1	Supplementary Material
2	New Lanostane-Type Triterpenes with Anti-Inflammatory Activity from the
3	Epidermis of Wolfporia cocos
4	Te-Ri-Gen Bao ^a , Guo-Qing Long ^a , Yong Wang ^a , Qian Wang ^b , Xuan-Li Liu ^a , Gao-Sheng Hu ^a ,
5	Xiao-Xu Gao ^{a,†} , An-Hua Wang ^{a, †} , Jing-Ming Jia ^{a,†}
6	^a Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese
7	Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of
8	China
9	^b College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic
10	of China
11	ABSTRACT
12	A chemical study on the epidermis of cultivated edible mushroom Wolfiporia cocos resulted in the
13	isolation and identification of 46 lanostane triterpenoids, containing 17 new compounds (1-17). An
14	experimental determination of their anti-inflammatory activity showed that poricoic acid GM (39) most
15	strongly inhibited NO production in LPS-induced RAW264.7 murine macrophages with an IC_{50} value
16	at 9.73 μ M. Furthermore, poricoic acid GM induced HO-1 protein expression and inhibited iNOS and
17	COX2 protein expression as well as the release of PGE ₂ , IL-1 β , IL-6, TNF- α and reactive oxygen
18	species (ROS) in LPS-induced RAW264.7 cells. Mechanistically, poricoic acid GM suppressed the
19	phosphorylation of the IkBa protein, which prevented NF-kB from entering the nucleus to lose
20	transcriptional activity and inhibited the dissociation of Keap1 from Nrf2, thereby activating Nrf2 into
21	the nucleus to regulate antioxidant genes. Furthermore, the MAPK signaling pathway may play a
22	significant role in poricoic acid GM-induced elimination of inflammation. This work further confirms
23	that lanostane triterpenoids are key ingredients responsible for the anti-inflammatory properties of the
24	edible medicinal mushroom W. cocos.
25	

- 26 *Keywords*: Wolfiporia cocos; triterpene acid; anti-inflammatory activity; NF-κB signaling pathway;
- 27 Keap1-Nrf2 signaling pathway; MAPK signaling pathway

[†] Corresponding author. E-mail addresses: jiajingming@163.com (J.-M. Jia); sywanganhua@163.com (A.-H. Wang); 18842643805@163.com (X.-X. Gao).

1	
2	Catalogue
_	1. Materials and methods
3 4	1. Materials and methods
4 5	1.2. Extraction and isolation
6	1.2. Extraction and isolation 1 1.3. Cell culture 3
7	1.5. Cell viability assay
, 8	1.5. Detection of NO, PGE ₂
9	1.6. Immunofluorescent
10	1.7. gRT-PCR
10	1.8. Western blotting
12	1.9. Statistical analysis
13	1.10. ECD calculation
13 14	1.11. The crystallization condition
15	Table S1. Cell viability of the EtOH extract and solvent-partitioned fractions in RAW264.7
16	macrophages
17	Figure S1. Cell viability of the EtOH extract and solvent-partitioned fractions in RAW264.7
18	macrophages
 19	Table S2. Inhibitory effects of the EtOH extract and solvent-partitioned fractions on NO
20	production in LPS-activated RAW264.7 macrophages
21	Figure S2. Inhibitory effects of the EtOH extract and solvent-partitioned fractions on NO
22	production in LPS-activated RAW264.7 macrophages
23	Table S3. The sequences of the primers
24	Figure S3. Experimental ECD and calculated ECD spectra of new compounds
25	Figure S4. The stack graph of compounds 15 and 16 ¹ H NMR spectra
26	Figure S5. RAW264.7 cells were treated with poricoic acid GM (39) from 5 to 20 μ M at the
27	indicated dose with stimulated by LPS (200 ng/mL) for 4 h. The mRNA of iNOS, COX-2, TNF- α ,
28	IL-1 β and IL-6 and β -actin was detected by RT-PCR with specific primers. The amplified DNA
29	fragment was analyzed by 1% agarose gel and visualized by ethidium bromide staining. Effects of
30	poricoic acid GM (39) on Nrf2, HO-1, Keap1 and NQO1 gene expressions in RAW264.7 cells.
31	The cells were treated with poricoic acid GM (39) (5, 10 and 20 μ M) for 4 h. Data shown are the
32	means \pm SD from three independent experiments, *p < 0.05, **p < 0.01, ***p < 0.001 vs LPS-
33	treated group and ###p < 0.001 vs control group
34	Figure S6. RAW264.7 cells were seeded on 96 well plates and treated with different
35	concentrations of poricoic acid GM (39) (2.5, 5, 10, 20, 40 μ M) for 24 h. MTT was added to detect
36	the cell survival rate. RAW264.7 cells were treated with poricoic acid GM (39) from 5 to 20 μ M at
37	the indicated dose with stimulated by LPS (200 ng/mL) for 4 h. The mRNA of TNF- α and β -actin
38	was detected by RT-PCR with specific primers. The amplified DNA fragment was analyzed by 1%
39	agarose gel and visualized by ethidium bromide staining. Data shown are the means \pm SD from
40	three independent experiments, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$ vs LPS-treated group and
41	###p < 0.001 vs control group
42	Figure S7. HRESIMS spectrum of compound 1
43	Figure S8. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 1
	2

1	Figure S9. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 1	.14
2	Figure S10. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 1	.14
3	Figure S11. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 1	.15
4	Figure S12. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 1	.15
5	Figure S13. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 1	.16
6	Figure S14. HRESIMS spectrum of compound 2	
7	Figure S15. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 2	.17
8	Figure S16. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 2	.17
9	Figure S17. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 2	.18
10	Figure S18. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 2	.18
11	Figure S19. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 2	.19
12	Figure S20. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 2	.19
13	Figure S21. HRESIMS spectrum of compound 3	.20
14	Figure S22. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 3	.20
15	Figure S23. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 3	.21
16	Figure S24. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 3	.21
17	Figure S25. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 3	.22
18	Figure S26. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 3	.22
19	Figure S27. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 3	.23
20	Figure S28. HRESIMS spectrum of compound 4	.23
21	Figure S29. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 4	.24
22	Figure S30. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 4	.24
23	Figure S31. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 4	.25
24	Figure S32. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 4	.25
25	Figure S33. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 4	.26
26	Figure S34. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 4	.26
27	Figure S35. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 4	.27
28	Figure S36. HRESIMS spectrum of compound 5	.27
29	Figure S37. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 5	.28
30	Figure S38. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 5	.28
31	Figure S39. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 5	.29
32	Figure S40. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 5	.29
33	Figure S41. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 5	.30
34	Figure S42. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 5	.30
35	Figure S43. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 5	.31
36	Figure S44. HRESIMS spectrum of compound 6	.31
37	Figure S45. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 6	.32
38	Figure S46. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 6	.32
39	Figure S47. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 6	.33
40	Figure S48. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 6	.33
41	Figure S49. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 6	.34
42	Figure S50. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 6	.34
43	Figure S51. HRESIMS spectrum of compound 7	.35
44	Figure S52. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 7	.35

2 Figure S54. HSQC spectrum (600 MHz, C ₃ D ₃ N) of compound 7	1	Figure S53. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 7	36					
4 Figure S56. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₃ N) of compound 7	2	Figure S54. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 7	36					
	3	Figure S55. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 7	37					
	4	Figure S56. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 7						
7 Figure S59. ¹ H NMR spectrum (600 MHz, C_3D_3N) of compound 8	5	Figure S57. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 7						
$ \begin{array}{lllllllllllllllllllllllllllllllllll$	6							
9 Figure S61. HSQC spectrum (600 MHz, C_3D_3N) of compound 8. 40 10 Figure S62. HMBC spectrum (600 MHz, C_3D_3N) of compound 8. 41 11 Figure S63. HL ⁻¹ H COSY spectrum (600 MHz, C_3D_3N) of compound 8. 41 12 Figure S64. NOESY spectrum (600 MHz, C_3D_3N) of compound 8. 41 13 Figure S65. HRESIMS spectrum (600 MHz, C_3D_3N) of compound 9. 42 14 Figure S66. 'H NMR spectrum (600 MHz, C_3D_3N) of compound 9. 43 15 Figure S67. ¹³ C NMR spectrum (600 MHz, C_3D_3N) of compound 9. 44 16 Figure S70. 'H1-'H COSY spectrum (600 MHz, C_3D_3N) of compound 9. 44 17 Figure S70. 'H1-'H COSY spectrum (600 MHz, C_3D_3N) of compound 9. 44 18 Figure S71. NOESY spectrum (600 MHz, C_3D_3N) of compound 9. 45 19 Figure S71. NOESY spectrum (600 MHz, C_3D_3N) of compound 10. 46 20 Figure S71. NORS spectrum (600 MHz, C_3D_3N) of compound 10. 47 21 Figure S74. ¹³ C NMR spectrum (600 MHz, C_3D_3N) of compound 10. 47 22 Figure S75. HNCS Spectrum (600 MHz, C_3D_3N) of compound 10. 47 23 Figure S75. NOESY spectrum (600 MHz, C_3D_3N) of compound 10. 47	7							
	8	Figure S60. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 8						
11 Figure S63. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₃ N) of compound 8 41 12 Figure S64. NOESY spectrum (600 MHz, C ₃ D ₅ N) of compound 8 41 13 Figure S65. HRESIMS spectrum (600 MHz, C ₃ D ₅ N) of compound 9 42 14 Figure S66. ¹ H NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 9 43 15 Figure S69. HMBC spectrum (600 MHz, C ₃ D ₅ N) of compound 9 43 16 Figure S69. HMBC spectrum (600 MHz, C ₃ D ₅ N) of compound 9 44 17 Figure S70. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₅ N) of compound 9 44 18 Figure S71. NOESY spectrum (600 MHz, C ₃ D ₅ N) of compound 9 44 19 Figure S71. NOESY spectrum (600 MHz, C ₃ D ₅ N) of compound 10 45 20 Figure S73. ¹ H NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 10 46 21 Figure S74. ¹³ C NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 10 47 22 Figure S75. HSQC spectrum (600 MHz, C ₃ D ₅ N) of compound 10 47 23 Figure S74. ¹³ C NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 10 48 24 Figure S80. ¹ H NK spectrum (600 MHz, C ₃ D ₅ N) of compound 10 48 25 Figure S81. ¹³ C NMR spectrum of compound 11 49 26	9	Figure S61. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 8	40					
12 Figure S64. NOESY spectrum (600 MHz, C_3D_3N) of compound 8 41 13 Figure S65. HRESIMS spectrum (600 MHz, C_3D_3N) of compound 9 42 14 Figure S66. ¹ H NMR spectrum (150 MHz, C_3D_3N) of compound 9 43 15 Figure S68. HSQC spectrum (600 MHz, C_3D_3N) of compound 9 43 16 Figure S69. HMBC spectrum (600 MHz, C_3D_3N) of compound 9 44 17 Figure S70. ¹ H- ¹ H COSY spectrum (600 MHz, C_3D_3N) of compound 9 44 18 Figure S71. NOESY spectrum (600 MHz, C_3D_3N) of compound 9 45 20 Figure S72. HRESIMS spectrum (600 MHz, C_3D_3N) of compound 10 45 21 Figure S73. ¹ H NMR spectrum (600 MHz, C_3D_3N) of compound 10 46 22 Figure S74. ¹³ C NMR spectrum (600 MHz, C_3D_3N) of compound 10 47 23 Figure S75. HSQC spectrum (600 MHz, C_3D_3N) of compound 10 47 24 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C_3D_3N) of compound 10 47 25 Figure S78. NOESY spectrum (600 MHz, C_3D_3N) of compound 10 47 26 Figure S78. NOESY spectrum (600 MHz, C_3D_3N) of compound 11 49 27 Figure S80. ¹ H NMR spectrum (600 MHz, C_3D_3N) of compound 11 50	10	Figure S62. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 8	40					
13 Figure S65. HRESIMS spectrum of compound 9 42 14 Figure S66. ¹ H NMR spectrum (600 MHz, C ₃ D ₃ N) of compound 9 42 15 Figure S68. HSQC spectrum (600 MHz, C ₃ D ₃ N) of compound 9 43 16 Figure S69. HMBC spectrum (600 MHz, C ₃ D ₃ N) of compound 9 43 17 Figure S69. HMBC spectrum (600 MHz, C ₃ D ₃ N) of compound 9 44 18 Figure S70. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₃ N) of compound 9 44 19 Figure S71. NOESY spectrum (600 MHz, C ₃ D ₃ N) of compound 9 45 21 Figure S72. HRESIMS spectrum (600 MHz, C ₃ D ₃ N) of compound 10 45 22 Figure S73. ¹ H NMR spectrum (600 MHz, C ₃ D ₃ N) of compound 10 46 23 Figure S75. HSQC spectrum (600 MHz, C ₃ D ₃ N) of compound 10 47 24 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₃ N) of compound 10 47 25 Figure S78. NOESY spectrum (600 MHz, C ₃ D ₃ N) of compound 10 47 26 Figure S79. HRESIMS spectrum (600 MHz, C ₃ D ₃ N) of compound 10 48 27 Figure S80. ¹ H NMR spectrum (600 MHz, C ₃ D ₃ N) of compound 11 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C ₃ D ₃ N) of compound 11 50 29 <	11	Figure S63. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 8	41					
14 Figure S66. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 9 42 15 Figure S67. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 9 43 16 Figure S68. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 9 43 17 Figure S69. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 9 44 18 Figure S70. ¹ H. ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 9 44 19 Figure S71. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 9 45 20 Figure S73. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 10 45 21 Figure S74. ¹² C NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 10 46 23 Figure S74. ¹¹ C NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 10 47 24 Figure S75. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 10 47 25 Figure S76. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 10 47 26 Figure S78. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 10 48 27 Figure S80. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 11 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 11 49 29 Figure S81. HMC spectrum (600 MHz, C ₅ D ₅ N) of compound 11 50 <	12	Figure S64. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 8	41					
15 Figure S67. 13 C NMR spectrum (150 MHz, C_3D_5N) of compound 9	13							
16 Figure S68. HSQC spectrum (600 MHz, C_5D_5N) of compound 9	14	Figure S66. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 9	42					
17 Figure S69. HMBC spectrum (600 MHz, C_3D_5N) of compound 9	15	Figure S67. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 9	43					
18 Figure S70. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₅ N) of compound 9 44 19 Figure S71. NOESY spectrum (600 MHz, C ₃ D ₅ N) of compound 9 45 20 Figure S72. HRESIMS spectrum of compound 10 45 21 Figure S73. ¹ H NMR spectrum (150 MHz, C ₃ D ₅ N) of compound 10 46 22 Figure S74. ¹³ C NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 10 46 23 Figure S75. HSQC spectrum (600 MHz, C ₃ D ₅ N) of compound 10 47 24 Figure S76. HMBC spectrum (600 MHz, C ₃ D ₅ N) of compound 10 47 25 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C ₃ D ₅ N) of compound 10 48 26 Figure S78. NOESY spectrum (600 MHz, C ₃ D ₅ N) of compound 10 48 27 Figure S79. HRESIMS spectrum (600 MHz, C ₃ D ₅ N) of compound 11 49 28 Figure S81. ¹³ C NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 11 49 29 Figure S81. ¹³ C NMR spectrum (600 MHz, C ₃ D ₅ N) of compound 11 50 30 Figure S84. ¹ H COSY spectrum (600 MHz, C ₃ D ₅ N) of compound 11 50 31 Figure S84. ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 11 51 32 Figure S84. ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 11 51	16							
19 Figure S71. NOESY spectrum (600 MHz, C_5D_5N) of compound 9 45 20 Figure S72. HRESIMS spectrum of compound 10 45 21 Figure S73. ¹ H NMR spectrum (150 MHz, C_5D_5N) of compound 10 46 22 Figure S74. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 10 46 23 Figure S75. HSQC spectrum (600 MHz, C_5D_5N) of compound 10 47 24 Figure S76. HMBC spectrum (600 MHz, C_5D_5N) of compound 10 47 25 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 10 48 26 Figure S78. NOESY spectrum (600 MHz, C_5D_5N) of compound 10 48 27 Figure S79. HRESIMS spectrum of compound 11 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11 49 29 Figure S81. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 11 50 30 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S84. ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 <td>17</td> <td></td> <td></td>	17							
20 Figure S72. HRESIMS spectrum of compound 10. 45 21 Figure S73. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 10. 46 22 Figure S74. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 10. 46 23 Figure S75. HSQC spectrum (600 MHz, C_5D_5N) of compound 10. 47 24 Figure S76. HMBC spectrum (600 MHz, C_5D_5N) of compound 10. 47 25 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 10. 48 26 Figure S79. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 10. 48 27 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11. 49 28 Figure S81. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 11. 50 30 Figure S81. HSQC spectrum (600 MHz, C_5D_5N) of compound 11. 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11. 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11. 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11. 51 34 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12. 52 35 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12. 53	18	Figure S70. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 9	44					
21 Figure S73. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 10	19	Figure S71. NOESY spectrum (600 MHz, C5D5N) of compound 9	45					
22 Figure S74. 13 C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 10	20							
23 Figure S75. HSQC spectrum (600 MHz, C_5D_5N) of compound 10. 47 24 Figure S76. HMBC spectrum (600 MHz, C_5D_5N) of compound 10. 47 25 Figure S77. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 10. 48 26 Figure S78. NOESY spectrum (600 MHz, C_5D_5N) of compound 10. 48 27 Figure S79. HRESIMS spectrum of compound 11. 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11. 49 29 Figure S81. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 11. 50 30 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11. 50 31 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11. 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11. 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11. 52 34 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12. 53 35 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12. 53 36 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12. 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12. 54	21							
24 Figure S76. HMBC spectrum (600 MHz, C_5D_5N) of compound 10	22							
25 Figure S77. 1 H- 1 H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 10	23							
26 Figure S78. NOESY spectrum (600 MHz, C_5D_5N) of compound 10 48 27 Figure S79. HRESIMS spectrum of compound 11 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11 49 29 Figure S81. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 11 50 30 Figure S82. HSQC spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12 52 35 Figure S87. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 36 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S92. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 13 55 40 <								
27 Figure S79. HRESIMS spectrum of compound 11 49 28 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11 49 29 Figure S81. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 11 50 30 Figure S82. HSQC spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 Figure S86. HRESIMS spectrum of compound 12 52 35 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12 53 36 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 37 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13 55 40 Figure S93. ¹								
28 Figure S80. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 11 49 29 Figure S81. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 11 50 30 Figure S82. HSQC spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 Figure S86. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 12 52 35 Figure S87. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 36 Figure S88. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 55 40 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 55 41 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 13 56 42 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13 56								
29 Figure S81. 13 C NMR spectrum (150 MHz, C_5D_5N) of compound 11 50 30 Figure S82. HSQC spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ${}^{1}H_{-}{}^{1}H$ COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 Figure S86. HRESIMS spectrum of compound 12 52 35 Figure S87. ${}^{1}H$ NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 36 Figure S88. ${}^{13}C$ NMR spectrum (150 MHz, C_5D_5N) of compound 12 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 55 40 Figure S92. HRESIMS spectrum (600 MHz, C_5D_5N) of compound 13 56 41 Figure S93. ${}^{1}H$ NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 42 Figure S93. ${}^{1}H$ NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 43 Figure S94. ${}^{13}C$ NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 <td></td> <td></td> <td></td>								
30 Figure S82. HSQC spectrum (600 MHz, C_5D_5N) of compound 11 50 31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11 52 34 Figure S86. HRESIMS spectrum of compound 12 52 35 Figure S87. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 12 53 36 Figure S88. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 12 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 55 40 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12 55 41 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 42 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 43 Figure S94. ¹³ C NMR spectrum (600 MHz, C_5D_5N) of compound 13 56 43 Figure S95. HSQC spectrum (600 MHz, C_5D_5N) of compound 13 56 43 <td< td=""><td></td><td></td><td></td></td<>								
31 Figure S83. HMBC spectrum (600 MHz, C_5D_5N) of compound 11. 51 32 Figure S84. ¹ H- ¹ H COSY spectrum (600 MHz, C_5D_5N) of compound 11. 51 33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11. 52 34 Figure S86. HRESIMS spectrum of compound 12. 52 35 Figure S87. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 12. 53 36 Figure S88. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 12. 53 37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12. 54 38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12. 54 39 Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 12. 55 40 Figure S92. HRESIMS spectrum of compound 13. 55 41 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13. 56 42 Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13. 56 43 Figure S94. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 13. 56 43 Figure S95. HSQC spectrum (600 MHz, C_5D_5N) of compound 13. 56 43 Figure S95. HSQC spectrum (600 MHz, C_5D_5N) of compound 13. 57								
32 Figure S84. 1 H- 1 H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 11. 51 33 Figure S85. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 11. 52 34 Figure S86. HRESIMS spectrum of compound 12. 52 35 Figure S87. 1 H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 12. 53 36 Figure S88. 13 C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 12. 53 37 Figure S89. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 12. 54 38 Figure S90. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 12. 54 39 Figure S91. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 12. 55 40 Figure S92. HRESIMS spectrum of compound 13. 55 41 Figure S93. 1 H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 13. 56 42 Figure S94. 13 C NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 13. 56 43 Figure S95. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 13. 56 43 Figure S95. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 13. 56 43 Figure S95. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 13. 57								
33 Figure S85. NOESY spectrum (600 MHz, C_5D_5N) of compound 11								
34 Figure S86. HRESIMS spectrum of compound 12								
35 Figure S87. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 12								
36 Figure S88. 13 C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 12								
37 Figure S89. HSQC spectrum (600 MHz, C_5D_5N) of compound 12								
38 Figure S90. HMBC spectrum (600 MHz, C_5D_5N) of compound 12								
39Figure S91. NOESY spectrum (600 MHz, C_5D_5N) of compound 125540Figure S92. HRESIMS spectrum of compound 135541Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 135642Figure S94. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 135643Figure S95. HSQC spectrum (600 MHz, C_5D_5N) of compound 1357								
40 Figure S92. HRESIMS spectrum of compound 13								
41Figure S93. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 13								
42Figure S94. 13 C NMR spectrum (150 MHz, C5D5N) of compound 13								
43 Figure S95. HSQC spectrum (600 MHz, C_5D_5N) of compound 13								
Figure 590. HMBC spectrum (000 MHz, C_5D_5N) of compound 13								
	44	rigure 570. minube spectrum (000 Minz, C5D5N) of compound 13						

