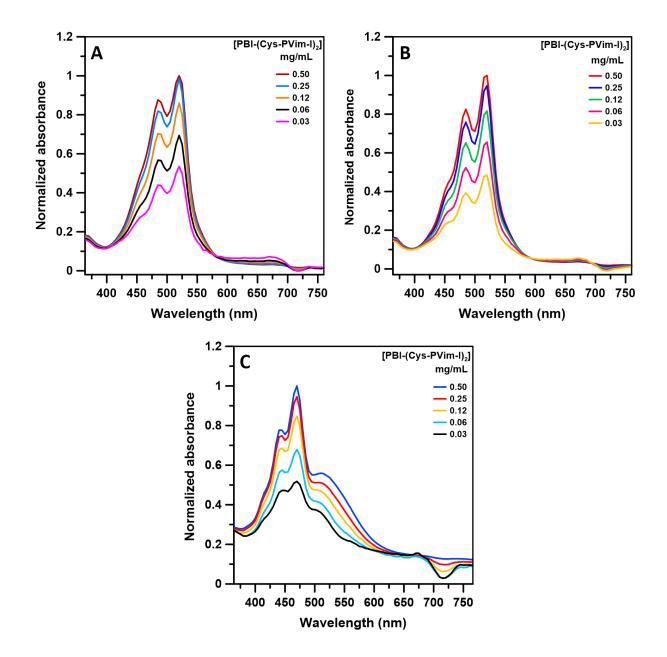


Figure S13. Images of solutions of PBI-(Cys-PVim-II)₂ (1 mg/mL) in A) DMSO (Top),B) water (middle), and C) DMF (bottom) under ambient and UV light.

Quantum yield (*\phi*) calculation:

The quantum yield (ϕ) of two PBI-(Cys-PVim)₂ conjugates were measured in three different solvents such as DMSO, water and DMF using quinine sulfate as a reference standard and using the following equation.

 $\phi_{\rm s} = \phi_{\rm r} \left[({\rm I}/{\rm A})_{\rm s} \times ({\rm A}/{\rm I})_{\rm r} \right] \times \eta_{\rm s}^2 / \eta_{\rm r}^2$


Where I_s and I_r were the integrated emission peak area of the sample and reference, A_s and A_r were absorbance of the sample and reference at an excitation wavelength of 370 nm. η_s and η_r are the refractive index of the solvent at which the sample and reference were dissolved. ϕ_s and ϕ_r are the quantum yield of the sample and the reference.

 $\phi_{\rm f}$ of quinine sulfate = 0.53

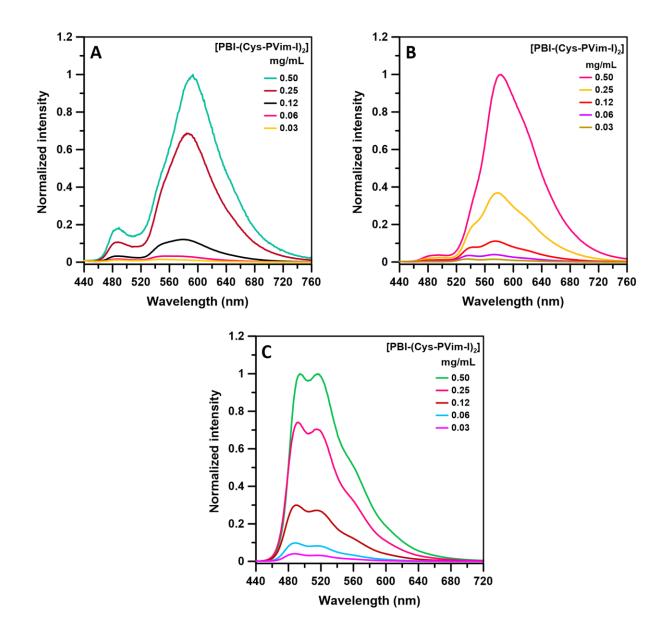
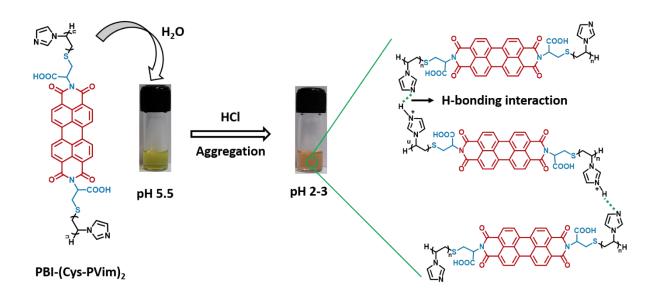

 η_s (DMSO) = 1.47 at 20 °C, η_s (DMF) = 1.43 at 20 °C, η_s (water) = 1.33 at 20 °C

Table S2. Quantum yields (ϕ) of **PBI-(Cys-PVim-I)**₂ and **PBI-(Cys-PVim-II)**₂ in DMSO, DMF, and water respectively.


