Supporting information

Flexible Free-Standing Fe₂O₃ Nanoparticle/Carbon Shells/Graphene Films for Advanced Li-Ion Batteries

Dafang He,^{†,‡} Mufan Sun,[†] Da Cao,[†] Yujie Ding,[§] Haiqun Chen^{*,†} and Guangyu He^{*,†}

[†]Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, P. R. China.

[‡]State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China.

[§]Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering,

Changzhou 213164, Jiangsu Province, P. R. China.

*Email: chenhq@cczu.edu.cn.

*Email: hgy610@hotmail.com.

Content

Figure S1	-S2
Figure S2	-S2
Figure S3	-S3
Table S1	-S3
Table S2	-S3

Figure S1. (a-d) Cross-sectional SEM images of the Fe₂O₃/C/RGO film at different magnifications.

Figure S2. (a-b) Top view SEM images of the Fe₂O₃/RGO film at different magnifications.

Figure S3. (a-b) SEM images of the Fe₂O₃/C powder at different magnifications.

Table S1. Simulation results of the EIS spectra using the Randle-type equivalent circuitmodel shown in Figure 5a.

Sample	$\operatorname{Rs}(\Omega)$	$\operatorname{Ret}\left(\Omega ight)$
Fe ₂ O ₃ /C/RGO	2.7	113
Fe ₂ O ₃ /C	3.1	584.7

Table S2. Lithium-storage performance of the $Fe_2O_3/C/RGO$ film in this work compared with other reported Fe_xO_y -based anode materials in the literatures.

Anode materials	Reversible specific capacity	Current density	Cycle number	Refs.
	$(mAh g^{-1})$	$(A g^{-1})$	(cycles)	
γ -Fe ₂ O ₃ @Ti ₃ C ₂ T _x	466	2.0	800	[S1]
rGO/a-Fe ₂ O ₃	613	0.1	100	[S2]
Fe ₃ O ₄ /C/Mn ₃ O ₄	780	0.5	500	[S3]

Hollow Fe ₃ O ₄ /C	600	1.0	200	[S4]
Fe ₃ O ₄ /C nanofibers	761	0.5	300	[S5]
Fe ₃ O ₄ /C core-shell	833.5	0.5	350	[S6]
Fe ₂ O ₃ nanotubes	613	1	50	[S7]
Fe ₂ O ₃ @0.2TiO ₂	405.6	0.1	150	[S8]
Fe ₂ O ₃ /C/RGO	609	1.0	1000	This work

References

- [S1] Liang, J. M.; Zhou, Z.; Zhang, Q. C.; Hu, X.W.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. J. Power Sources 2021, 495, 229758.
- [S2] Ma, T. T.; Xua, Y. S.; Sun, L.; Liu, X.H.; Zhang, J. Ceram. Int. 2018, 44, 364-368.
- [S3] Wang, Y.; Rao, S.; Mao, P.; Zhang, F.; Xiao, P.; Peng, L.; Zhu, Q. Electrochimi. Acta 2020, 337, 135739.
- [S4] Deng, W.; Ci, S.; Li, H.; Wen, Z. Chem. Eng. J. 2017, 330, 995-1001.
- [S5] Wu, Q.; Zhao, R.; Zhang, X.; Li, W.; Xu, R.; Diao, G.; Chen, M. J. Power Sources 2017, 359, 7-16.
- [S6] Han, C.; Xu, L.; Li, H.; Shi, R.; Zhang, T.; Li, J.; Wong, C.-P.; Kang, F.; Lin, Z.; Li, B. Carbon 2018, 140, 296-305.
- [S7] Sun, M.; Yang, H.; Song, W.; Nie, Y.; Sun, S. Ceram. Int. 2017, 43, 363-367.
- [S8] Ma, Y. Z.; Zhang, M. L.; Cai, Z. F.; Huang, X. N.; Ding, B.; Ahsan, Z. S.; Song, G. S.; Xu, Y. L.; Yang, W. D.; Wen, C. ACS Appl. Energy Mater. 2020, 3, 11666-11673.