1	Figure S97. NOESY spectrum (600 MHz, C5D5N) of compound 13					
2	Figure S98. HRESIMS spectrum of compound 14	58				
3	Figure S99. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 14					
4	Figure S100. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 14					
5	Figure S101. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 14	60				
6	Figure S102. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 14					
7	Figure S103. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 14					
8	Figure S104. NOESY spectrum (600 MHz, C5D5N) of compound 14	61				
9	Figure S105. HRESIMS spectrum of compound 15	62				
10	Figure S106. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 15	62				
11	Figure S107. 13 C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 15	63				
12	Figure S108. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 15	63				
13	Figure S109. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 15	64				
14	Figure S110. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 15	64				
15	Figure S111. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 15	65				
16	Figure S112. HRESIMS spectrum of compound 16	65				
17	Figure S113. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 16	66				
18	Figure S114. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 16	66				
19	Figure S115. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 16	67				
20	Figure S116. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 16					
21	Figure S117. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 16	68				
22	Figure S118. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 16					
23	Figure S119. HRESIMS spectrum of compound 17	69				
24	Figure S120. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 17					
25	Figure S121. 13 C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 17					
26	Figure S122. DEPT 135° spectrum (150 MHz, C ₅ D ₅ N) of compound 17					
27	Figure S123. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 17					
28	Figure S124. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 17					
29	Figure S125. 1 H- 1 H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 17					
30	Figure S126. NOESY spectrum (600 MHz, C ₅ D ₅ N) of compound 17					
31	Figure S127. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 18					
32	Figure S128. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 18					
33	Figure S129. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 19					
34	Figure S130. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 19					
35	Figure S131. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 20					
36	Figure S132. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 20					
37	Figure S133. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 21					
38	Figure S134. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 21					
39	Figure S135. HRESIMS spectrum of compound 22					
40	Figure S136. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 22					
41	Figure S137. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 22					
42	Figure S138. HSQC spectrum (600 MHz, C ₅ D ₅ N) of compound 22					
43	Figure S139. HMBC spectrum (600 MHz, C ₅ D ₅ N) of compound 22					
44	Figure S140. ¹ H- ¹ H COSY spectrum (600 MHz, C ₅ D ₅ N) of compound 22	79				

1	Figure S141. NOESY spectrum (600 MHz, C5D5N) of compound 22	80
2	Figure S142. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 23	80
3	Figure S143. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 23	81
4	Figure S144. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 24	81
5	Figure S145. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 24	
6	Figure S146. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 25	
7	Figure S147. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 25	
8	Figure S148. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 26	
9	Figure S149. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 26	
10	Figure S150. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 27	
11	Figure S151. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 27	85
12	Figure S152. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 28	
13	Figure S153. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 28	
14	Figure S154. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 29	86
15	Figure S155. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 29	
16	Figure S156. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 30	
17	Figure S157. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 30	
18	Figure S158. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 31	
19	Figure S159. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 31	
20	Figure S160. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 32	
21	Figure S161. ¹³ C NMR spectrum (150 MHz, C_5D_5N) of compound 32	90
22	Figure S162. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 33	90
23	Figure S163. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 33	91
24	Figure S164. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 34	91
25	Figure S165. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 34	92
26	Figure S166. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 35	92
27	Figure S167. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 35	93
28	Figure S168. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 36	93
29	Figure S169. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 36	94
30	Figure S170. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 37	94
31	Figure S171. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 37	95
32	Figure S172. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 38	95
33	Figure S173. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 38	96
34	Figure S174. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 39	96
35	Figure S175. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 39	97
36	Figure S176. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 40	97
37	Figure S177. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 40	98
38	Figure S178. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 41	98
39	Figure S179. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 41	99
40	Figure S180. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 42	99
41	Figure S181. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 42	
42	Figure S182. ¹ H NMR spectrum (600 MHz, C_5D_5N) of compound 43	100
43	Figure S183. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 43	101
44	Figure S184. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 44	

1	Figure S185. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 44	102
2	Figure S186. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 45	102
3	Figure S187. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 45	103
4	Figure S188. ¹ H NMR spectrum (600 MHz, C ₅ D ₅ N) of compound 46	103
	Figure S189. ¹³ C NMR spectrum (150 MHz, C ₅ D ₅ N) of compound 46	

1. Materials and methods

1.1. General experimental procedures

UV spectra were recorded on a JASCO V-650 UV spectrophotometer. Optical rotations were measured on a JASCO P2000 automatic polarimeter. 1D- and 2D-NMR spectra were recorded on a Bruker Avance 600 spectrometer with solvent peaks as references. HRESIMS data were obtained with an Agilent 1290 Infinity liquid chromatography system and an Agilent 6540 UHD Accurate-Mass Q-TOF mass spectrometer. High-performance liquid chromatography (HPLC) data were recorded on an Agilent 1260 instrument equipped with a photo-diode array (PDA) and a YMC C₁₈ column (250×4.6 mm, 5 μ M). Preparative HPLC was performed on Sanotac instrument China with a UV detector and a YMC C₁₈ column (250×20 mm, 5 μ M). Column chromatographic separations were carried out with silica gel (200-300 mesh, Qingdao Marine Chemical Group Corporation, Qingdao, China), ODS (50μ M, YMC, Kyoto, Japan). TLC was conducted with glass precoated with silica gel GF254 (Yantai Chemical Industrial Institute, Yantai, China). Chromatographic grade methanol and acetonitrile were purchased from Fisher. All other solvents were of chemical grade (Da Mao Chemical Co. Ltd, Tianjin, China).

1.2. Extraction and isolation

1.2.1. Tuckahoacid A (*1*)

White amorphous powder (MeOH); $[\alpha]_{20}^{20}$ -22.00 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 205 (0.70), 250 (1.12) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 255 (3.46), 280 (-0.71) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see **Table 2**; HRESIMS m/z 519.3083 [M + Na]⁺ (calcd for C₃₁H₄₄O₅Na, 519.3086).

1.2.2. Tuckahoacid B (2)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ +2.91 (c 0.3, MeOH); UV (MeOH) λ_{max} (log ε) = 222 (2.52), 270 (0.58) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 263 (2.27) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see **Table 2**; HRESIMS m/z 513.3229 [M - H]⁻ (calcd for C₃₁H₄₅O₆, 513.3216).

1.2.3. Tuckahoacid C(**3**)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -11.20 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 228 (2.75), 268 (0.58) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 272 (6.87) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see **Table 2**; HRESIMS m/z 513.3230 [M - H]⁻ (calcd for C₃₁H₄₅O₆, 513.3216).

1.2.4. Tuckahoacid D (4)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -11.33 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 211 (1.49), 252 (2.03) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 201 (20.93), 253 (-20.61) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see **Table 2**; HRESIMS *m*/*z* 515.3385 [M - H]⁻ (calcd for C₃₁H₄₇O₆, 515.3373).

1.2.5. Tuckahoacid E (5)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -2.67 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 197 (0.07), 251 (0.28) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 198 (8.06), 251 (-10.40) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 21.4 (3-CH₃CO), 170.8 (3-CH₃CO) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_{H} 2.04 (3H, s, 3-CH₃CO) and **Table 2**; HRESIMS *m*/*z* 581.3451 [M + Na]⁺ (calcd for C₃₃H₅₀O₇Na, 581.3454).

1.2.6. Tuckahoacid F (6)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ +1.5 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 218 (2.66), 270 (2.00) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 269 (1.55) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see **Table 2**; HRESIMS *m/z* 499.3072 [M - H]⁻ (calcd for C₃₀H₄₃O₆, 499.3060).

1.2.7. Tuckahoacid G (7)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -10.29 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 197 (0.08), 245 (0.40) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 202 (11.87), 245 (-4.34) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 55.7 (12-OCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_{H} 3.49 (3H, s, 12-OCH₃) and **Table 2**; HRESIMS m/z 515.3384 [M - H]⁻ (calcd for C₃₁H₄₇O₆, 515.3373).

1.2.8. Tuckahoacid H (8)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -10.7 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 211 (0.86), 245 (1.23) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 202 (11.07), 246 (-8.13) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 55.7 (12-OCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_{H} 3.54 (3H, s, 12-OCH₃) and **Table 2**; HRESIMS *m*/*z* 517.3544 [M - H] (calcd for C₃₁H₄₉O₆, 517.3529).

1.2.9. Tuckahoacid I (9)

White amorphous powder (MeOH); $[\alpha]_{2^0}^{2^0}$ -11.00 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 198 (0.22), 244 (2.68) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 202 (15.29), 240 (-8.94) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_C 55.7 (12-OCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_H 3.51 (3H, s, 12-OCH₃) and **Table 2**; HRESIMS m/z 517.3540 [M - H]⁻ (calcd for C₃₁H₄₉O₆, 517.3529).

1.2.10. Tuckahoacid J (10)

White amorphous powder (MeOH); $[\alpha]_D^{20} + 11.00$ (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 216 (2.22), 240 (0.37) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 240 (7.48) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_C 51.7 (3-COOCH₃), 50.5 (25-OCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_H 3.62 (3H, s, 3-COOCH₃), δ_H 3.04 (3H, s, 25-OCH₃) and **Table 3**; HRESIMS m/z 565.3508 [M + Na]⁺ (calcd for C₃₃H₅₀O₆Na, 565.3505).

1.2.11. Tuckahoacid K (11)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ +6.29 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 196 (0.08), 242 (0.26) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 240 (4.51) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 51.8 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_{H} 3.63 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS *m*/*z* 511.3434 [M - H]⁻ (calcd for C₃₂H₄₇O₅, 511.3423).

1.2.12. Tuckahoacid L (12)

White amorphous powder (MeOH); $[\alpha]_D^{20}$ -33.00 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 202 (0.25), 242 (0.72) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 241 (4.08) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_C 51.8 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_H 3.62 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS m/z 543.3337 [M - H]⁻ (calcd for C₃₂H₄₇O₇, 543.3322).

1.2.13. Tuckahoacid M (13)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ -28.00 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 205 (0.51), 242 (1.13) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 241 (9.68) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 51.7 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data,

see $\delta_{\rm H}$ 3.62 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS *m*/*z* 543.3334 [M - H]⁻ (calcd for C₃₂H₄₇O₇, 543.3322).

1.2.14. Tuckahoacid N (14)

White amorphous powder (MeOH); $[\alpha]_{2^0}^{2^0} +10.00$ (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 242 (1.44), 288 (0.87) nm; CD (c 1.1×10^{-3} M, MeOH) λ_{max} ($\Delta \varepsilon$) = 222 (4.21), 250 (-0.54), 290 (6.70) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_C 51.8 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_H 3.62 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS *m*/*z* 545.3487 [M - H]⁻ (calcd for C₃₂H₄₉O₇, 545.3478).

1.2.15. Tuckahoacid O (15)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ +9.6 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 242 (0.47), 289 (0.30) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 220 (3.98), 243 (-2.03), 292 (6.50) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_{C} 51.8 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_{H} 3.63 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS *m*/*z* 561.3438 [M - H]⁻ (calcd for C₃₂H₄₉O₈, 561.3427).

1.2.16. Tuckahoacid P (16)

White amorphous powder (MeOH); $[\alpha]_{20}^{20}$ +2.67 (c 0.1, MeOH); UV (MeOH) λ_{max} (log ε) = 242 (0.63), 290 (0.39) nm; CD (c 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 221 (5.00), 251 (-0.60), 289 (6.48) nm; ¹³C NMR (C₅D₅N, 150 MHz) data, see δ_C 51.8 (3-COOCH₃) and **Table 1**; ¹H NMR (C₅D₅N, 600 MHz) data, see δ_H 3.63 (3H, s, 3-COOCH₃) and **Table 3**; HRESIMS m/z 585.3396 [M + Na]⁺ (calcd for C₃₂H₅₀O₈Na, 585.3403).

1.2.17. Tuckahoacid Q (17)

White amorphous powder (MeOH); $[\alpha]_{D}^{20}$ +4.67 (c 0.2, MeOH); UV (MeOH) λ_{max} (log ε) = 214 (2.17), 267 (0.19) nm; CD (*c* 1.1 × 10⁻³ M, MeOH) λ_{max} ($\Delta \varepsilon$) = 200 (-5.08), 207 (0.98), 214 (-4.17), 227 (2.09) nm; {}^{13}C NMR (C₅D₅N, 150 MHz) data, see **Table 1**; {}^{1}H NMR (C₅D₅N, 600 MHz) data, see **Table 3**; HRESIMS m/z 497.3278 [M - H]⁻ (calcd for C₃₁H₄₅O₅, 497.3267).

1.3. Cell culture

RAW264.7 murine macrophages were obtained from the Chinese Academy of Sciences (Shanghai, China) and cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco, USA) with 4.5 g/L glucose, 10% fetal bovine serum (FBS, Gibco, USA), and 1% penicillin/streptomycin (Gibco, USA) in a cell incubator (37 °C and 5% CO₂).

1.4. Cell viability assay

Briefly, RAW264.7 cells (10000 cells/well) were seeded into a 96-well plate and incubated overnight at 37 °C. The tested compounds were added to the cells, dimethyl sulfoxide (DMSO) was used as the vehicle control. Following incubation for 24 h, 20 μ L of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich, USA) agent was added to cells, and then incubated for 4 h at 37 °C. Next, the absorbance at 570 nm was recorded using a microplate reader (Thermo Fisher, Waltham, USA).

1.5. Detection of NO, PGE₂

In brief, RAW264.7 cells were seeded into a 96-well plate at a density of 10000 cells/well, and then incubated overnight. Next, cells were pre-treated with the tested compounds at the

indicated concentrations for 1 h and followed by stimulation of LPS (200 ng/mL, isolated from *Escherichia coli* 055: B5, Sigma, Shanghai, China) for another 24 h. Subsequently, the culture medium was collected, and centrifuged for 5 min at 4 °C (1,000 rpm). The supernatants were used to measure the NO levels using Griess reagent (Beyotime, Shanghai, China). On the other hand, the level of PGE₂ in the supernatants was then assessed using ELISA kits according to the manufacturer's protocols (R&D Systems, Minneapolis, MN, USA).

1.6. Immunofluorescent

RAW264.7 cells were seeded into a 24-well plate at a density of 2.5×10^5 cells/well, and incubated overnight. Then, cells were pre-treated with the tested compounds for 1 h and followed stimulation of LPS (200 ng/mL) for another 1 h. Cells were washed with PBS, fixed with 4% paraformaldehyde (PFA) for 10 min, and permeabilized with 0.5% Triton X-100 for 20 min at RT. Next, cells were blocked with 1% bovine serum albumin (BSA) for 30 min at RT and incubated with primary antibody (1:100) overnight at 4°C. After washing with PBS thrice, cells were incubated with FITC fluorescent secondary antibody (1:1000) for 1 h in the darkroom at RT. The nucleuses were then stained with Hoechst 33258 (DAPI, 0.5 μg/mL, Beyotime, Shanghai, China) for 15 min in the darkroom at RT. Finally, the subcellular localizations of NF-κB and Nrf2 were observed using the Fluorescent inverted microscope (Olympus, Japan).

1.7. qRT-PCR

In brief, RAW264.7 cells were seeded into a 24-well plate at a density of 2.5×10^5 cells/mL and then incubated overnight. Next, cells were pre-treated with the tested compounds at the indicated concentrations for 1 h and followed by stimulation of LPS (200 ng/mL) for another 4 h. Total RNA was extracted with TRIzol kit (Invitrogen, USA). According to the instructions, 2 μ g RNA as template was added into HiScript II Q RT Supermix (Nanjing Nuowizan Biological Technology, China) for qPCR reverse transcription to obtain cDNA. The cDNA samples were amplified by Transstart Top Green qPCR Supermix (Beijing Quansi Gold Biotechnology, China) at a final volume of 20 μ L. qRT-PCR was performed using Thermo Scientific Pikoreal (Thermo Fisher Scientific, MA, USA). Real-time PCR primers were designed and synthesized by Shanghai Sangon Co., Ltd. The sequences of the primers were listed in Table S3.

1.8. Western blotting

Following treatment with the tested compounds, RAW264.7 cells were washed with phosphate buffered solution (PBS) and then lysed with pre-cold radio-immunoprecipitation assay (RIPA) buffer containing 1% protease and phosphatase inhibitors (ApexBio, USA). After centrifuging for 5 min at 4 °C (12,000 rpm), the supernatants were collected, mixed with loading buffer, and then boiled at 100 °C for 5 min. Next, the cell lysates were subjected to sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) electrophoresis. The proteins were then transferred to the polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, USA). The membranes were blocked with tris-buffered saline with tween 20 (TBST) buffer containing 5% non-fat milk powder and incubated with specific primary antibodies (1:1000) overnight at 4 °C. After washing with TBST buffer 3 times, the membranes were incubated with horseradish peroxidase (HRP)-labeled secondary antibody for 1 h at room temperature (RT). Next, the membranes were washed with TBST buffer thrice, and the immunoblot signals were detected in the Gel DOCTM XR+system using a chemiluminescence agent (Beyotime, Shanghai, China). The antibodies used in this experiment were as follows: Primary antibody against iNOS was purchased from Abcam (USA), Primary antibody against COX2, JNK, and LaminB were from ProteinTech Group (USA), the remaining antibodies were purchased from Santa Cruz (Shanghai, China).

1.9. Statistical analysis

All results were representative of three independent experiments. Data were expressed as mean values \pm standard deviation (SD). Statistical analyses were performed with GraphPad Prism 5.0 software (La Jolla, CA, USA), and compared by One-way ANOVA. The differences were considered statistically significant when p < 0.05.

1.10. ECD calculation

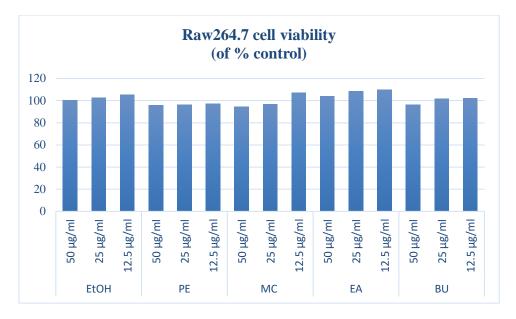
In general, conformational analyses were carried out via random searching in the Sybyl-X 2.0 using the MMFF94S force field with an energy cutoff of 5 kcal/mol.¹ The results showed five lowest energy conformers for both compounds. Subsequently, geometry optimizations and frequency analyses were implemented at the B3LYP-D3(BJ)/6-31G* level in PCM methanol using ORCA4.2.1^{2,3} All conformers used for property calculations in this work were characterized to be a stable point on potential energy surface (PES) with no imaginary frequencies. The excitation energies, oscillator strengths, and rotational strengths (velocity) of the first 60 excited states were calculated using the TD-DFT methodology at the PBE0/def2-TZVP level in methanol. The ECD spectra were simulated by the overlapping Gaussian function (half the bandwidth at 1/e peak height, sigma = 0.30 for all).⁴ Gibbs free energies for conformers were determined by using thermal correction at B3LYP-D3(BJ)/6-31G* level and electronic energies evaluated at the wB97M-V/def2-TZVP level in PCM methanol using ORCA4.2.1^{2,3} To get the final spectra, the simulated spectra of the conformers were averaged according to the boltzmann distribution theory and their relative Gibbs free energy (ΔG). By comparing the experimental spectra with the calculated model molecules, the absolute configuration of the only chiral center was determined to be.

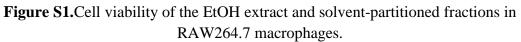
References

(1) Sybyl Software, version X 2.0; Tripos Associates Inc.: St. Louis, MO, 2013.

(2) Neese, F. The ORCA program system, Wiley Interdiscip. Rev.: *Comput. Mol. Sci.*, **2012**, *2*, 73-78.

(3) Neese, F. Software update: the ORCA program system, version 4.0, Wiley Interdiscip. Rev.: *Comput. Mol. Sci.* **2017**, *8*, e1327.


(4) Stephens, P. J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. *Chirality* **2010**, *22*, 229–233.


1.11. The crystallization condition

5 mg of compound and 500 μ L of MeOH were added into the vitric autosampler bottle and dissolved completely. The saturation of the compound was beneficial, sometimes we could add some drops of water. Parafilm was used to seal the bottle. We poked two eyelets at the parafilm with the needle. The vitric autosampler bottle should be put in low temperature environment and the solvent should volatilize slowly.

Samples	Concentration	RAW264.7 cell viability
Samples	$(\mu g/mL)$	(of % control)
	50	100.5
EtOH extract	25	102.5
	12.5	105.4
	50	95.7
PE	25	96.1
	12.5	97.1
	50	94.4
MC	25	96.5
	12.5	107.0
	50	103.9
EA	25	108.5
	12.5	109.9
	50	96.1
BuOH	25	101.6
	12.5	102.2

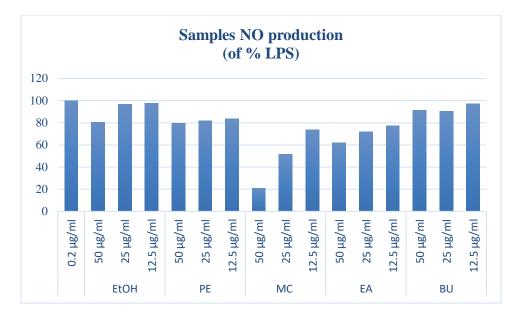
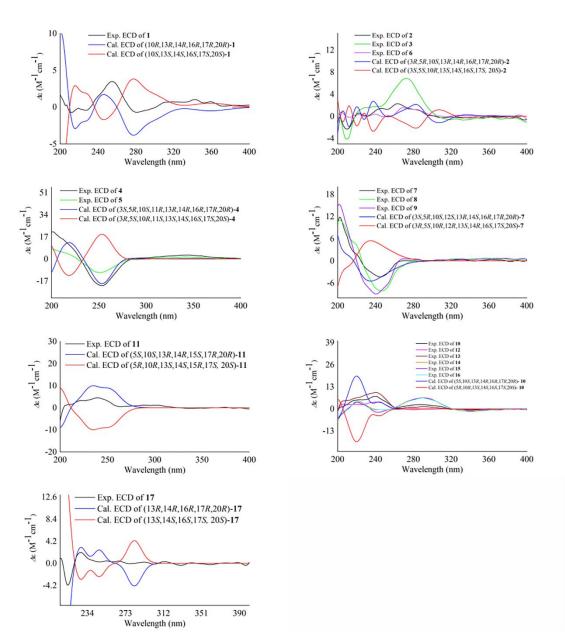
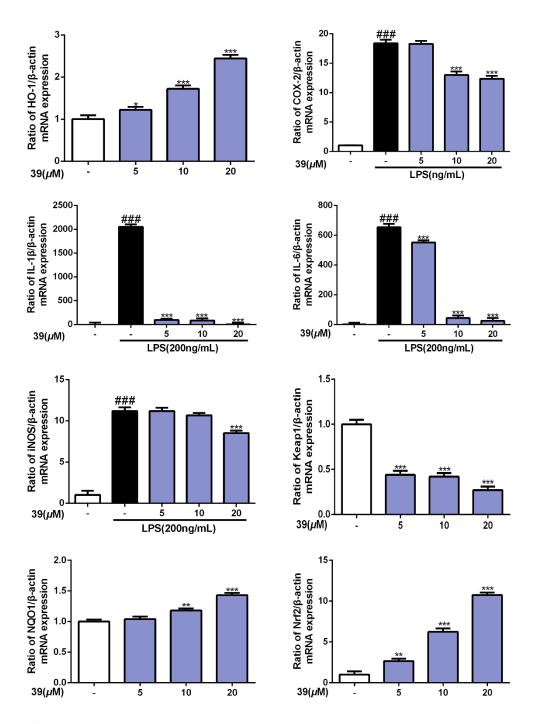

Table S1. Cell viability of the EtOH extract and solvent-partitioned fractions in RAW264.7 macrophages.