Conjugate sample	¢₅ in DMSO	¢₅ in DMF	ø₅ in water
PBI-(Cys-PVim-I) ₂	28.2%	38%	19%
PBI-(Cys-PVim-II)2	19.7%	12.8%	15%

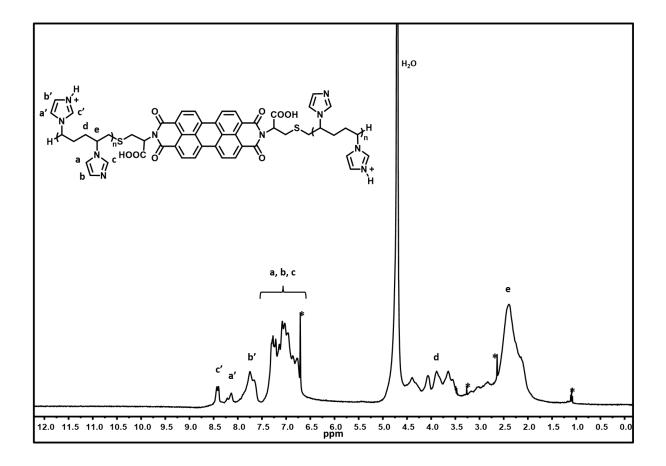
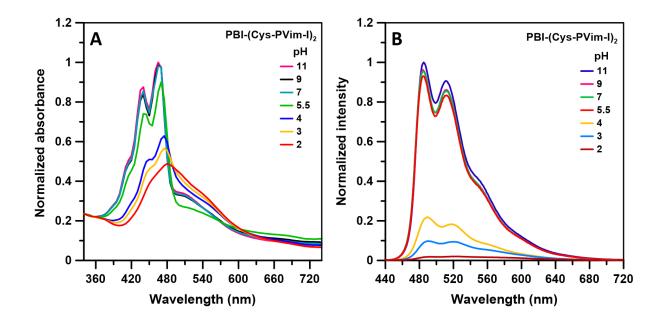
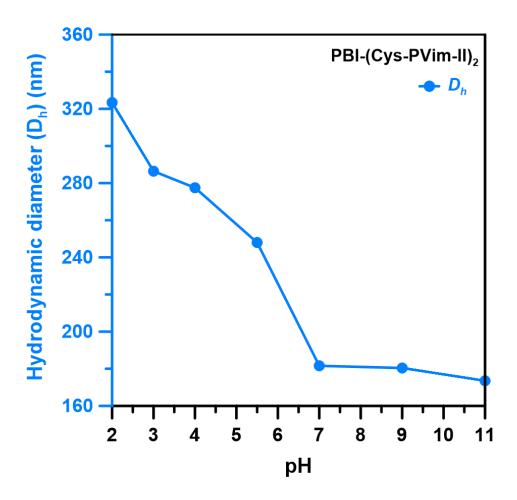
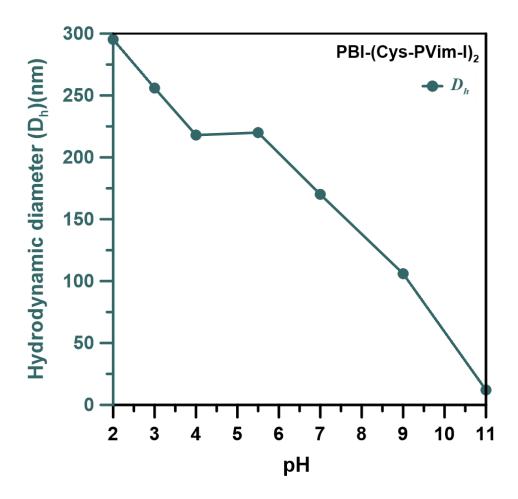

Figure S14. Concentration-dependent UV-vis spectra of **PBI-(Cys-PVim-I)**₂ conjugate in DMSO (A), DMF (B), and water (C).