Table S2. Inhibitory effects of the EtOH extract and solvent-partitioned fractions on
NO production in LPS-activated RAW264.7 macrophages.

	Concentration	NO production	
Samples	(µg/mL)	(of % LPS)	
LPS	0.2	100	
	50	80.3	
EtOH extract	25	96.5	
	12.5	97.8	
	50	79.6	
PE	25	81.7	
	12.5	83.6	
	50	21.1	
MC	25	51.8	
	12.5	73.9	
	50	61.8	
EA	25	71.9	
	12.5	77.2	
	50	91.3	
BuOH	25	90.4	
	12.5	97.2	

Gene	Sequence (5' to 3')
:NOC	F: AGCCAAGCCCTCACCTACTT
iNOS	R: GCCTCCAATCTCTGCCTATC
COX-2	F: CCAGCACTTCACCCATCAGT
COX-2	R: GGGATACACCTCTCCACCAA
TNF-α	F: CAGACCCTCACACTCAGATCATCTT
Imr-a	R: CAGAGCAATGACTCCAAAGTAGACCT
IL-6	F: CACGGCCTTCCCTACTTCAC
IL-0	R: TGCAAGTGCATCATCGTTGT
II 10	F: GTTGACGGACCCCAAAAGAT
IL-1β	R: CCTCATCCTGGAAGGTCCAC
β-actin	F: ATGTGGATCAGCAAGCAGGA
p-actin	R: AAGGGTGTAAAACGCAGCTCA
Nrf2	F: TCAGCGACAGAAGGACTATGAG
INI12	R: AGGCATCTTGTTTGGGAATG
Keap1	F: TCTCCAAGGGTCTCCTGAAT
Keapi	R: CAACACCACCAACATTTACA
HO-1	F: GCCAGCCACAGCACTAT
110-1	R: GGCGGTCTTAGCCTCTTCTG
NOO1	F: AGTGGCATCCTGCGTTTCT
ngui	R: TCTCCTCCCAGACGGTTTC

Table S3.	Thog	oguonoog	of the	nrimara
Table 55.	THE S	equences	or the	primers.

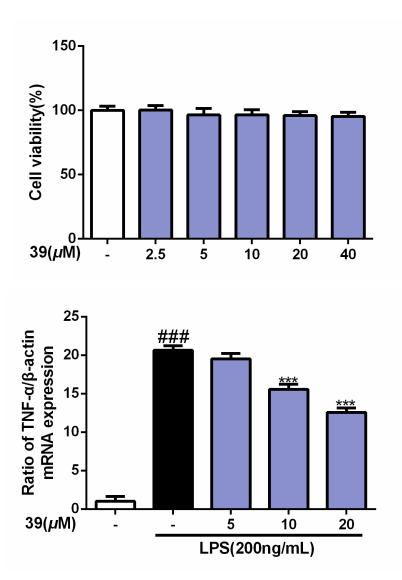

Figure S3. Experimental ECD and calculated ECD spectra of new compounds.

Figure S4. The stack graph of compounds 15 and 16 ¹H NMR spectra.

Figure S5. RAW264.7 cells were treated with poricoic acid GM (**39**) from 5 to 20 μ M at the indicated dose with stimulated by LPS (200 ng/mL) for 4 h. The mRNA of iNOS, COX-2, TNF- α , IL-1 β and IL-6 and β -actin was detected by RT-PCR with specific primers. The amplified DNA fragment was analyzed by 1% agarose gel and visualized by ethidium bromide staining. Effects of poricoic acid GM (**39**) on Nrf2, HO-1, Keap1 and NQO1 gene expressions in RAW264.7 cells. The cells were treated with poricoic acid GM (**39**) (5, 10 and 20 μ M) for 4 h. Data shown are the means ± SD from three independent experiments, *p < 0.05, **p < 0.01, ***p < 0.001 vs LPS-treated group and ###p < 0.001 vs control group.

Figure S6. RAW264.7 cells were seeded on 96 well plates and treated with different concentrations of poricoic acid GM (**39**) (2.5, 5, 10, 20, 40 μ M) for 24 h. MTT was added to detect the cell survival rate. RAW264.7 cells were treated with poricoic acid GM (**39**) from 5 to 20 μ M at the indicated dose with stimulated by LPS (200 ng/mL) for 4 h. The mRNA of TNF- α and β -actin was detected by RT-PCR with specific primers. The amplified DNA fragment was analyzed by 1% agarose gel and visualized by ethidium bromide staining. Data shown are the means \pm SD from three independent experiments, *p < 0.05, **p < 0.01, ***p < 0.001 vs LPS-treated group and ###p < 0.001 vs control group.

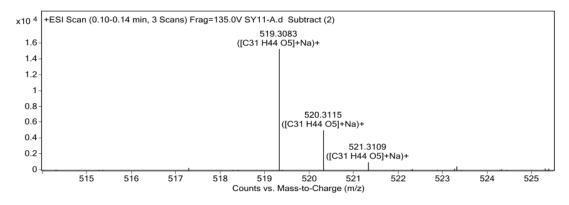


Figure S7. HRESIMS spectrum of compound 1

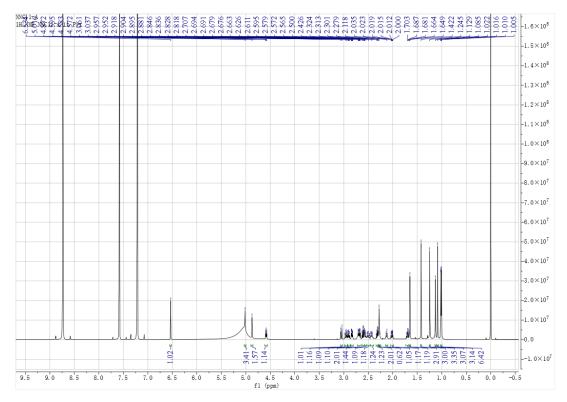


Figure S8. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 1

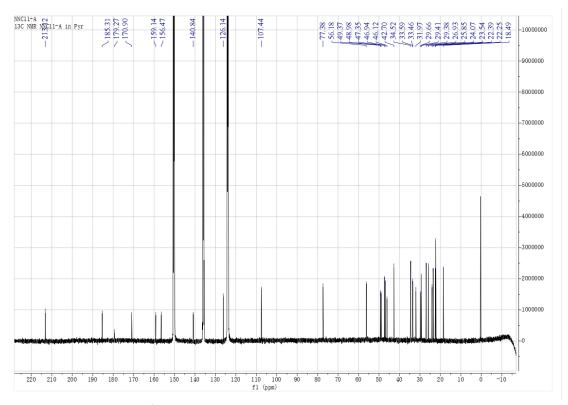


Figure S9. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 1

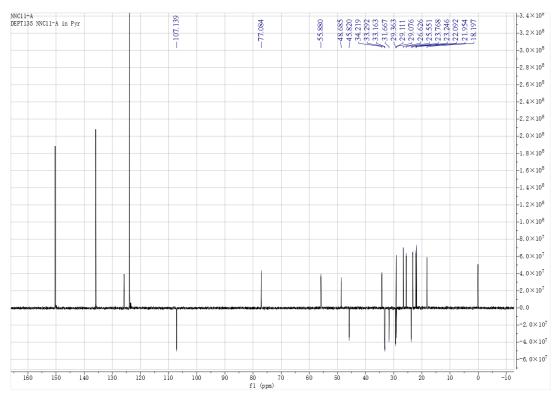


Figure S10. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 1

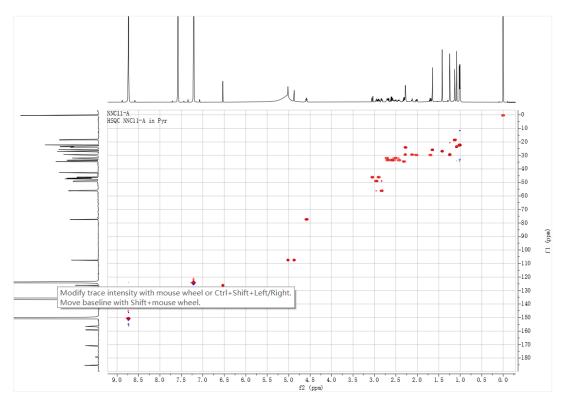


Figure S11. HSQC spectrum (600 MHz, C_5D_5N) of compound 1

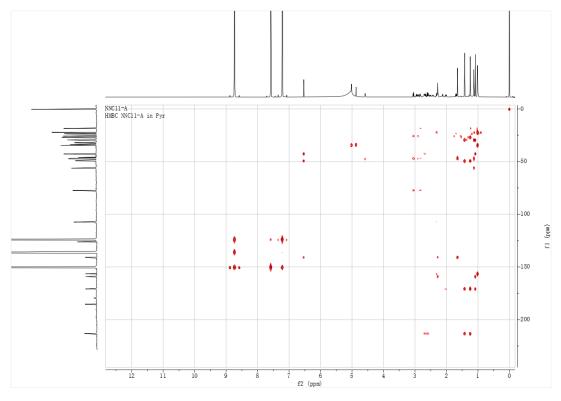


Figure S12. HMBC spectrum (600 MHz, C_5D_5N) of compound 1

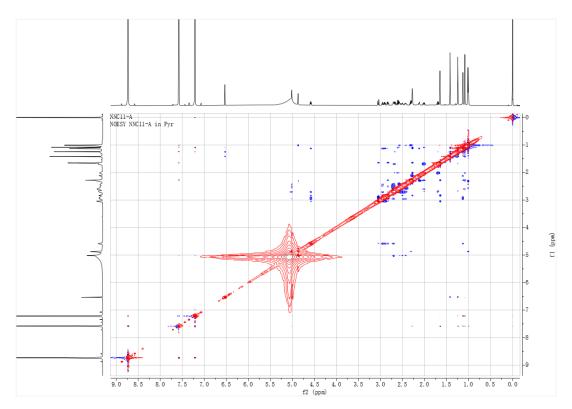


Figure S13. NOESY spectrum (600 MHz, C5D5N) of compound 1

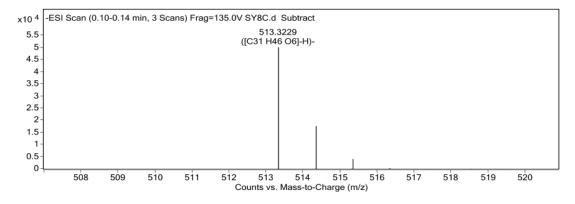


Figure S14. HRESIMS spectrum of compound 2

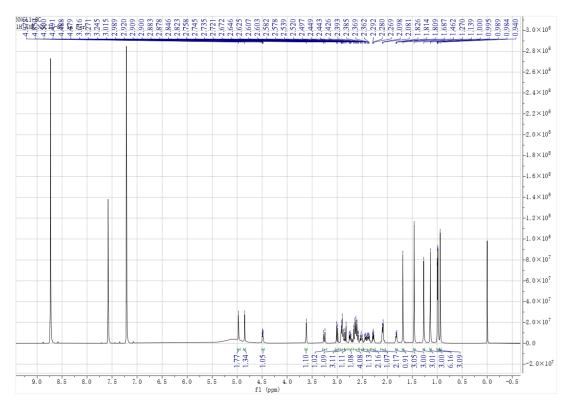


Figure S15. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 2

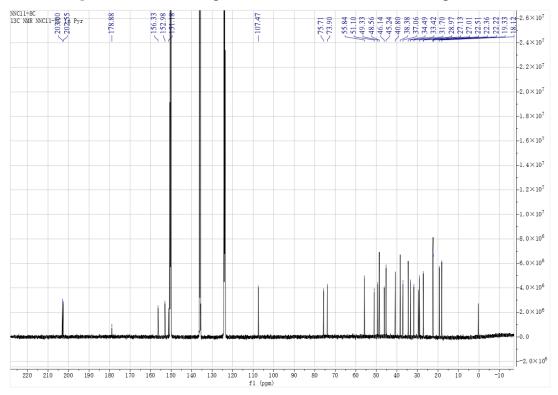


Figure S16. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 2

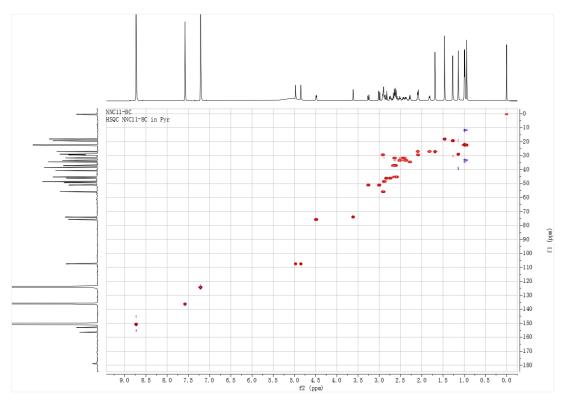


Figure S17. HSQC spectrum (600 MHz, C_5D_5N) of compound 2

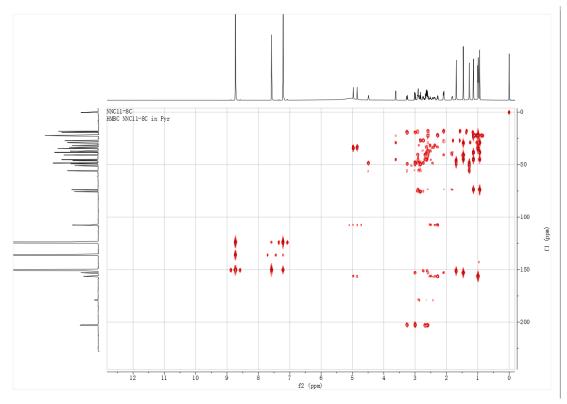


Figure S18. HMBC spectrum (600 MHz, C_5D_5N) of compound 2

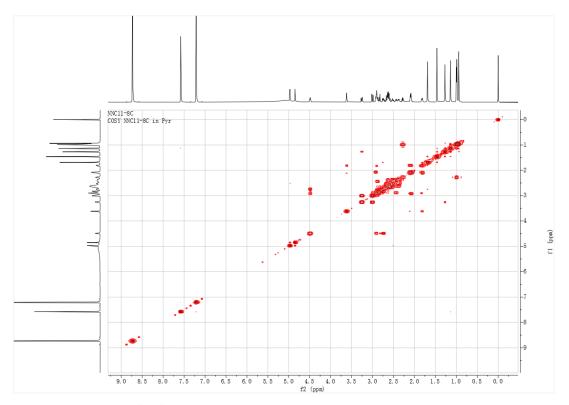


Figure S19. ^{1}H - ^{1}H COSY spectrum (600 MHz, C₅D₅N) of compound 2

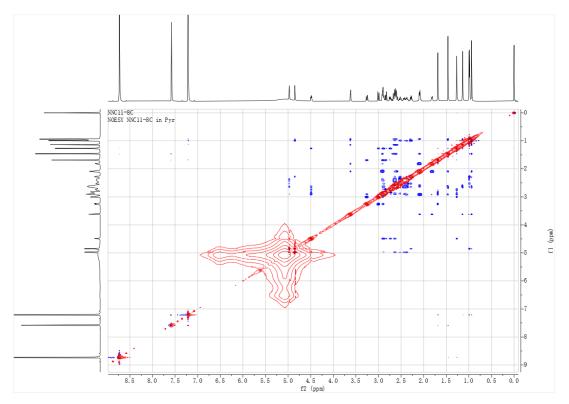


Figure S20. NOESY spectrum (600 MHz, C_5D_5N) of compound 2

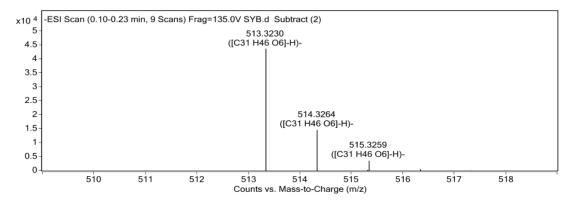


Figure S21. HRESIMS spectrum of compound 3

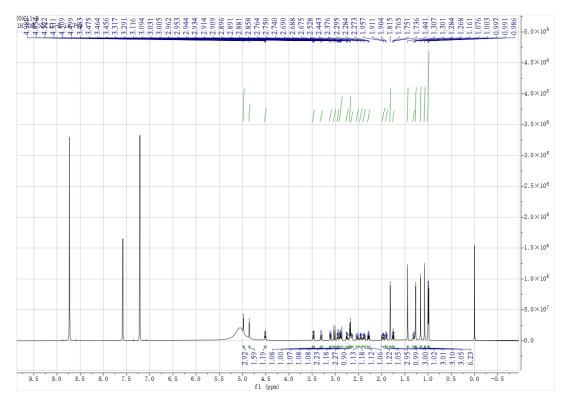


Figure S22. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 3

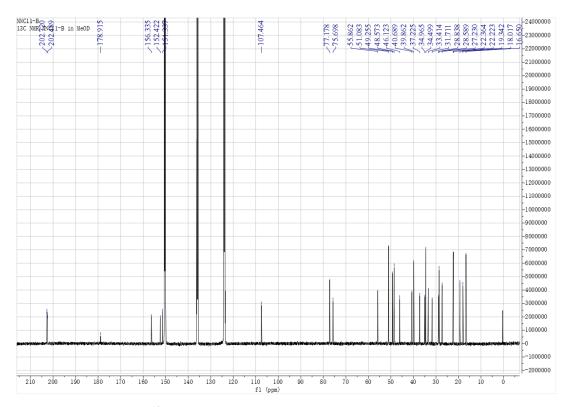


Figure S23. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 3

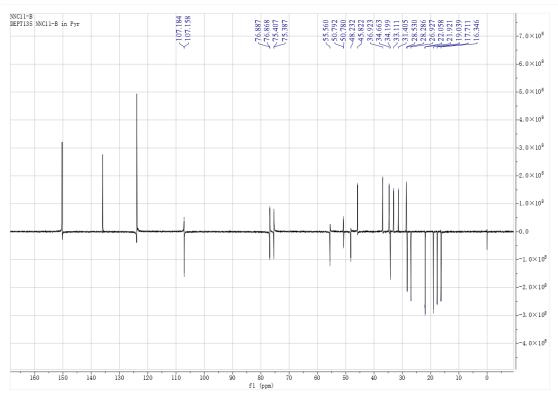


Figure S24. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 3

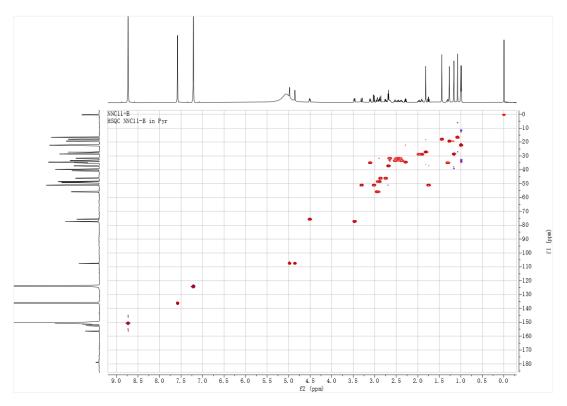


Figure S25. HSQC spectrum (600 MHz, C_5D_5N) of compound 3

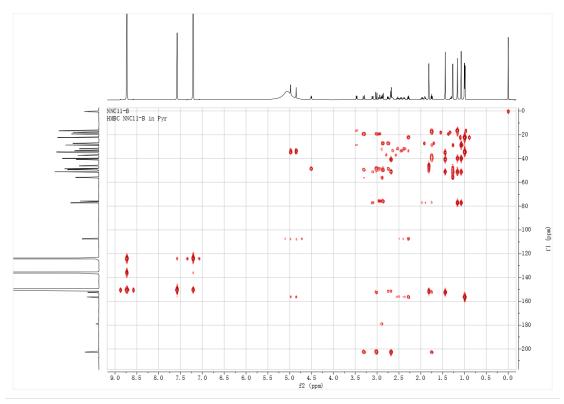
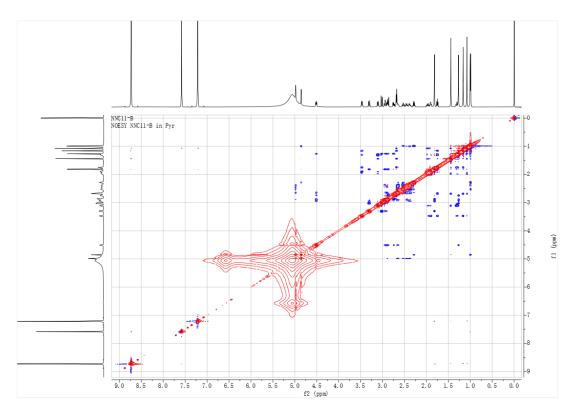
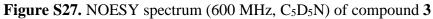