Figure S15. Concentration-dependent emission spectra ($\lambda_{ex} = 420 \text{ nm}$) of **PBI-(Cys-PVim-I)**₂ in DMSO (A), DMF (B), and water (C).


Scheme S1. Schematics of the aggregation between PBI-(Cys-PVim)₂ conjugate molecules through H-bonding interactions in acidic medium.


Figure S16. ¹H-NMR spectrum of representative **PBI-(Cys-PVim-II)**₂ in D₂O in presence of HCl (*solvent impurities).


Figure S17. Images of the aqueous **PBI-(Cys-PVim-II)**₂ solution at different pHs under ambient and under irradiation of UV light.

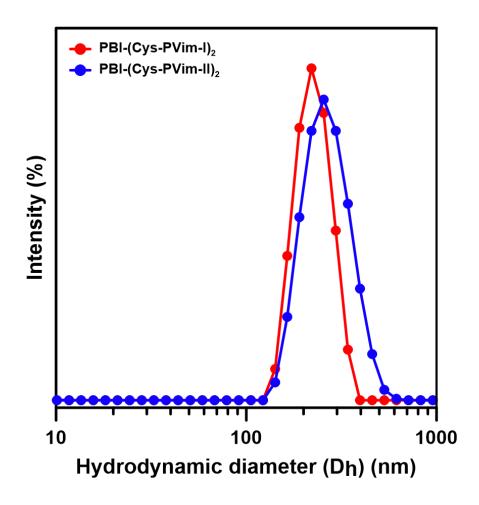
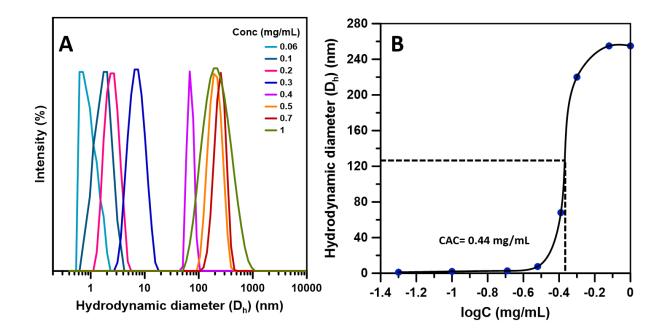
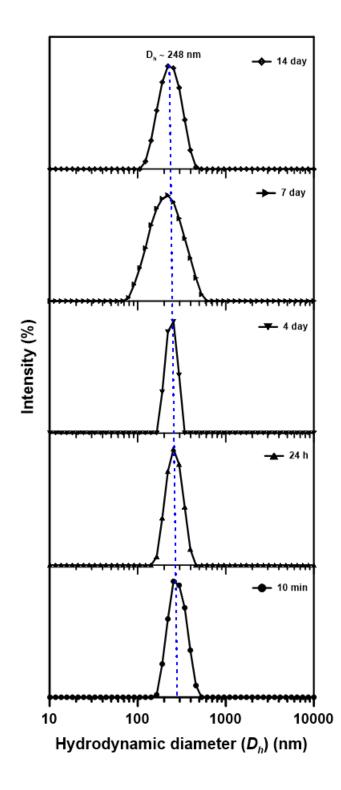
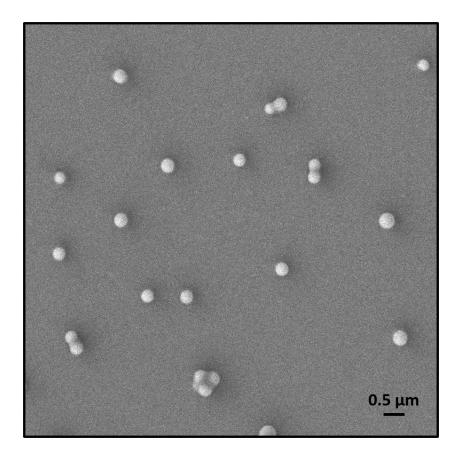

Figure S18. UV-vis absorption (A) and emission ($\lambda_{ex} = 420$ nm) (B) spectra of aqueous **PBI-(Cys-PVim-I)**₂ solution (0.5 mg/mL) at different pH values ranging from 2 to 11.