Figure S26. HMBC spectrum (600 MHz, C_5D_5N) of compound 3

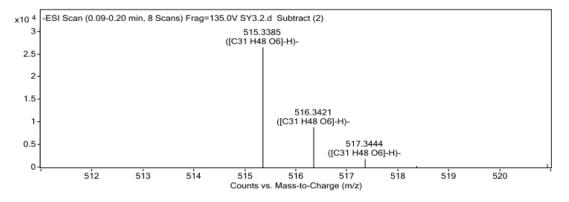


Figure S28. HRESIMS spectrum of compound 4

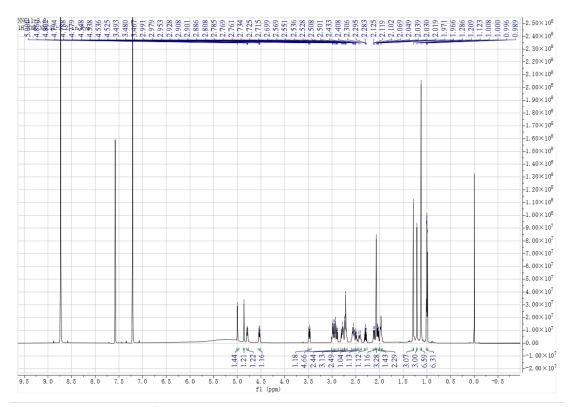


Figure S29. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 4

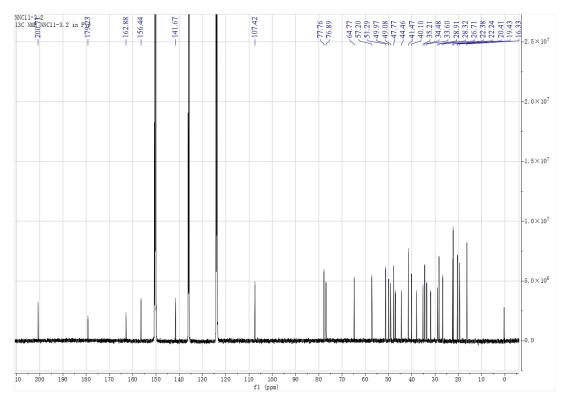


Figure S30. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 4

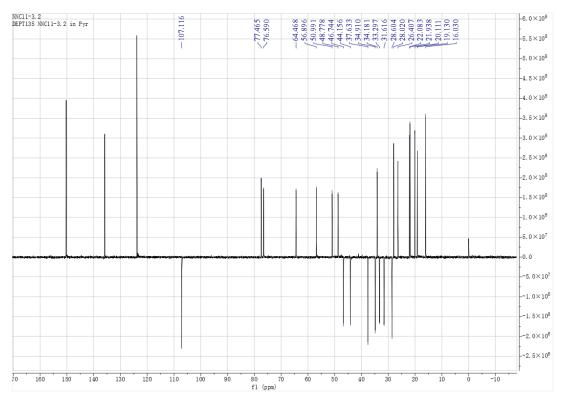


Figure S31. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 4

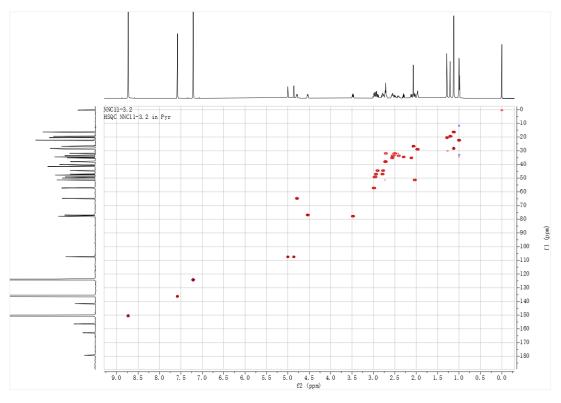


Figure S32. HSQC spectrum (600 MHz, C₅D₅N) of compound 4

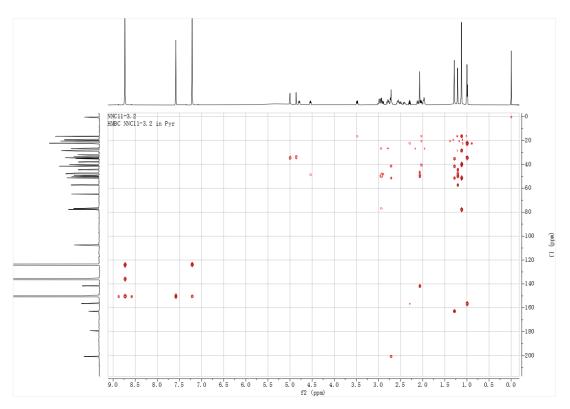


Figure S33. HMBC spectrum (600 MHz, C5D5N) of compound 4

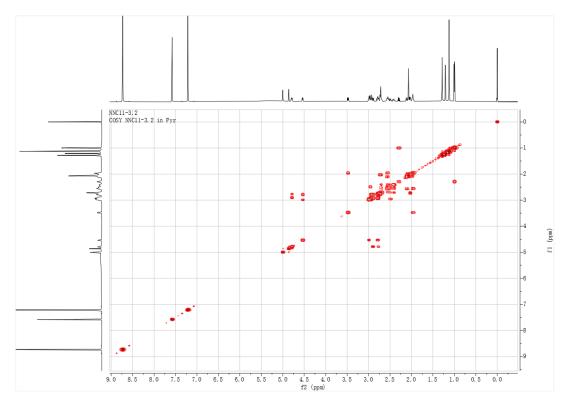


Figure S34. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 4

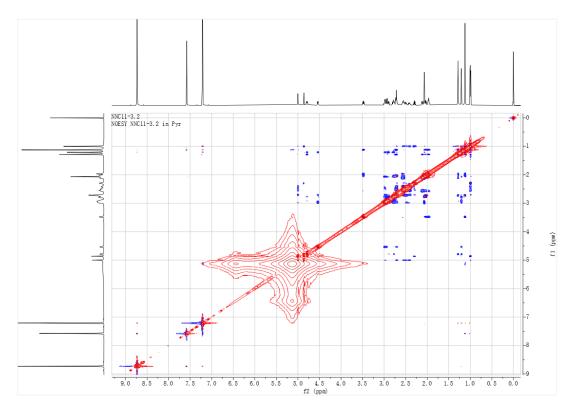


Figure S35. NOESY spectrum (600 MHz, C₅D₅N) of compound 4

Figure S36. HRESIMS spectrum of compound 5

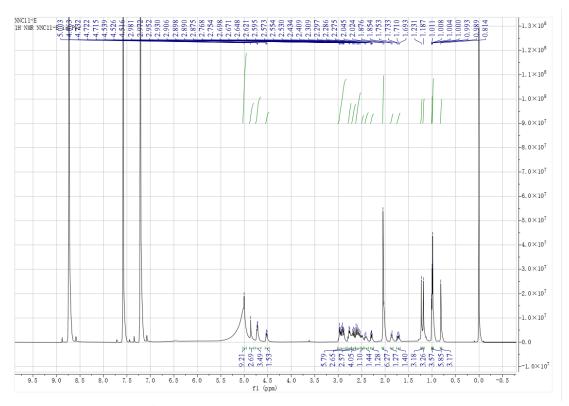


Figure S37. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 5

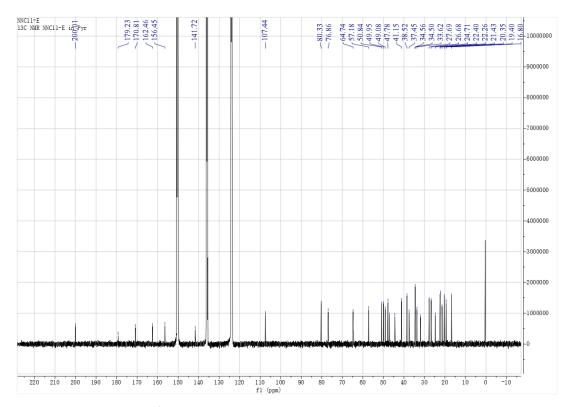


Figure S38. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 5

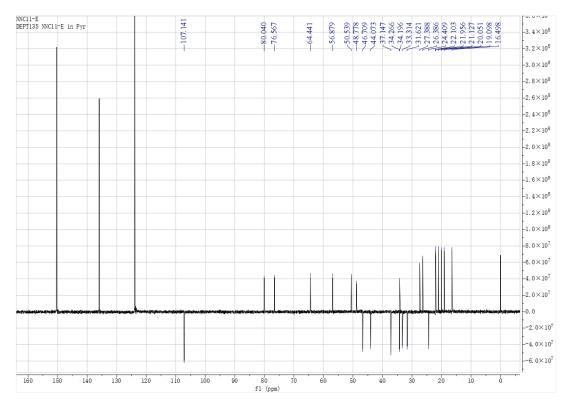


Figure S39. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 5

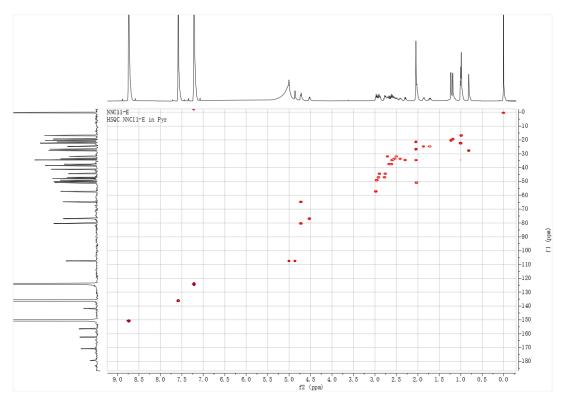


Figure S40. HSQC spectrum (600 MHz, C₅D₅N) of compound 5

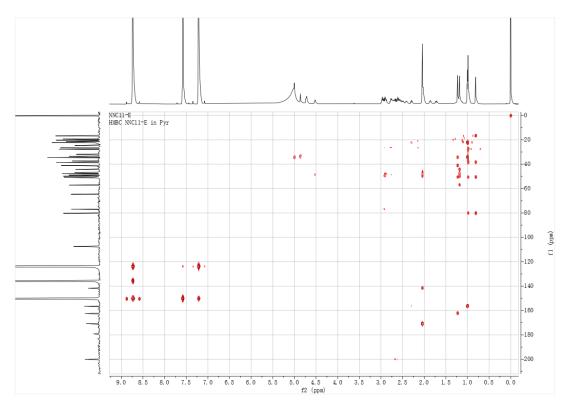


Figure S41. HMBC spectrum (600 MHz, C₅D₅N) of compound 5

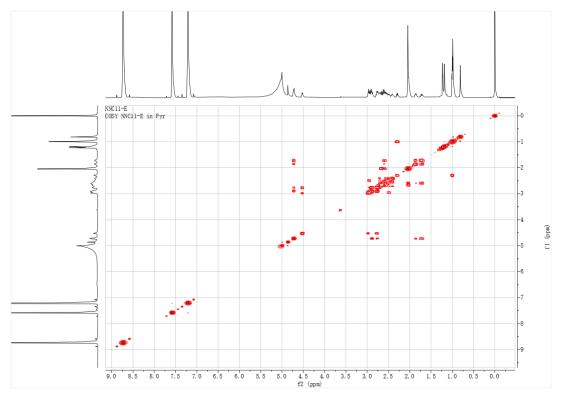


Figure S42. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 5

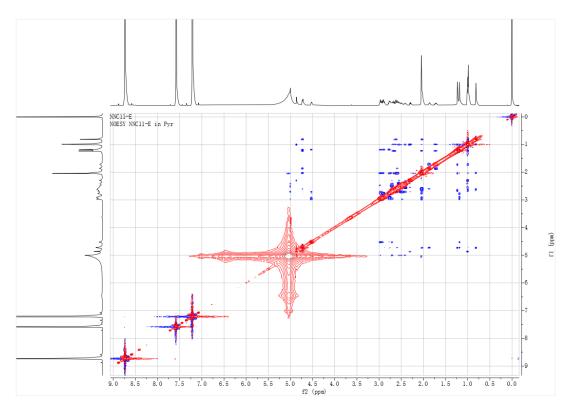


Figure S43. NOESY spectrum (600 MHz, C₅D₅N) of compound 5

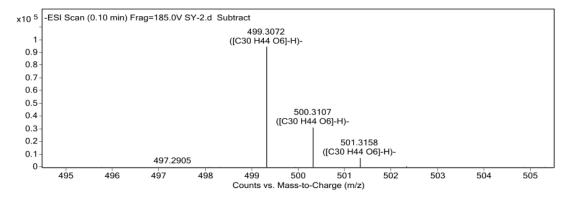


Figure S44. HRESIMS spectrum of compound 6

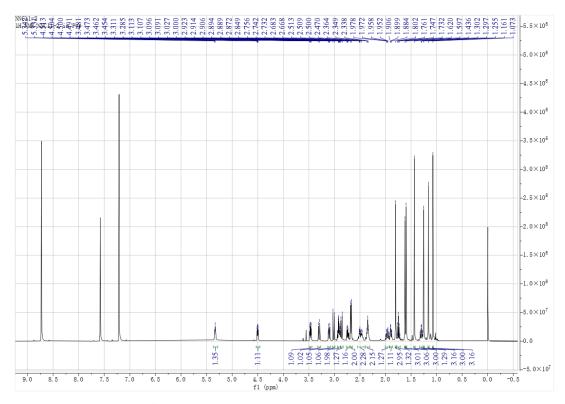


Figure S45. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 6

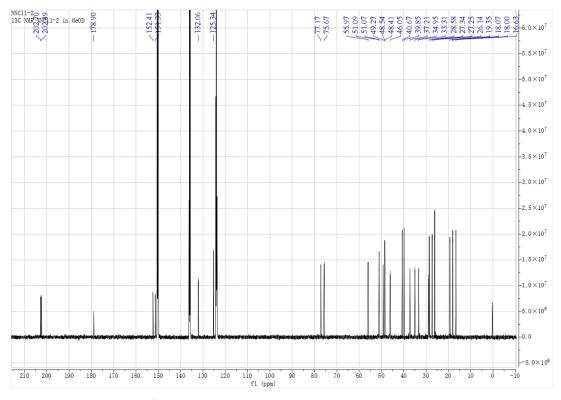


Figure S46. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 6

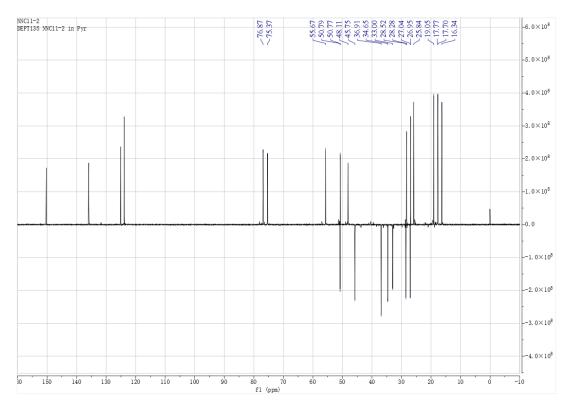


Figure S47. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 6

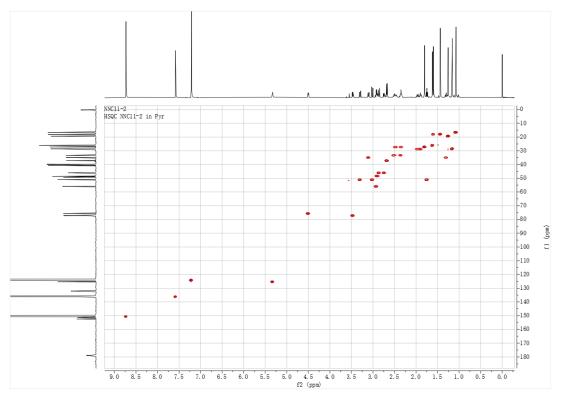


Figure S48. HSQC spectrum (600 MHz, C₅D₅N) of compound 6

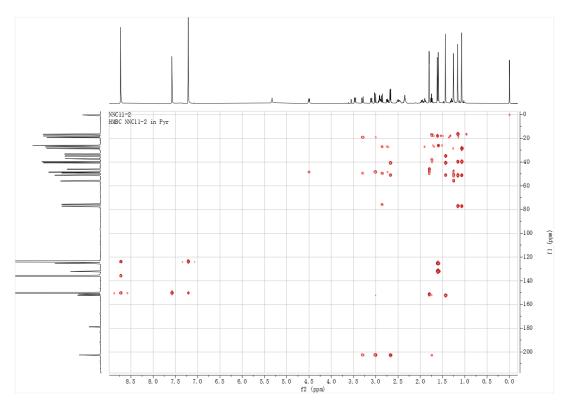


Figure S49. HMBC spectrum (600 MHz, C₅D₅N) of compound 6

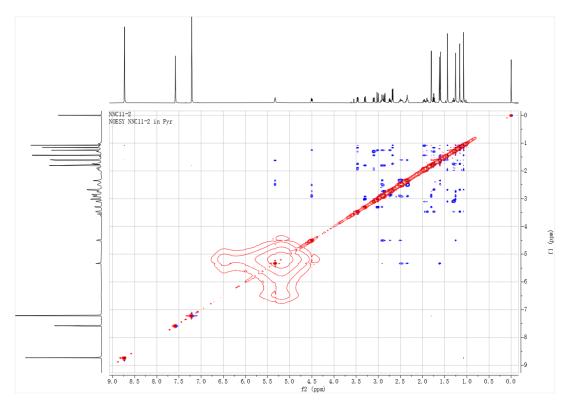


Figure S50. NOESY spectrum (600 MHz, C₅D₅N) of compound 6

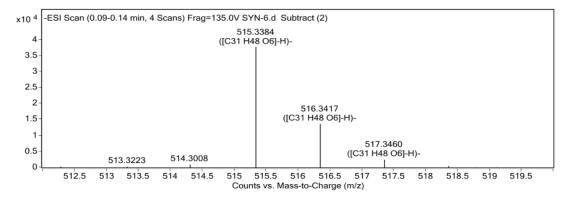


Figure S51. HRESIMS spectrum of compound 7

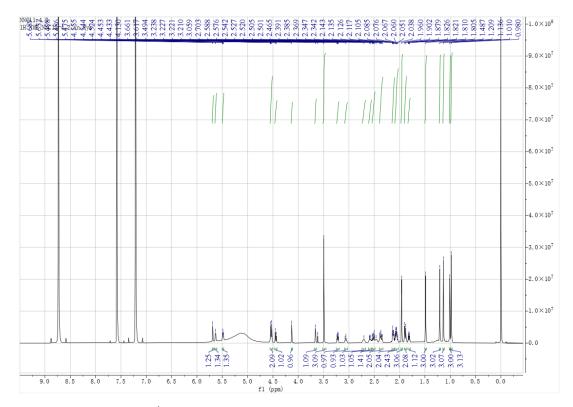


Figure S52. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 7

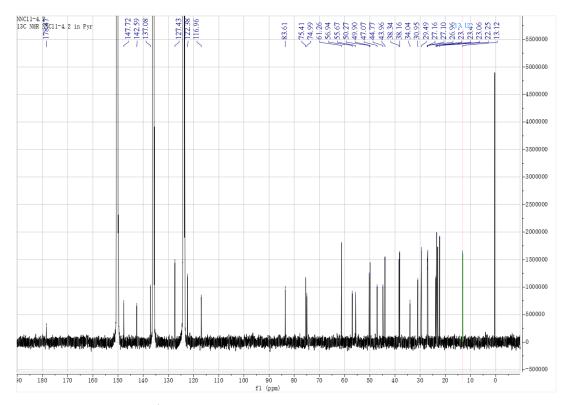


Figure S53. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 7

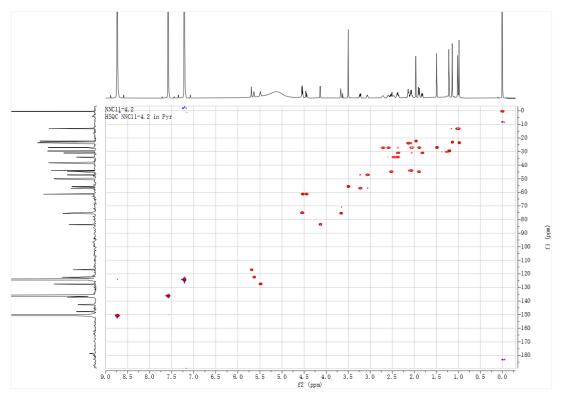


Figure S54. HSQC spectrum (600 MHz, C₅D₅N) of compound 7

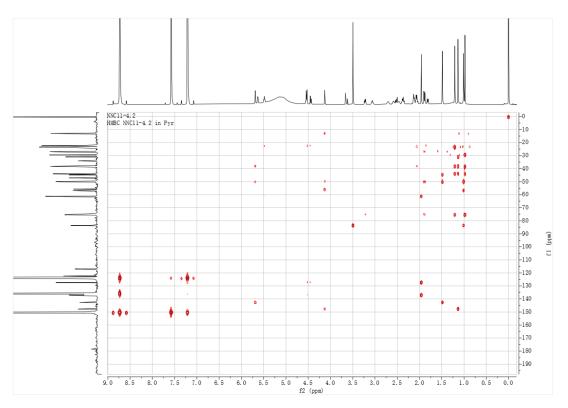


Figure S55. HMBC spectrum (600 MHz, C₅D₅N) of compound 7

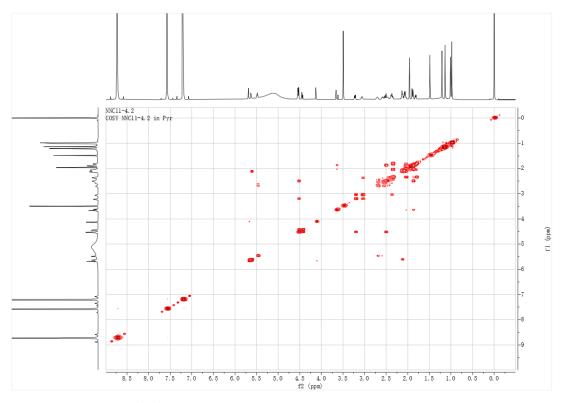


Figure S56. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 7

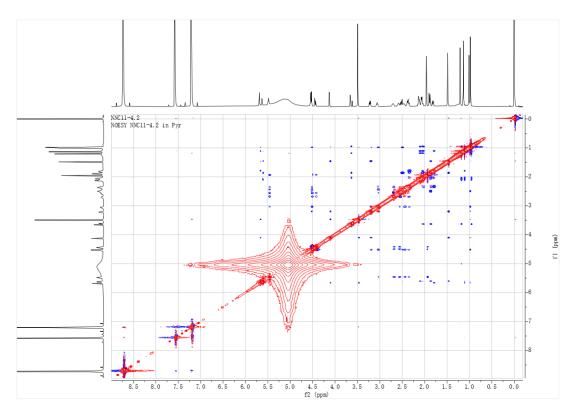


Figure S57. NOESY spectrum (600 MHz, C₅D₅N) of compound 7

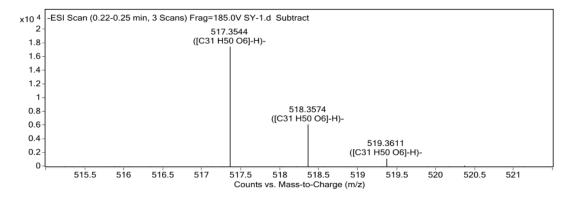


Figure S58. HRESIMS spectrum of compound 8

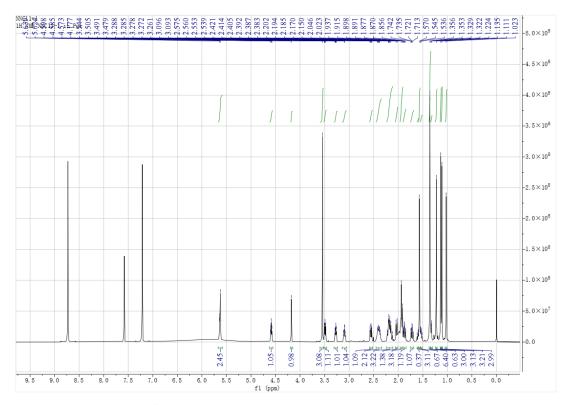


Figure S59. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 8

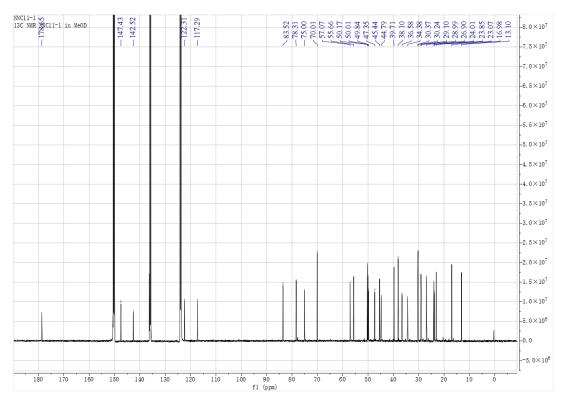


Figure S60. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 8

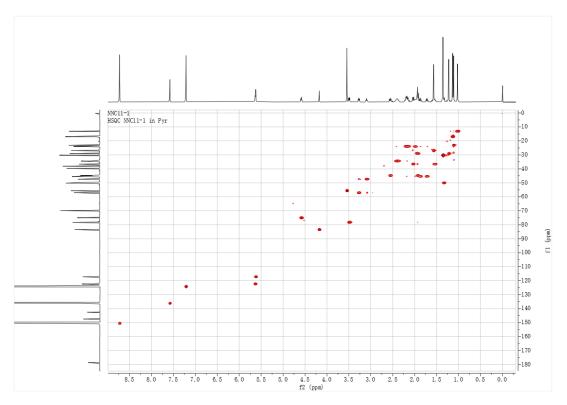


Figure S61. HSQC spectrum (600 MHz, C_5D_5N) of compound 8

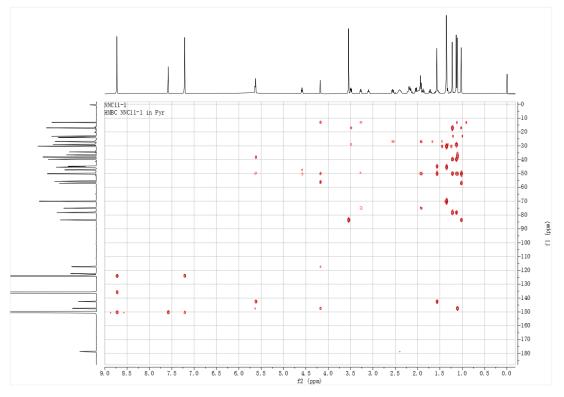


Figure S62. HMBC spectrum (600 MHz, C₅D₅N) of compound 8

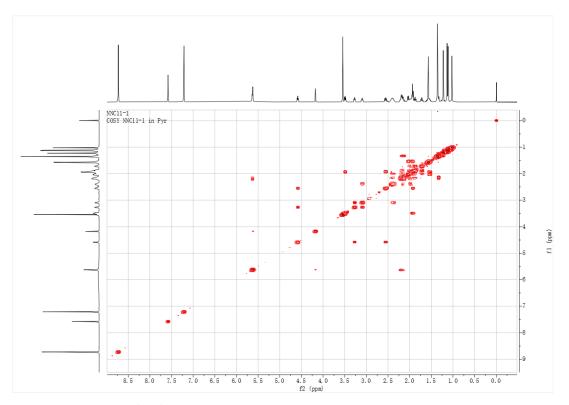


Figure S63. $^{1}\text{H}\text{-}^{1}\text{H}$ COSY spectrum (600 MHz, C₅D₅N) of compound 8