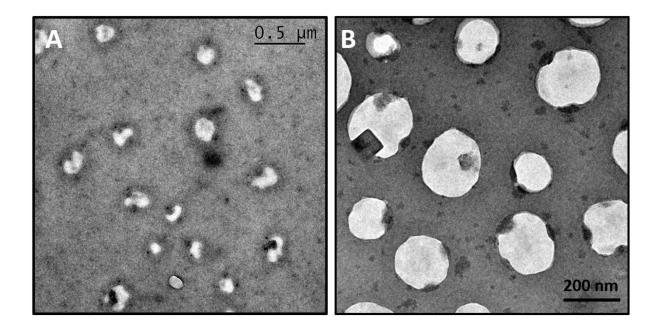
Figure S19. Variation of hydrodynamic diameters (D_h s) of the aqueous solution of **PBI-**(**Cys-PVim-II**)₂ (0.5 mg/mL) at different pHs ranging from 2-11.

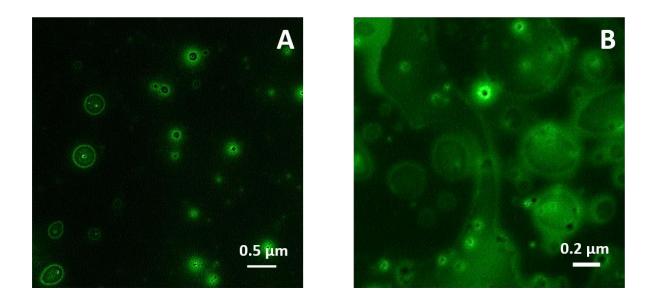

Figure S20. Variation of hydrodynamic diameters (D_h s) of the aqueous solution of **PBI-**(**Cys-PVim-I**)₂ (0.5 mg/mL) at different pHs ranging from 2-11.

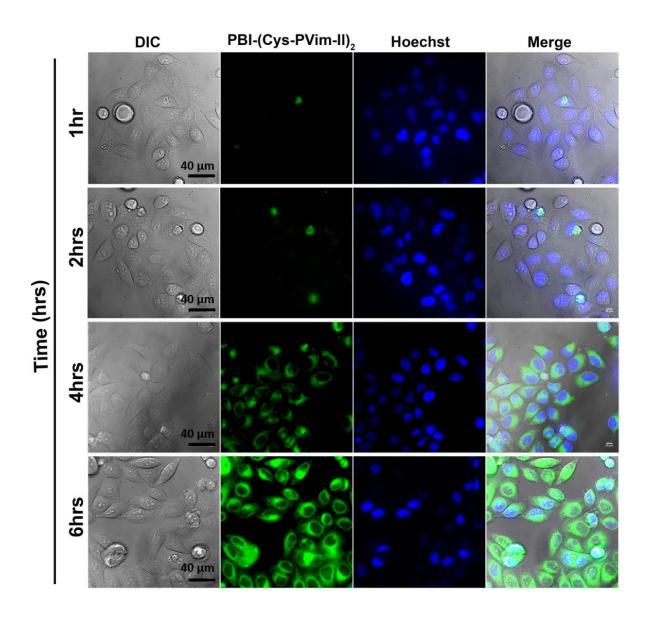

Figure S21. DLS distribution curves of **PBI-(Cys-PVim-I)**₂ and **PBI-(Cys-PVim-II)**₂ in water at a concentration of 0.5 mg/mL.

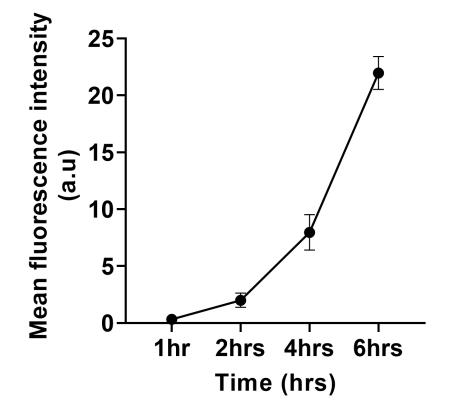
Determination of Critical aggregation concentration (CAC) through DLS:

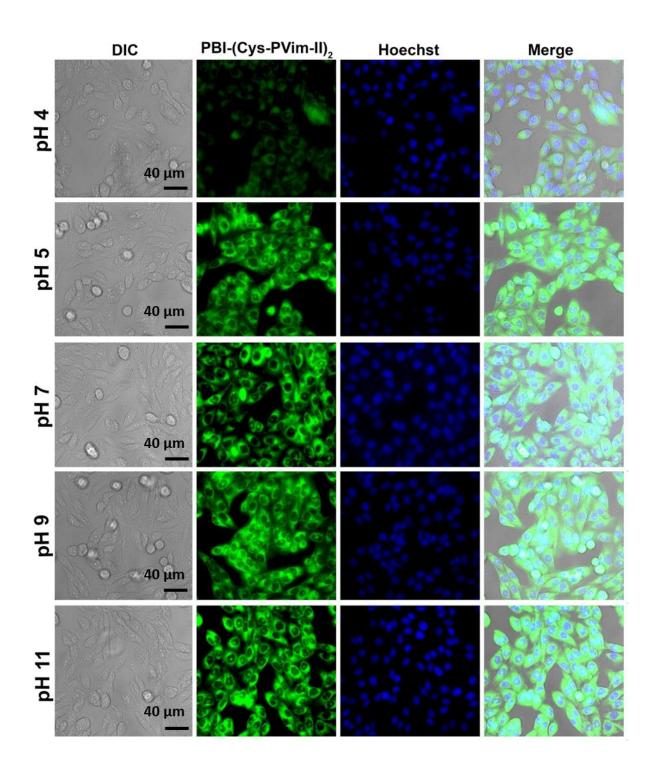

For CAC measurement, at first a series of aqueous solution of the **PBI-(Cys-PVim-I)**₂ was prepared with concentrations ranging from 0.06 to 1 mg/mL. The hydrodynamic diameter (D_h) was then measured at 25 °C and were plotted against the logarithm of the concentrations (mg/mL) of polymer solutions. The plot clearly showed a slow increase of D_h with the increase of concentration followed by a sudden jump. The CAC was measured at which the D_h was half of its maximum value and was found to be 0.44 mg/mL (Figure S22).

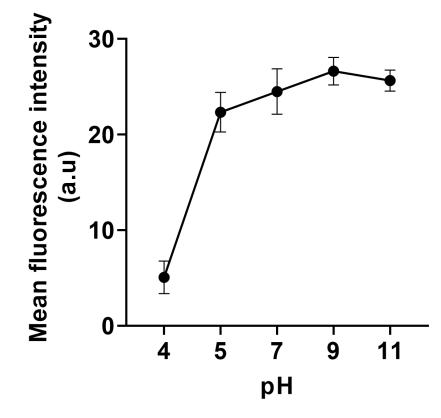

Figure S22. Particle size distribution of the **PBI-**(**Cys-PVim-I**)₂ in water of its varying concentration ranging from (0.06 to 1 mg/mL) (A). The plot of D_h as a function of logarithm of **PBI-**(**Cys-PVim-I**)₂ concentration.

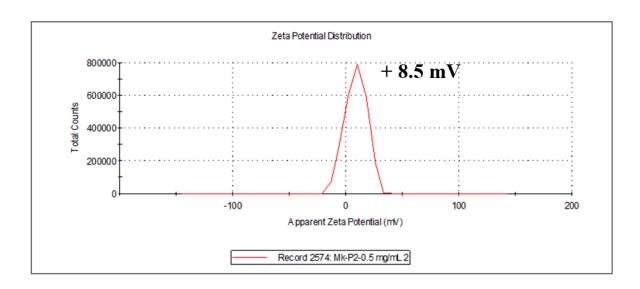

Figure S23. DLS distribution curves of **PBI-(Cys-PVim-II)**₂ (0.5 mg/mL) in water at different time intervals.

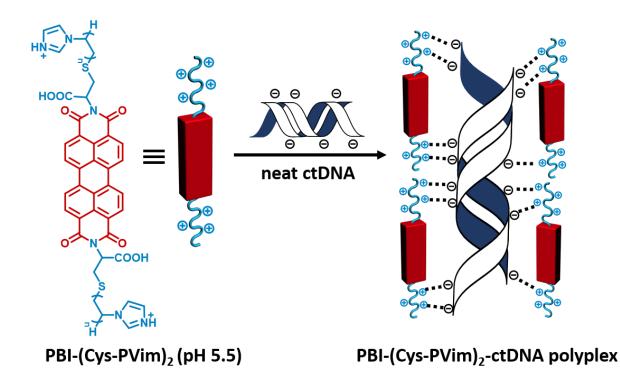

Figure S24. FESEM image of aggregated **PBI-(Cys-PVim-II)**₂ formed in water at a concentration of 0.5 mg/mL.