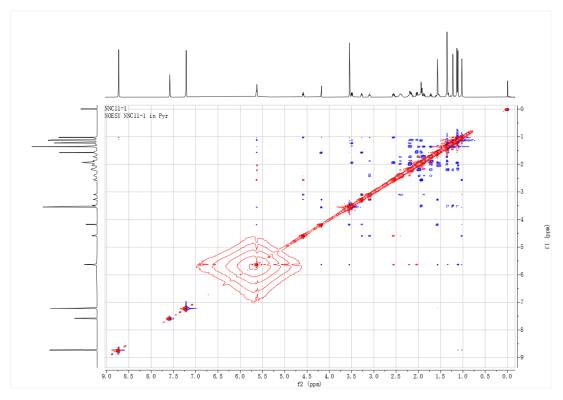


Figure S64. NOESY spectrum (600 MHz, C5D5N) of compound 8

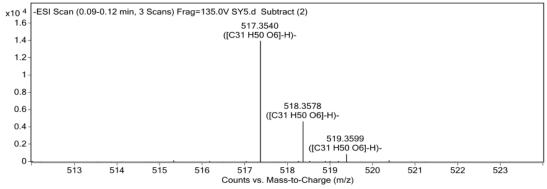


Figure S65. HRESIMS spectrum of compound 9

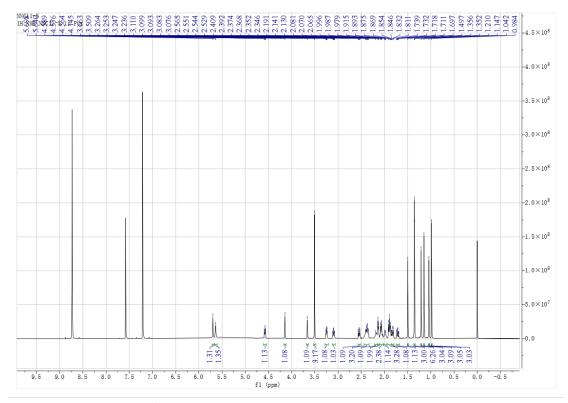


Figure S66. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 9

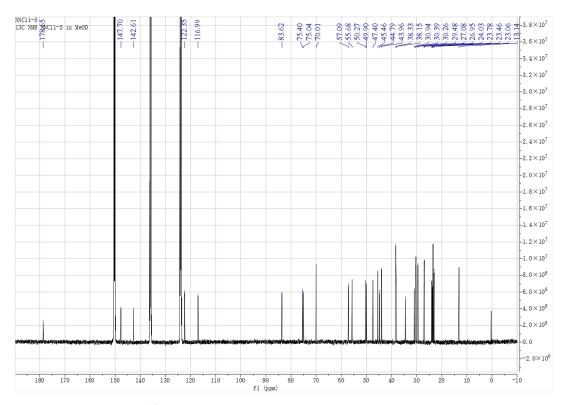


Figure S67. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 9

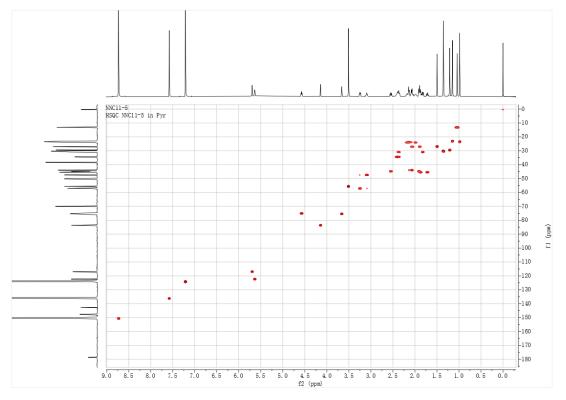


Figure S68. HSQC spectrum (600 MHz, C₅D₅N) of compound 9

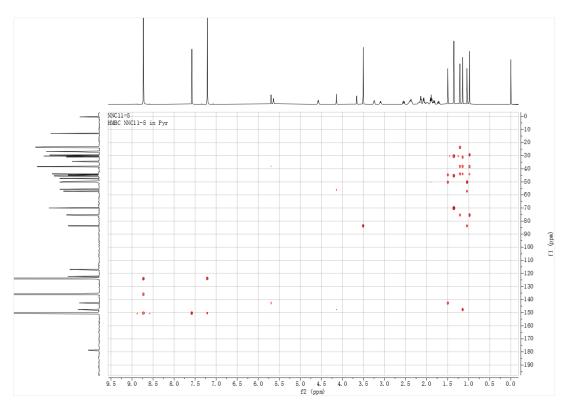


Figure S69. HMBC spectrum (600 MHz, C₅D₅N) of compound 9

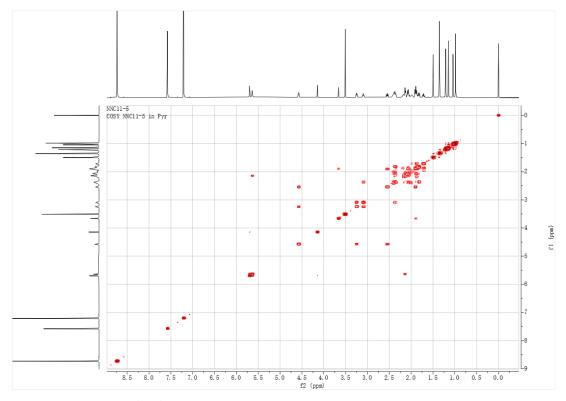
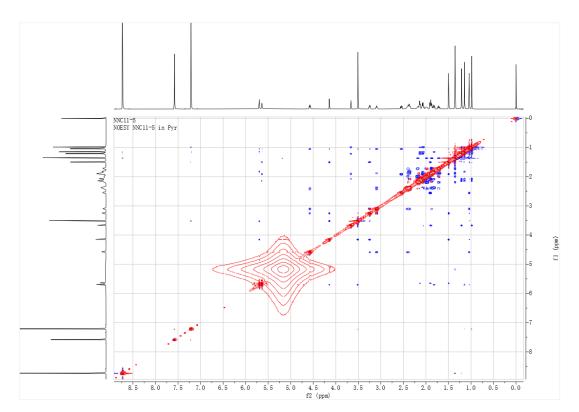
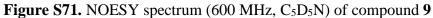