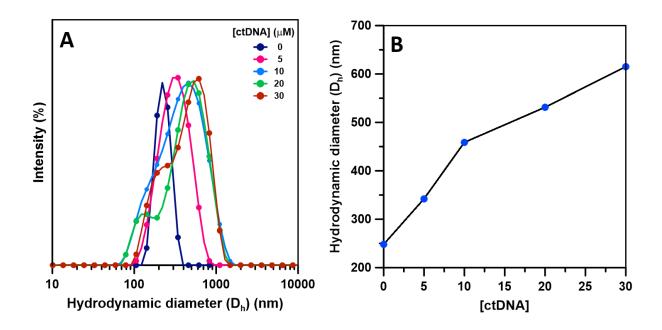

Figure S25. TEM images of vesicular aggregates of **PBI-(Cys-PVim-I)**₂ (A) and **PBI-**(**Cys-PVim-II**)₂ in water at a concentration of 0.5 mg/mL.

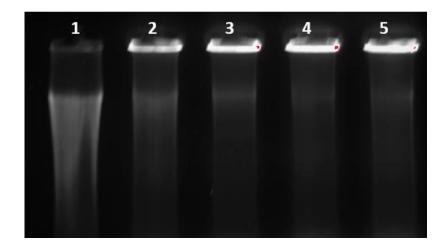

Figure S26. Confocal microscopic images of vesicular aggregates of **PBI-(Cys-PVim-II)**₂ (A) and **PBI-(Cys-PVim-I)**₂ (B) in water at a concentration of 0.5 mg/mL.

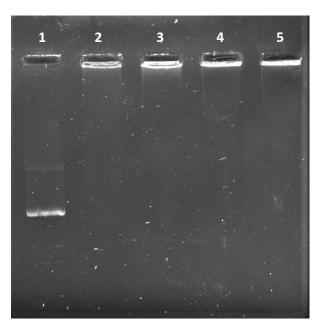

Figure S27. Time-dependent fluorescence microscopic live cell images of HeLa cells in the presence of **PBI-(Cys-PVim-II)**₂ conjugate.


Figure S28. Variation of mean fluorescence intensity with increasing the incubation time of HeLa cells in the presence of **PBI-(Cys-PVim-II)**₂.


Figure S29. pH-dependent fluorescence microscopic live cell images of HeLa cells in the presence of **PBI-(Cys-PVim-II)**₂ conjugate.


Figure S30. Variation of mean fluorescence intensity with increasing the pH of incubated HeLa cells in the presence of **PBI-(Cys-PVim-II)**₂.


Figure S31. Zeta potential (ξ) of **PBI-(Cys-PVim-II)**₂ conjugate in water at a concentration of 0.5 mg/mL.


Scheme S2. Schematic representation for the binding of ctDNA with PBI-(Cys-PVim)₂ conjugate.

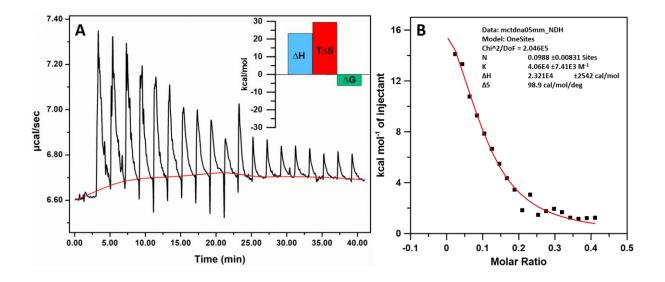

Figure S32. Intensity-weighted particle size-distribution of **PBI-(Cys-PVim-II)**₂ (35 μ M) with different concentrations of ctDNA (A). The plot of variation of hydrodynamic diameters (*D_hs*) of **PBI-(Cys-PVim-II)**₂/ctDNA polyplexs in the presence of varying concentration of ctDNA (B).

Figure S33. Electrophoretic mobility of ctDNA (1.27 mM) upon addition of different concentrations of **PBI-(Cys-PVim-II)**₂ ranging from 35-80 μM.

Figure S34. Electrophoretic mobility of plasmid DNA (100 ng/mL) upon addition of different concentrations of **PBI-(Cys-PVim-II)**₂ ranging from 35-80 μM.

Figure S35. ITC thermogram showing the titration of 1 mM of ctDNA with 0.5 mM of **PBI-(Cys-PVim-II)**₂, Inset showed the comparison of the enthalpy, entropic factor, and the Gibbs energy of the interactions (A). The one-site binding plotting from the thermogram (B)