Figure S70. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 9

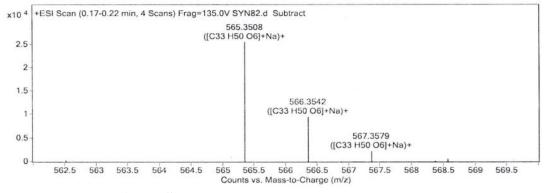


Figure S72. HRESIMS spectrum of compound 10

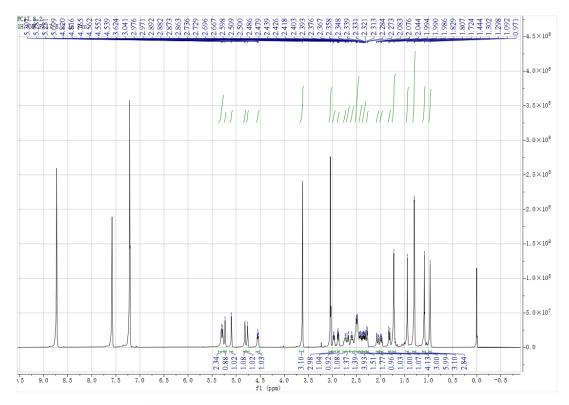


Figure S73. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 10

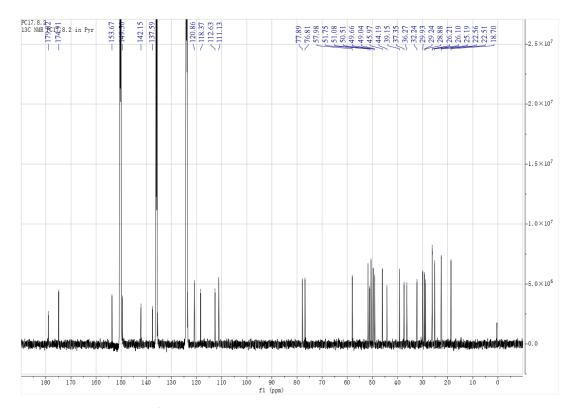


Figure S74. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 10

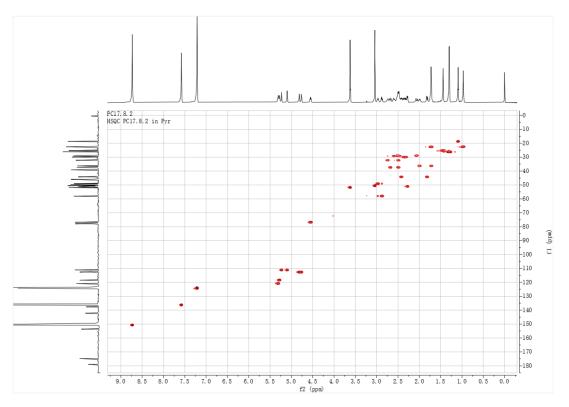


Figure S75. HSQC spectrum (600 MHz, C₅D₅N) of compound 10

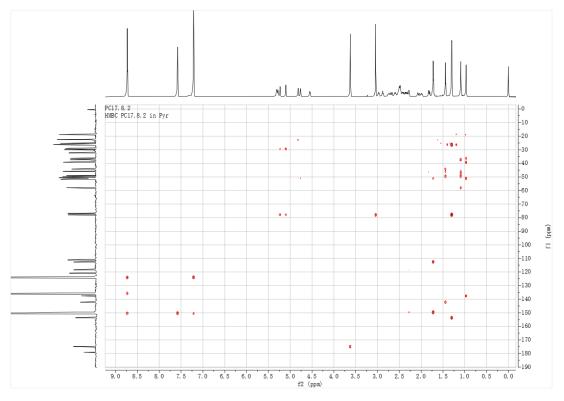


Figure S76. HMBC spectrum (600 MHz, C5D5N) of compound 10

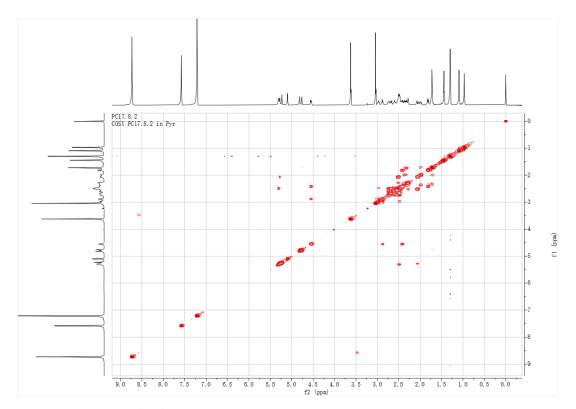


Figure S77. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 10

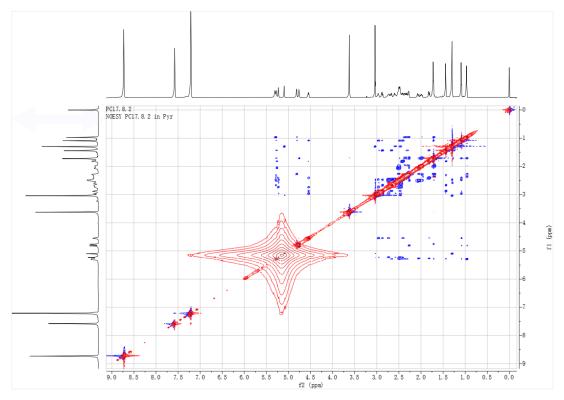


Figure S78. NOESY spectrum (600 MHz, C₅D₅N) of compound 10

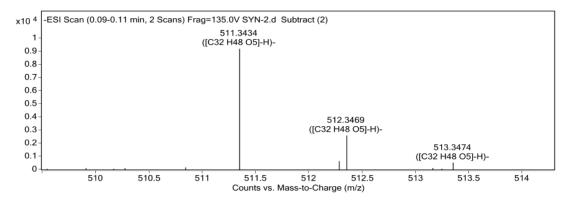


Figure S79. HRESIMS spectrum of compound 11

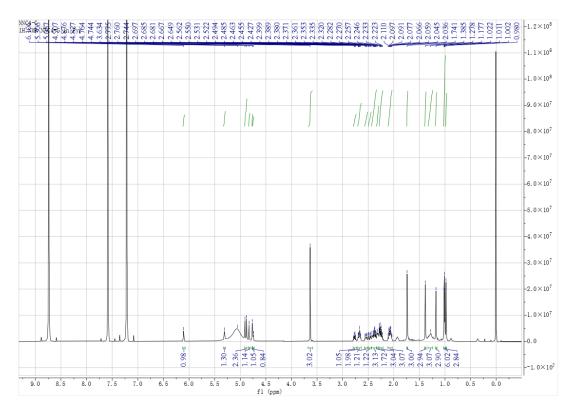


Figure S80. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 11

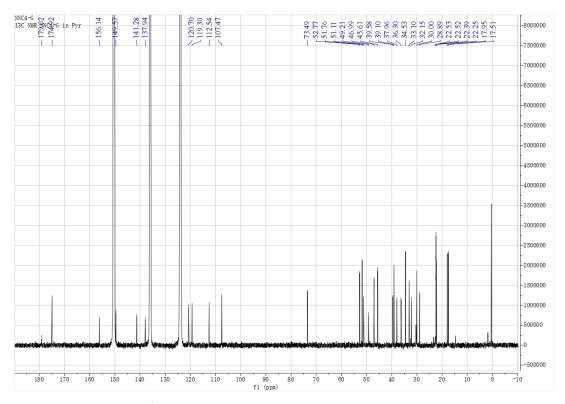


Figure S81. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 11

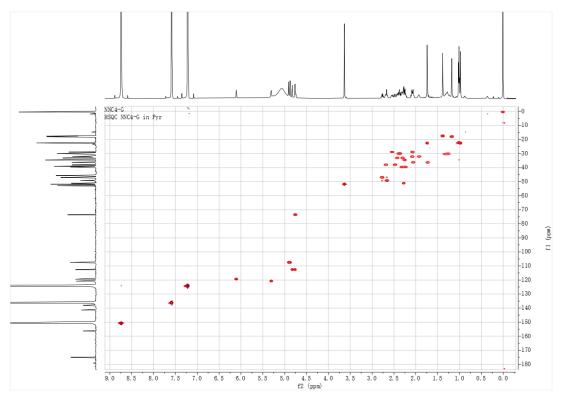


Figure S82. HSQC spectrum (600 MHz, C₅D₅N) of compound 11

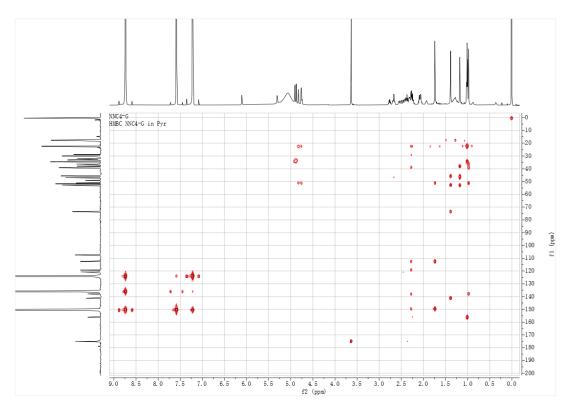


Figure S83. HMBC spectrum (600 MHz, C₅D₅N) of compound 11

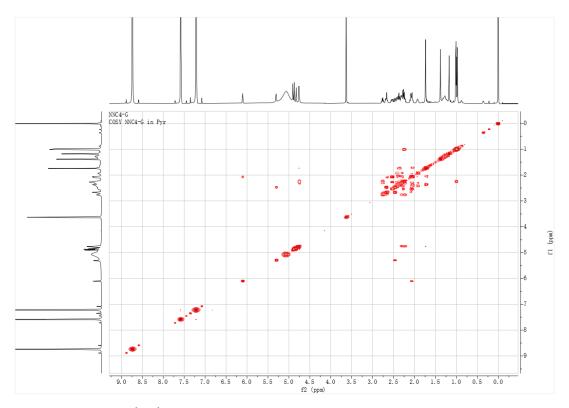


Figure S84. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 11

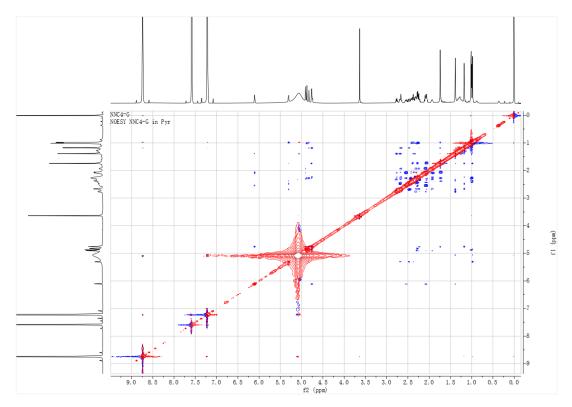


Figure S85. NOESY spectrum (600 MHz, C₅D₅N) of compound 11

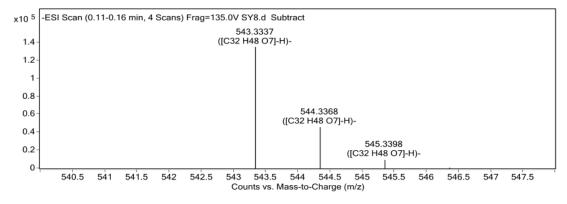


Figure S86. HRESIMS spectrum of compound 12

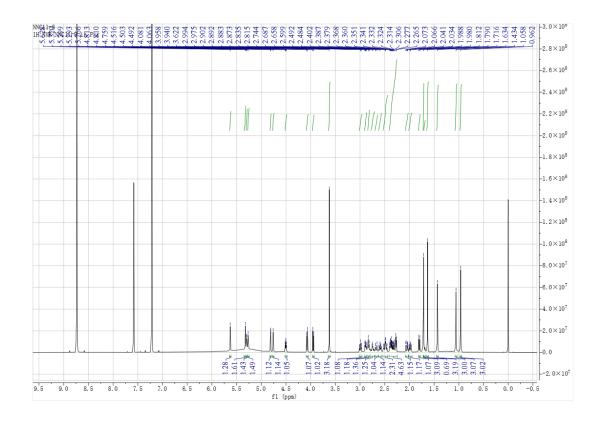


Figure S87. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 12

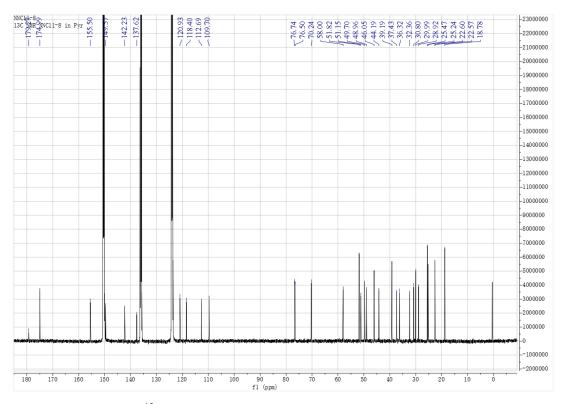


Figure S88. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 12

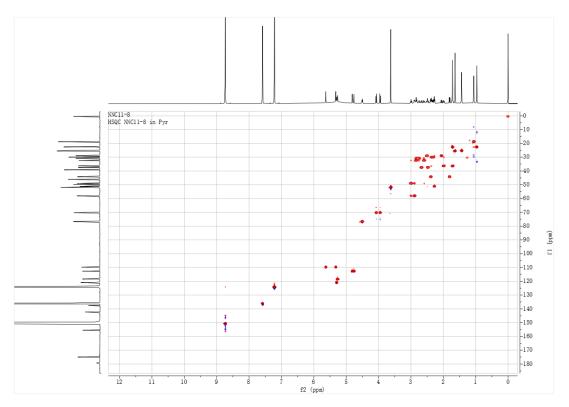


Figure S89. HSQC spectrum (600 MHz, C₅D₅N) of compound 12

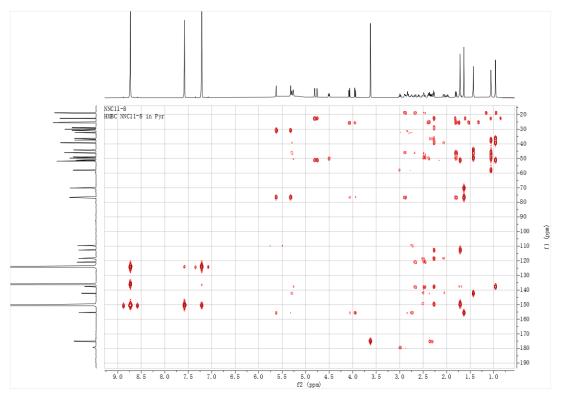


Figure S90. HMBC spectrum (600 MHz, C₅D₅N) of compound 12

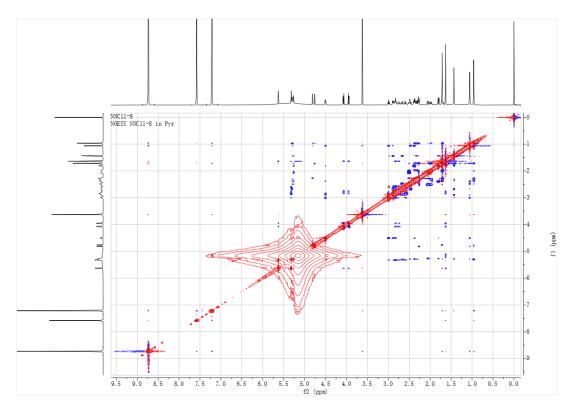


Figure S91. NOESY spectrum (600 MHz, C₅D₅N) of compound 12

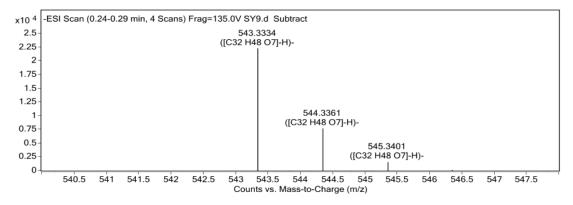


Figure S92. HRESIMS spectrum of compound 13

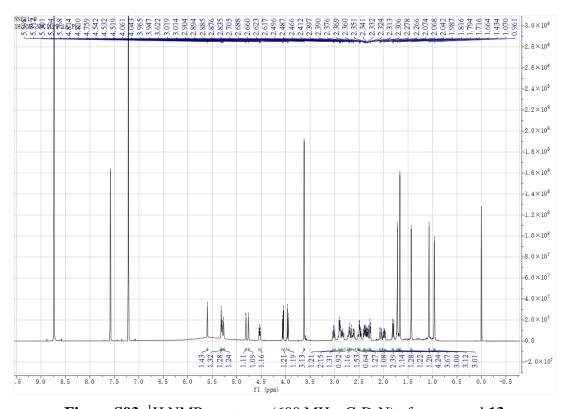


Figure S93. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 13

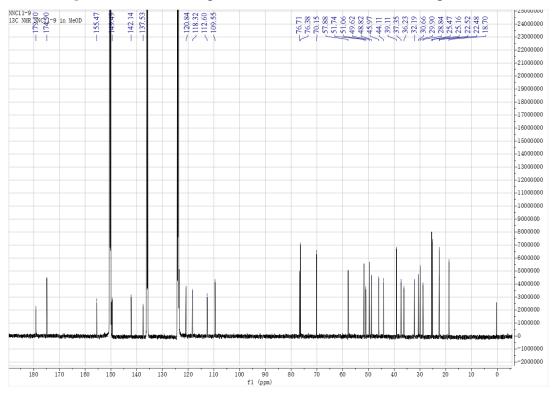


Figure S94. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 13

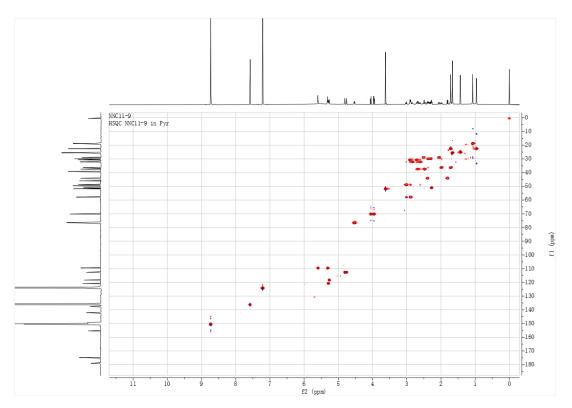


Figure S95. HSQC spectrum (600 MHz, C₅D₅N) of compound 13

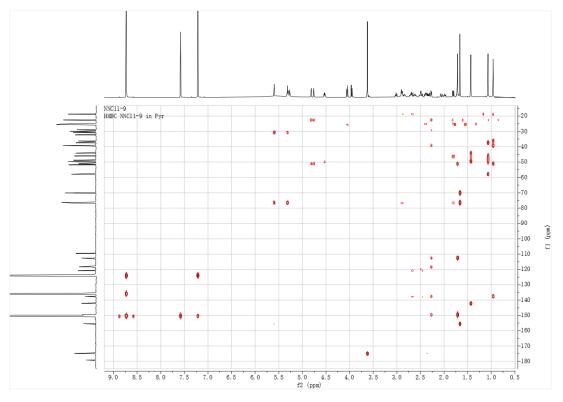


Figure S96. HMBC spectrum (600 MHz, C_5D_5N) of compound 13

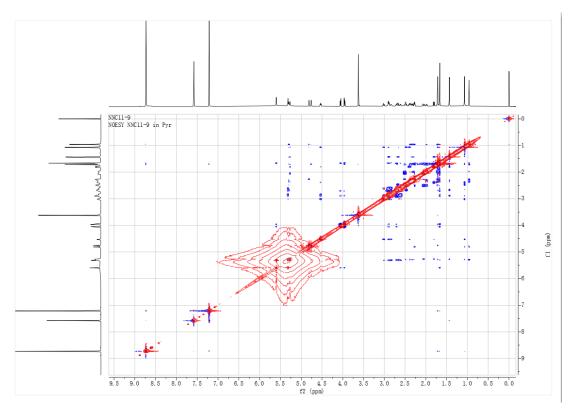


Figure S97. NOESY spectrum (600 MHz, C₅D₅N) of compound 13

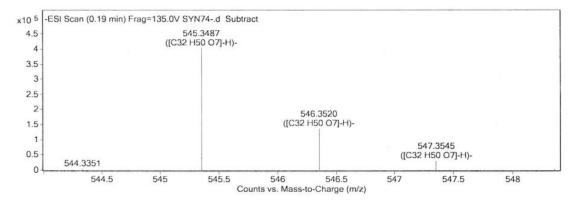


Figure S98. HRESIMS spectrum of compound 14

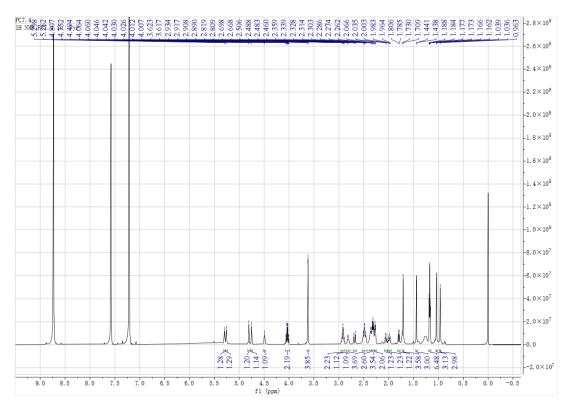


Figure S99. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 14

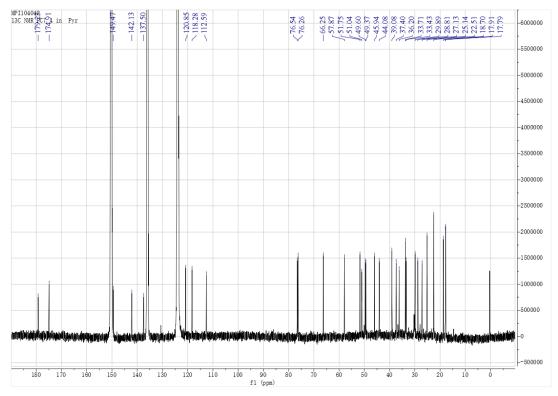


Figure S100. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 14

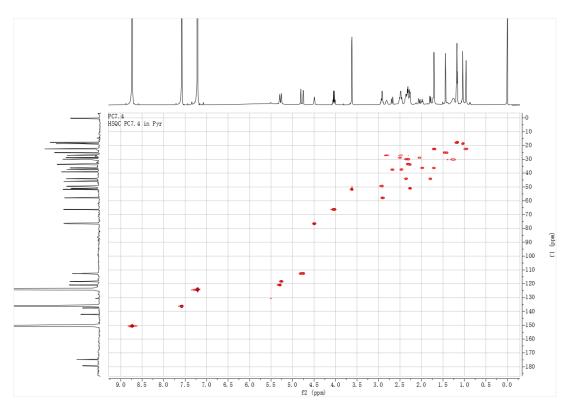


Figure S101. HSQC spectrum (600 MHz, C5D5N) of compound 14

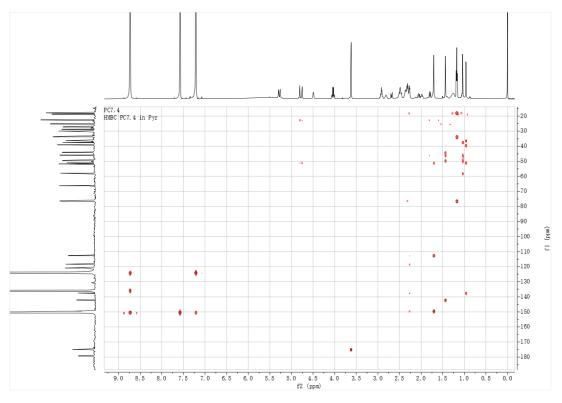


Figure S102. HMBC spectrum (600 MHz, C₅D₅N) of compound 14

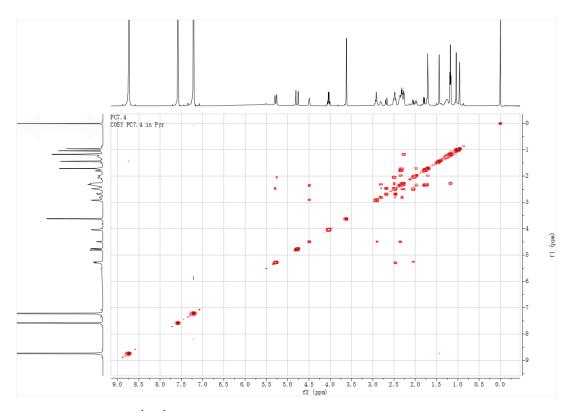


Figure S103. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 14

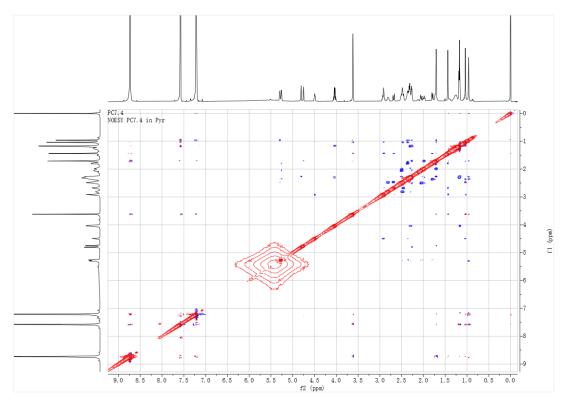


Figure S104. NOESY spectrum (600 MHz, C5D5N) of compound 14

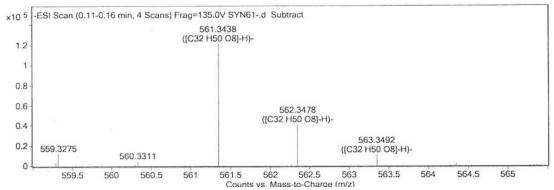


Figure S105. HRESIMS spectrum of compound 15

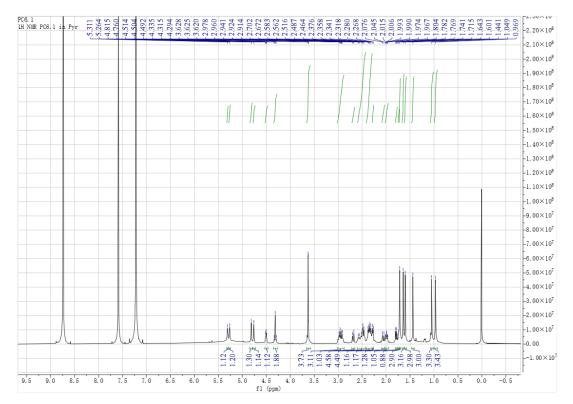


Figure S106. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 15

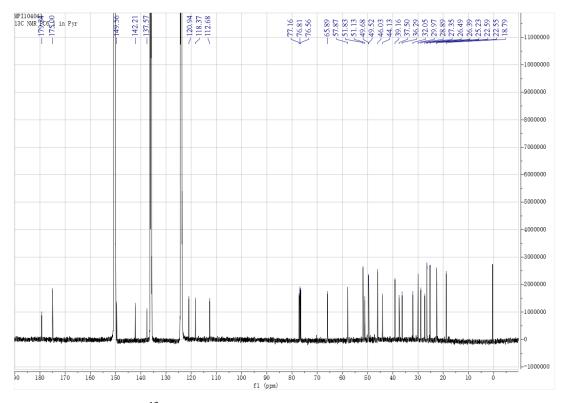


Figure S107. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 15

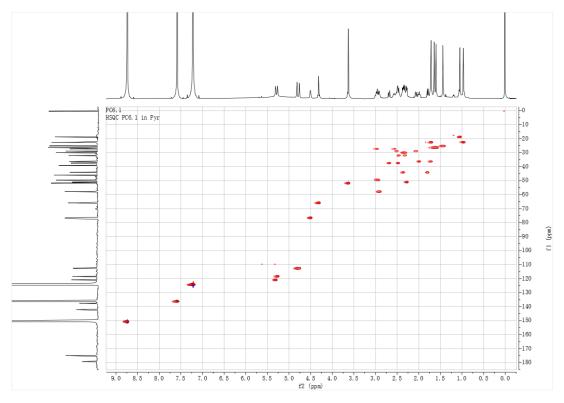


Figure S108. HSQC spectrum (600 MHz, C₅D₅N) of compound 15

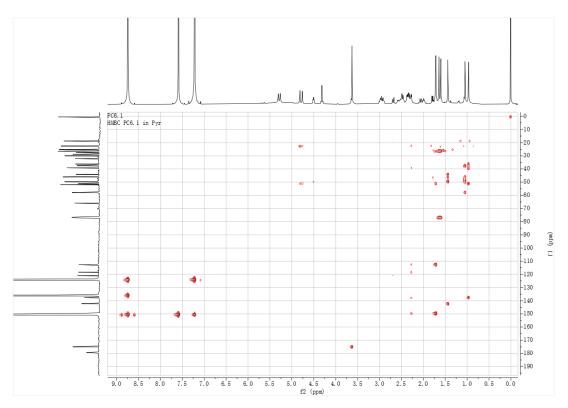


Figure S109. HMBC spectrum (600 MHz, C₅D₅N) of compound 15

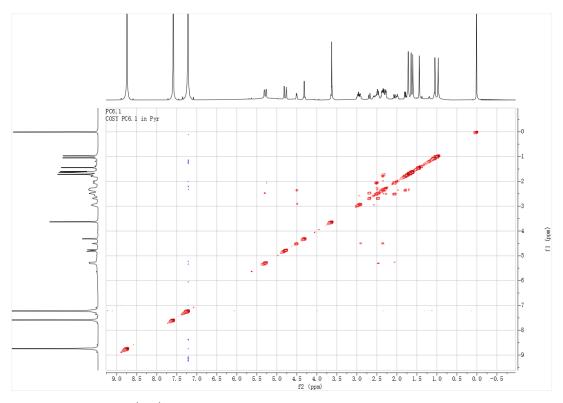


Figure S110. ^{1}H - ^{1}H COSY spectrum (600 MHz, C₅D₅N) of compound 15

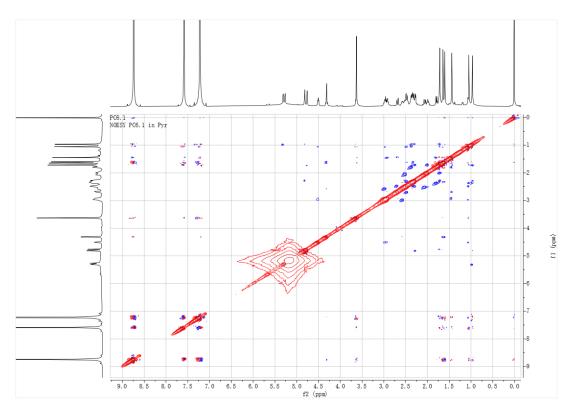


Figure S111. NOESY spectrum (600 MHz, C5D5N) of compound 15

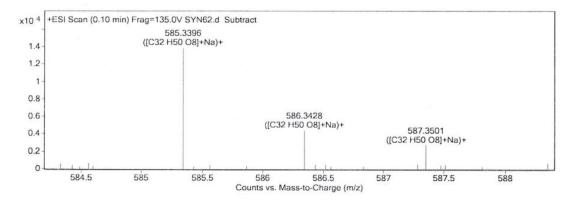


Figure S112. HRESIMS spectrum of compound 16

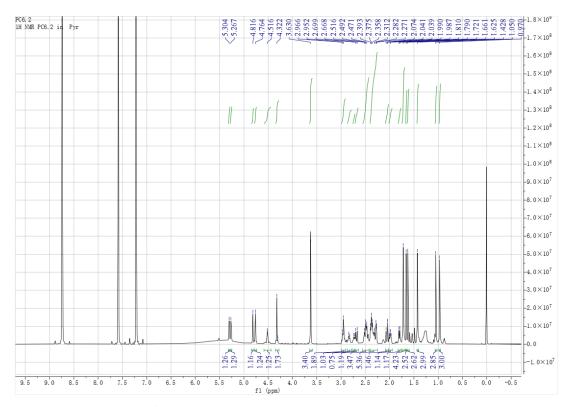


Figure S113. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 16

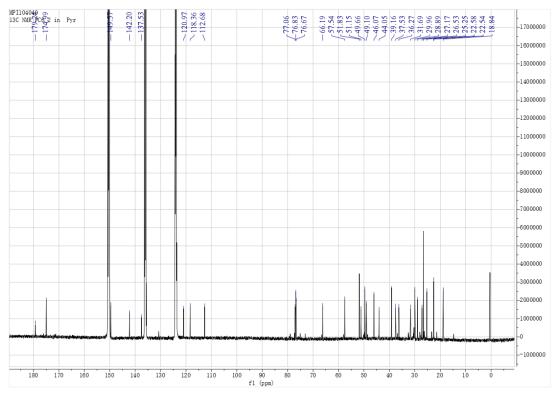


Figure S114. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 16

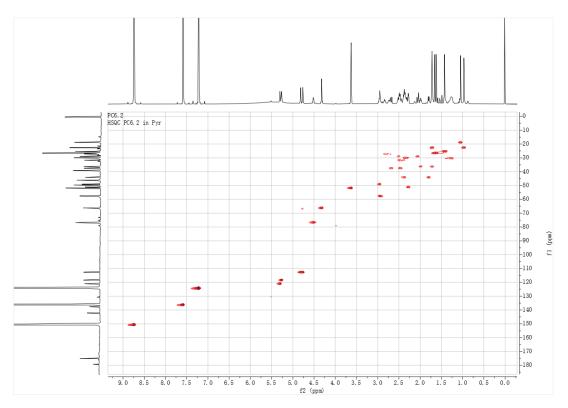


Figure S115. HSQC spectrum (600 MHz, C₅D₅N) of compound 16

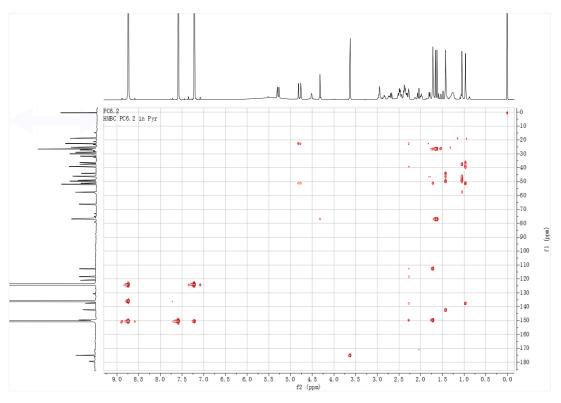


Figure S116. HMBC spectrum (600 MHz, C₅D₅N) of compound 16

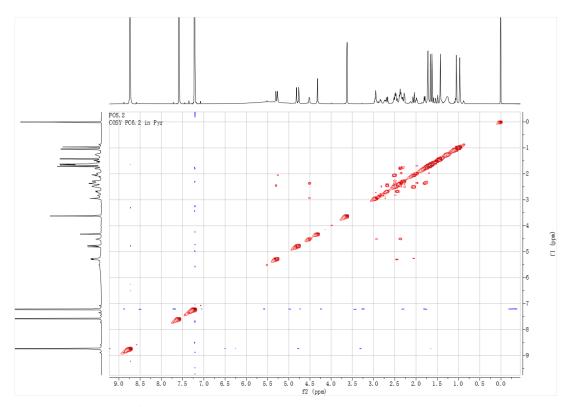


Figure S117. ^{1}H - ^{1}H COSY spectrum (600 MHz, C₅D₅N) of compound 16

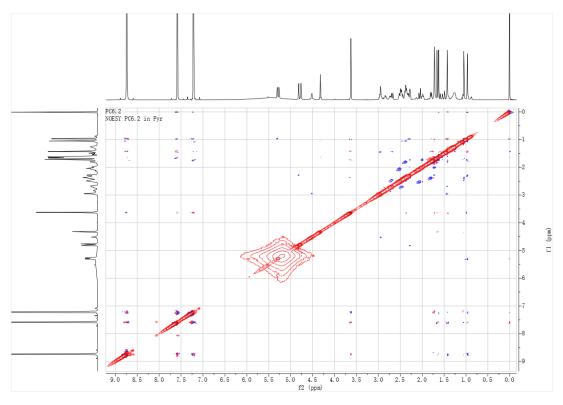


Figure S118. NOESY spectrum (600 MHz, C₅D₅N) of compound 16

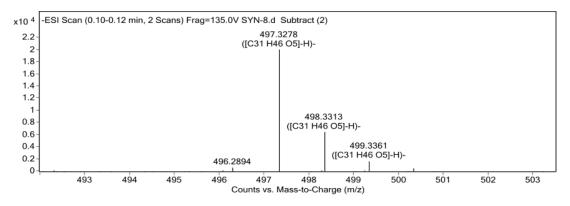


Figure S119. HRESIMS spectrum of compound 17

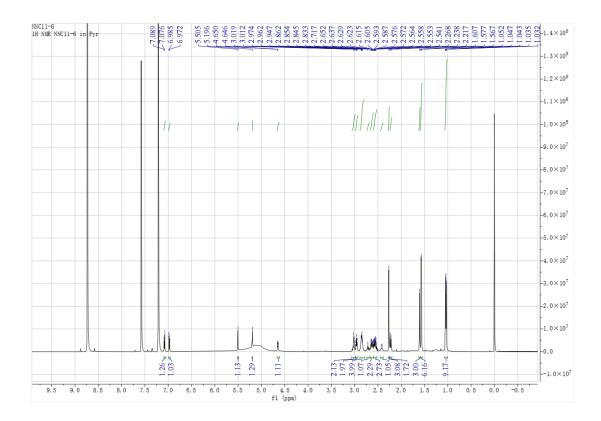


Figure S120. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 17

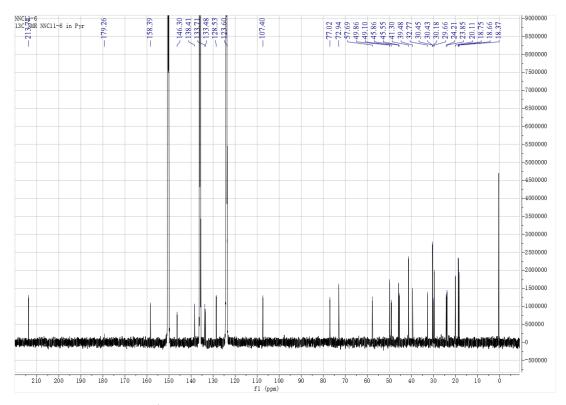


Figure S121. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 17

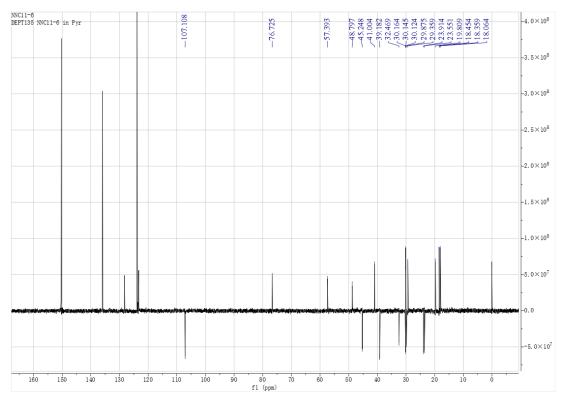


Figure S122. DEPT 135° spectrum (150 MHz, C₅D₅N) of compound 17

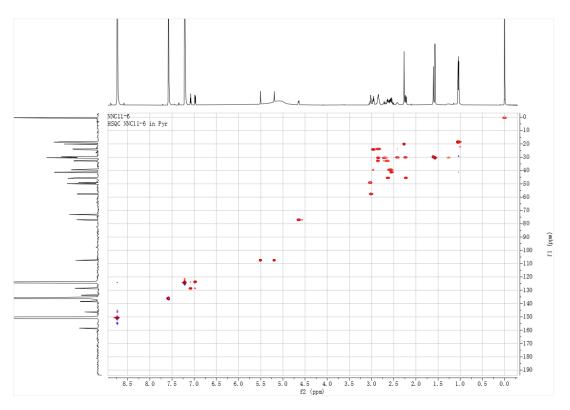


Figure S123. HSQC spectrum (600 MHz, C₅D₅N) of compound 17

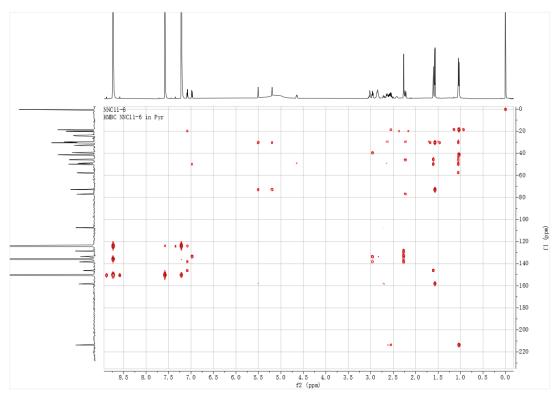


Figure S124. HMBC spectrum (600 MHz, C₅D₅N) of compound 17

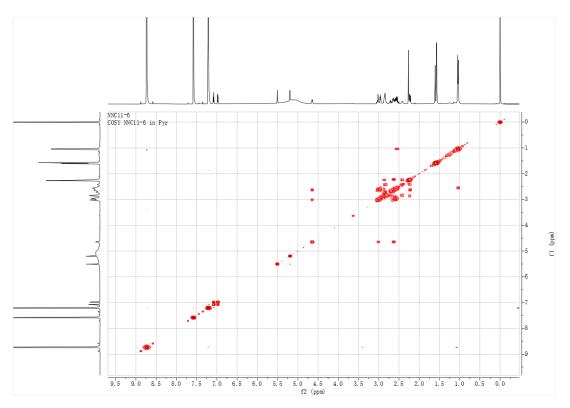


Figure S125. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 17

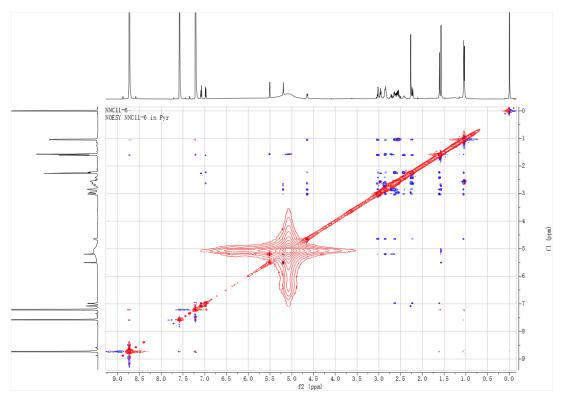


Figure S126. NOESY spectrum (600 MHz, C₅D₅N) of compound 17

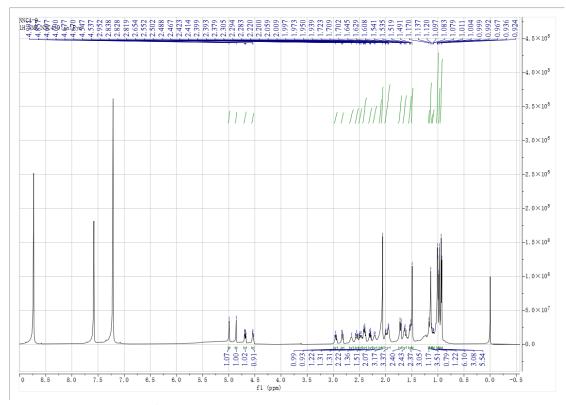


Figure S127. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 18

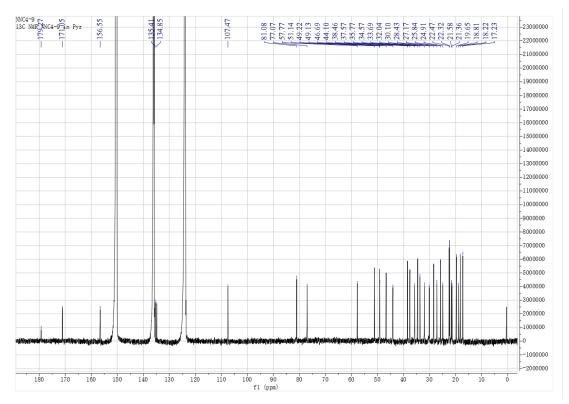


Figure S128. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 18

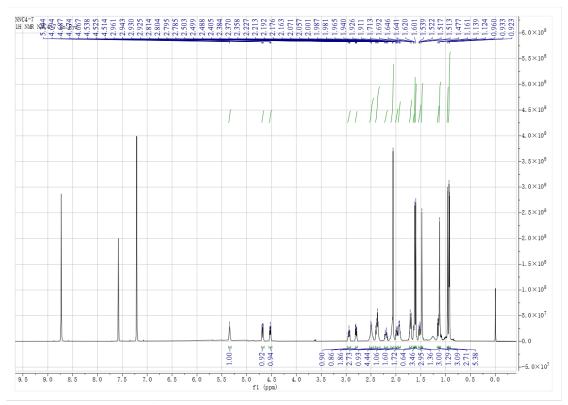


Figure S129. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 19

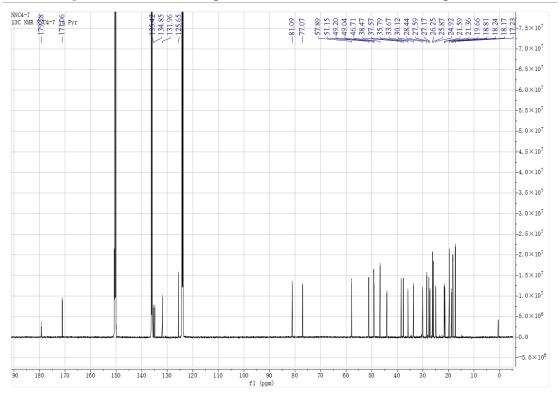


Figure S130. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 19

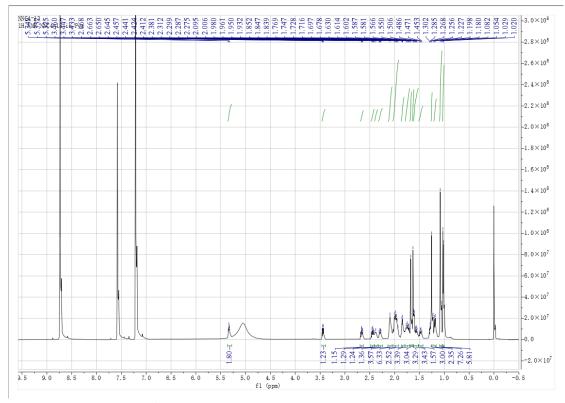


Figure S131. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 20

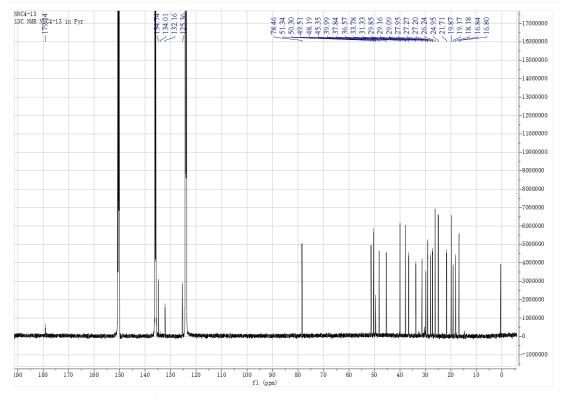


Figure S132. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 20

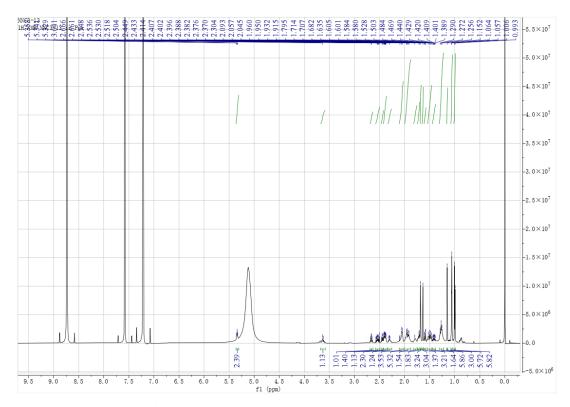


Figure S133. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 21

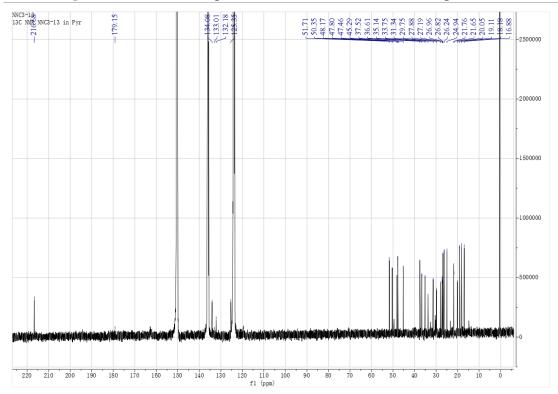


Figure S134. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 21

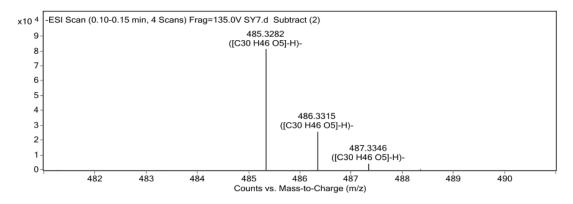


Figure S135. HRESIMS spectrum of compound 22

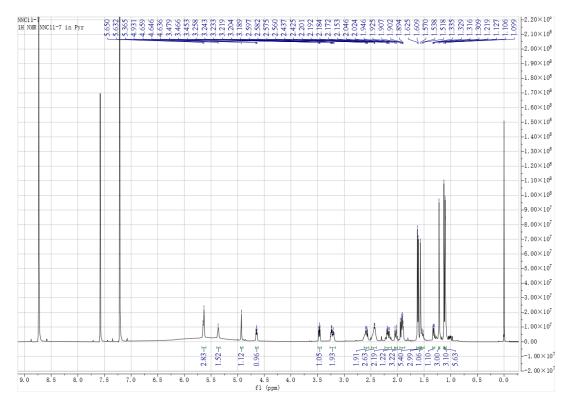


Figure S136. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 22

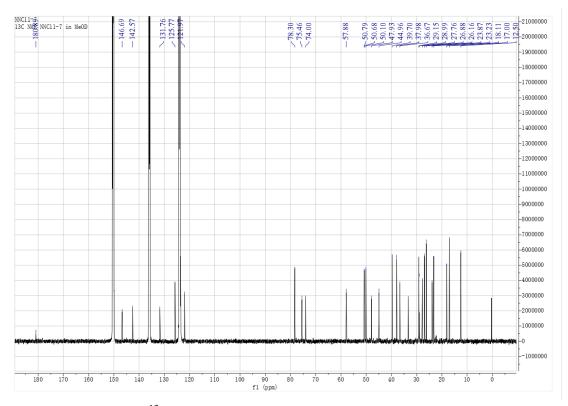


Figure S137. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 22

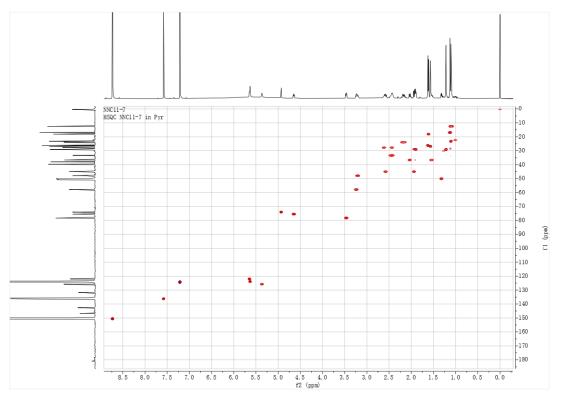


Figure S138. HSQC spectrum (600 MHz, C₅D₅N) of compound 22

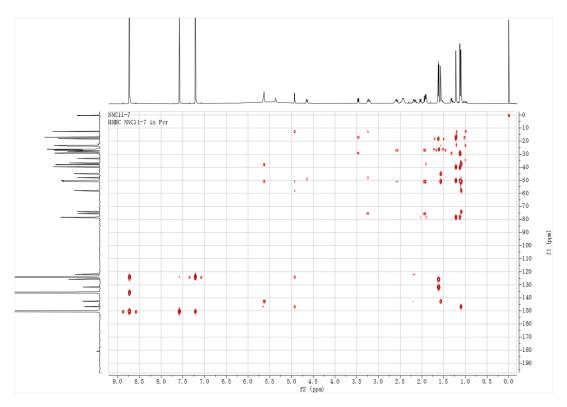


Figure S139. HMBC spectrum (600 MHz, C₅D₅N) of compound 22

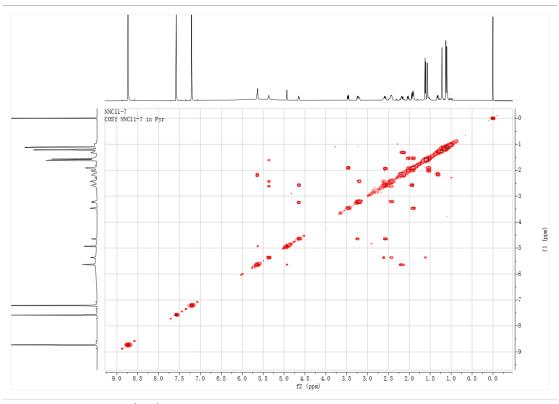


Figure S140. ¹H-¹H COSY spectrum (600 MHz, C₅D₅N) of compound 22

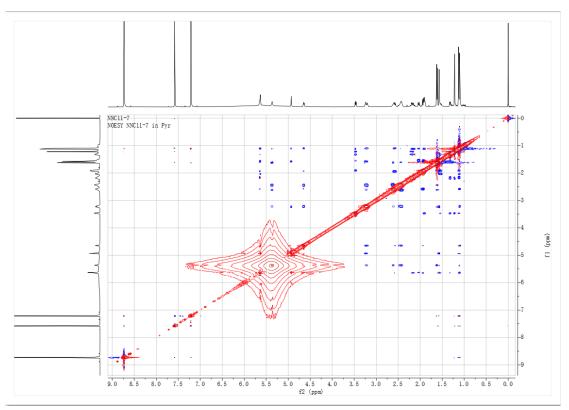


Figure S141. NOESY spectrum (600 MHz, C5D5N) of compound 22

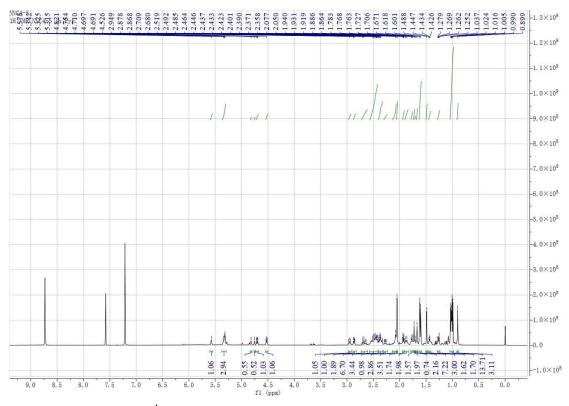


Figure S142. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 23

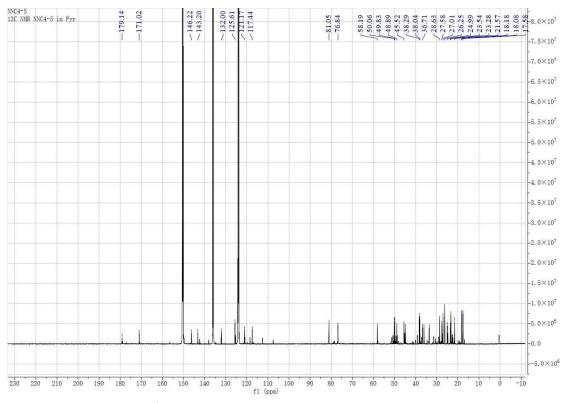


Figure S143. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 23

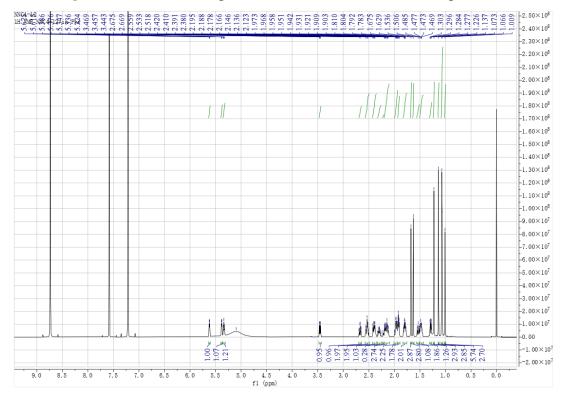
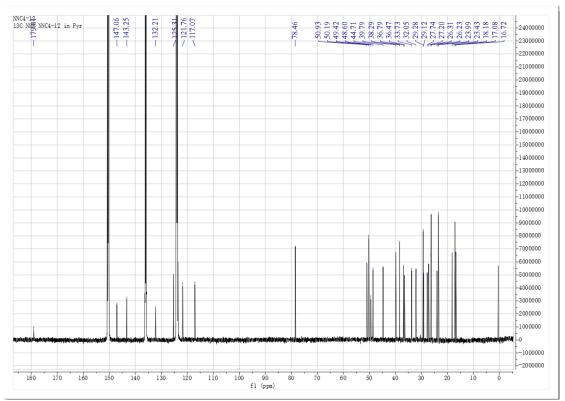



Figure S144. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 24

-7.0×107 -6.5×10⁷ -6.0×10⁷ -5.5×10^{7} -5.0×10^{7} -4.5×10^{7} -4.0×10^{7} -3.5×10^{7} -3.0×10^{7} -2.5×10⁷ -2.0×10⁷ -1.5×10⁷ -1.0×10^{7} -5.0×10⁶ ł -0.0 0.98. 2.09.<u>∓</u> --5. 0×10⁶ 5.5 5.0 4.5 fl (ppm) 6.5 6.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 9.5 9.0 8.5 8.0 7.5 7. 0 3. 5

Figure S145. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 24

Figure S146. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 25

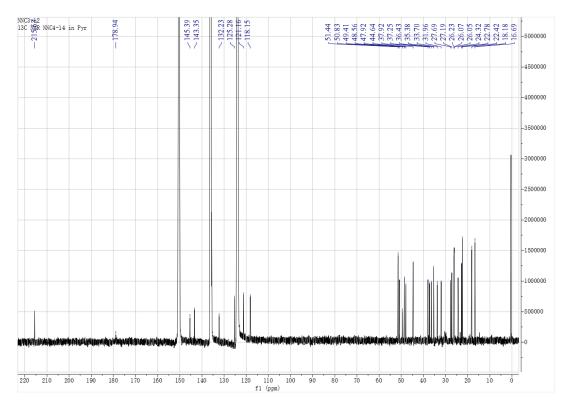


Figure S147. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 25

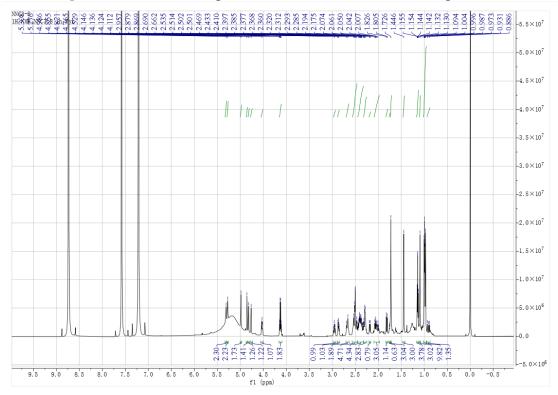


Figure S148. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 26

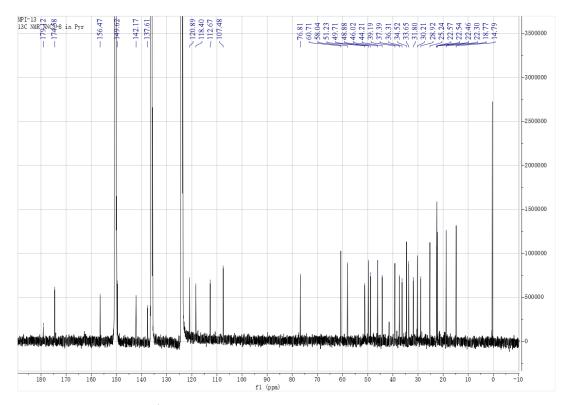


Figure S149. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 26

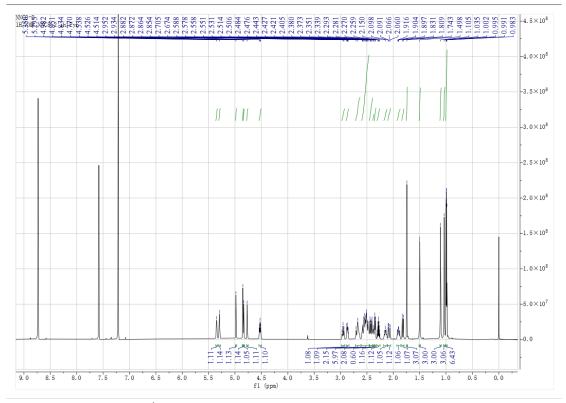


Figure S150. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 27

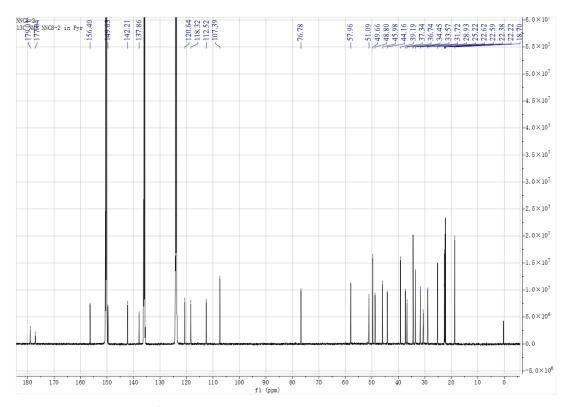


Figure S151. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 27

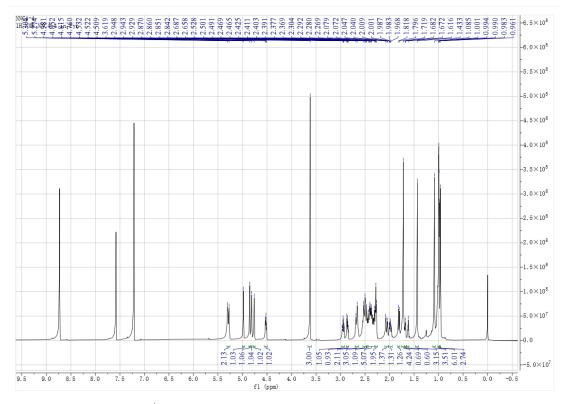


Figure S152. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 28

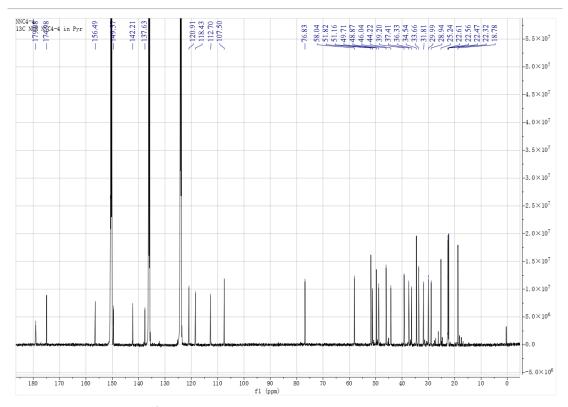


Figure S153. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 28

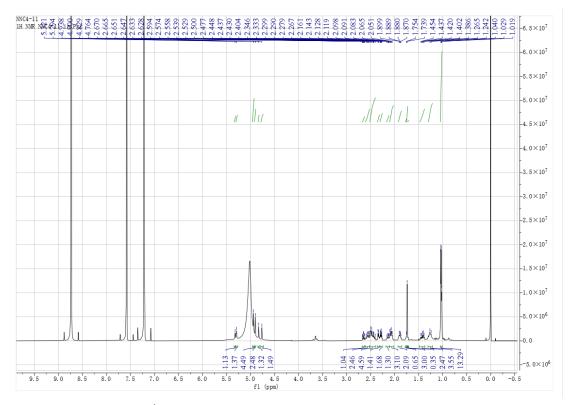


Figure S154. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 29

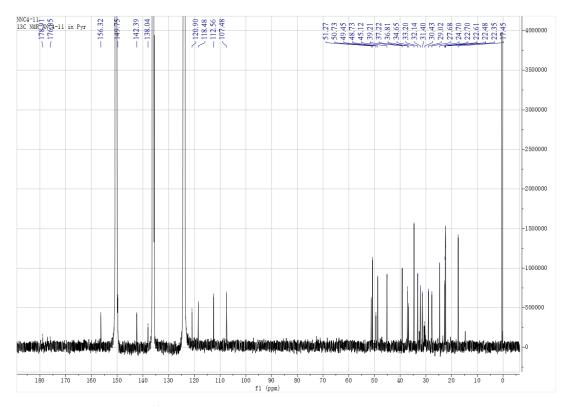


Figure S155. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 29

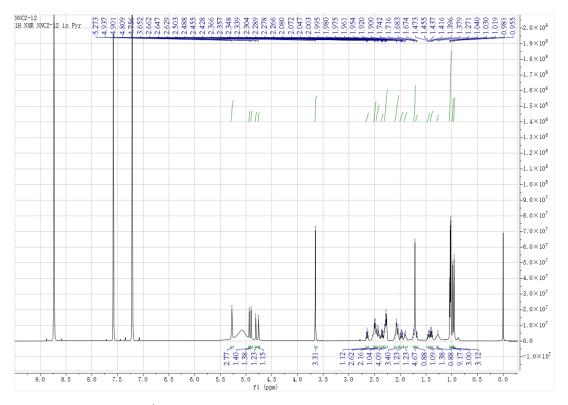


Figure S156. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 30

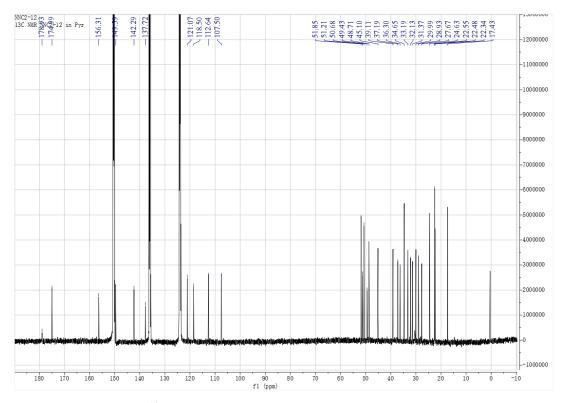


Figure S157. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 30

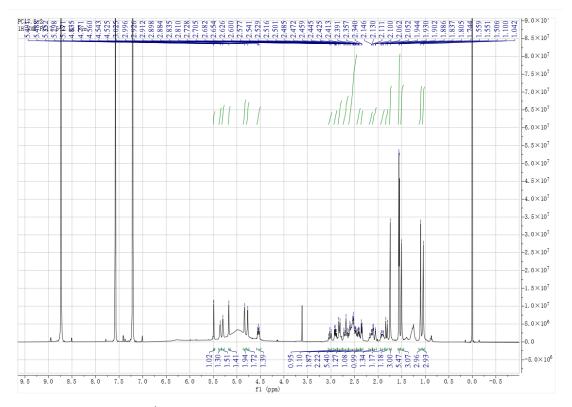


Figure S158. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 31

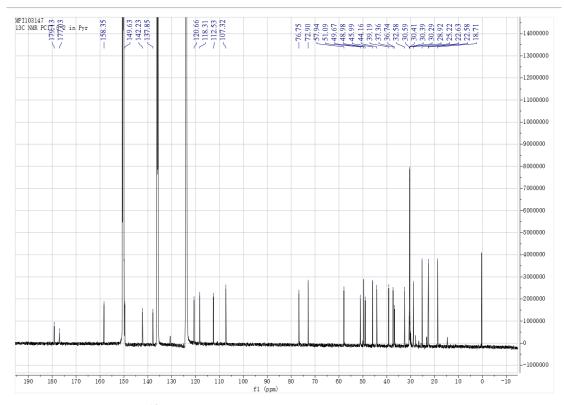


Figure S159. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 31

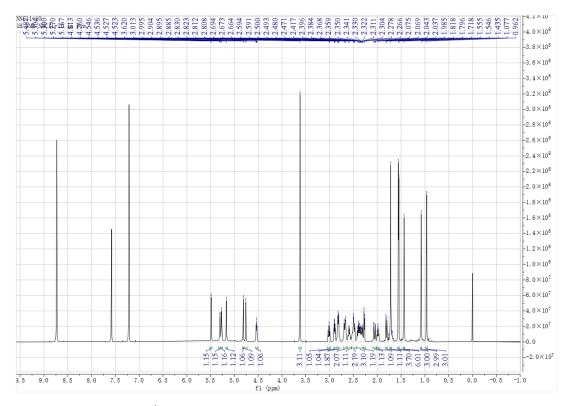


Figure S160. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 32

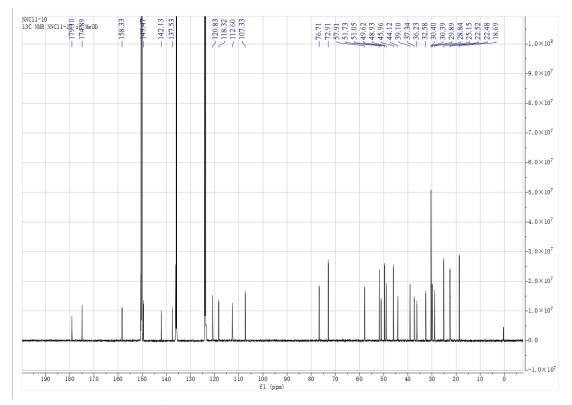


Figure S161. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 32

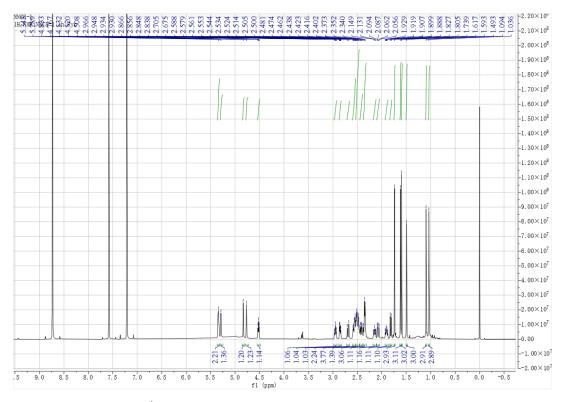


Figure S162. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 33

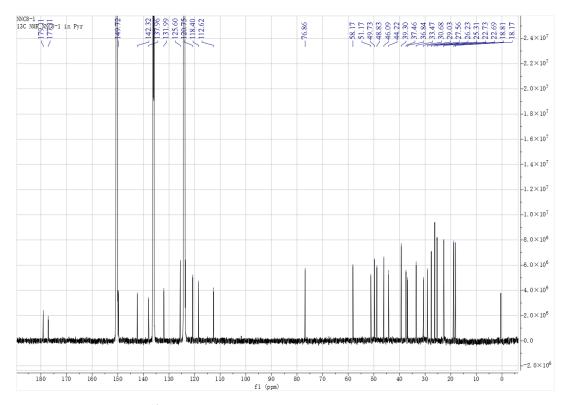


Figure S163. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 33

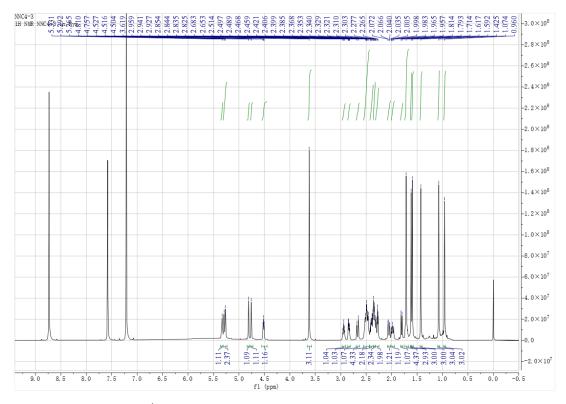


Figure S164. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 34

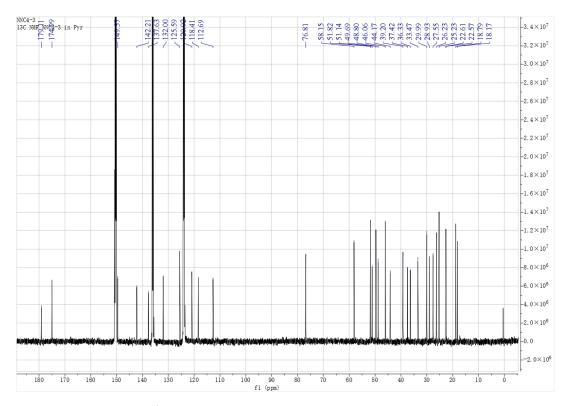


Figure S165. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 34

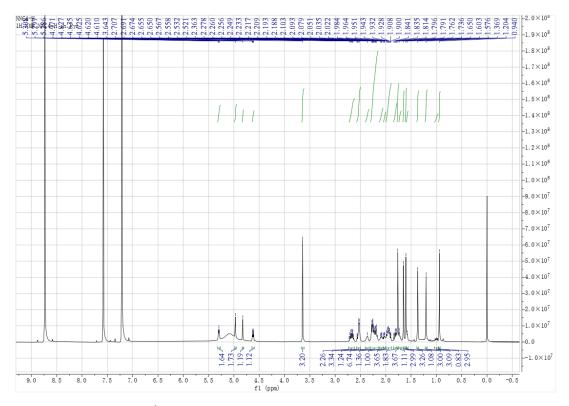


Figure S166. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 35

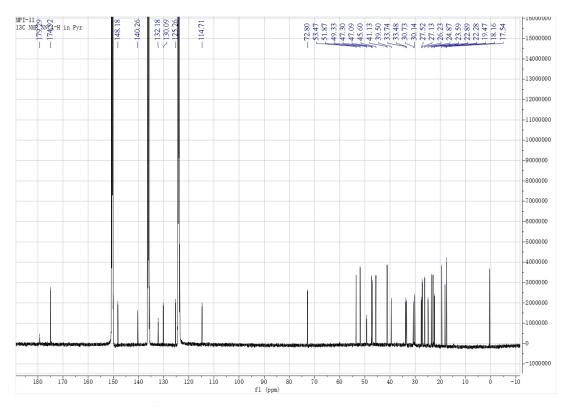


Figure S167. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 35

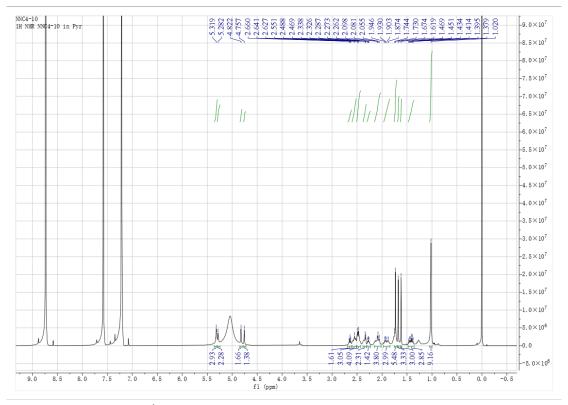


Figure S168. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 36

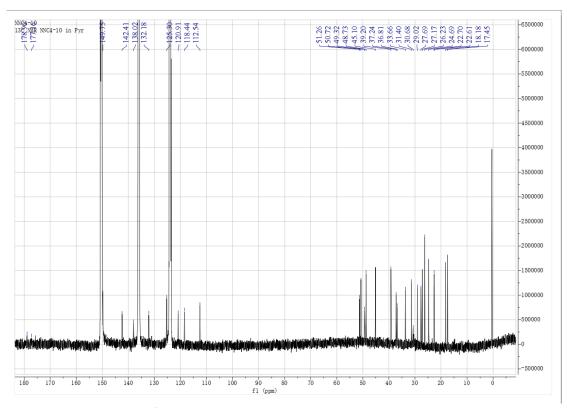


Figure S169. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 36

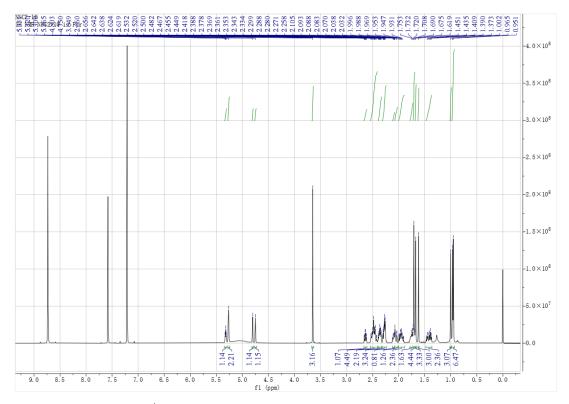


Figure S170. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 37

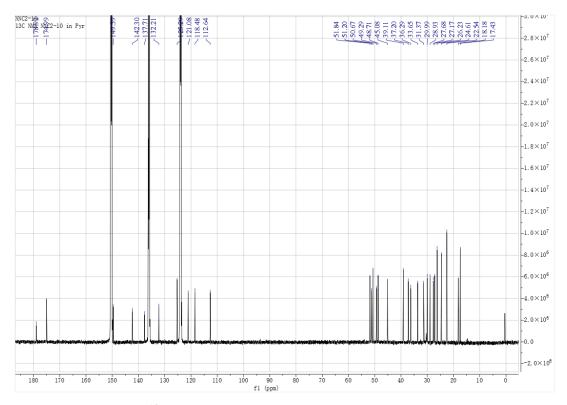


Figure S171. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 37

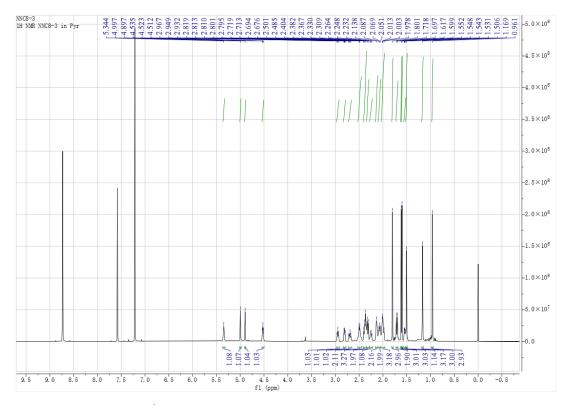


Figure S172. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 38

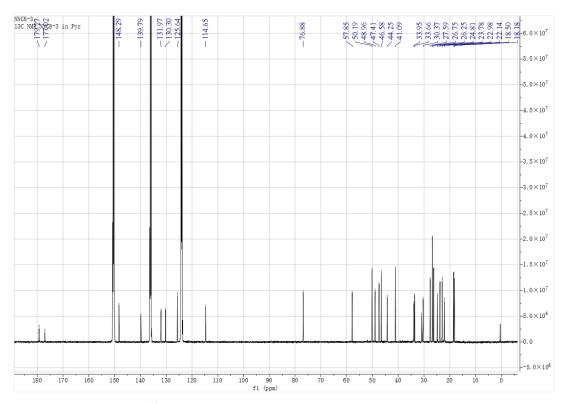


Figure S173. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 38

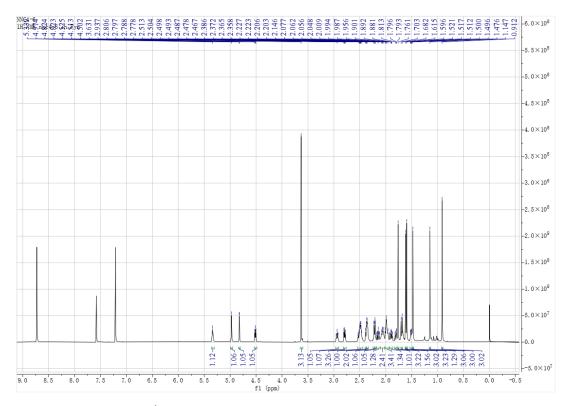


Figure S174. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 39

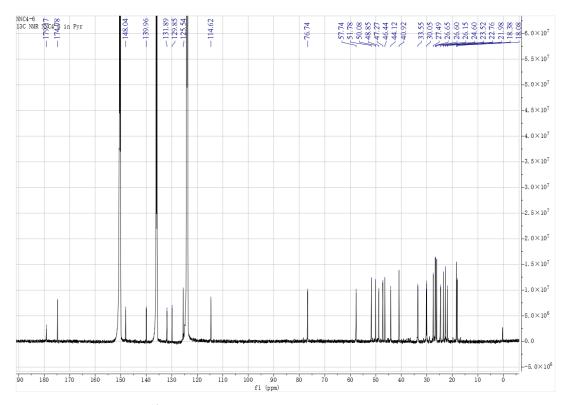


Figure S175. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 39

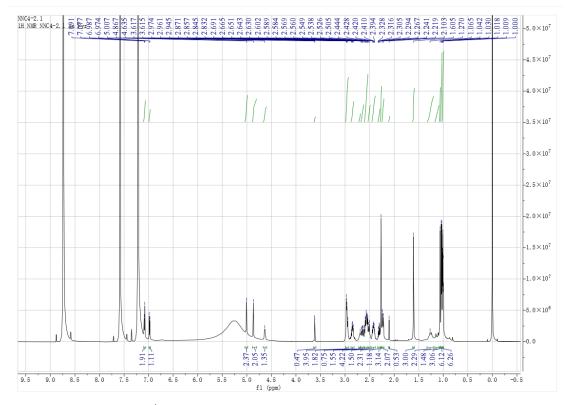


Figure S176. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 40

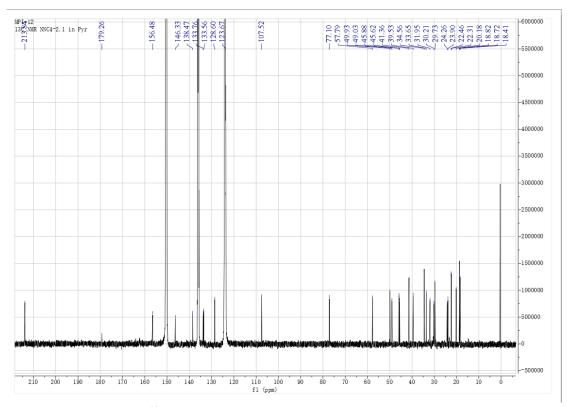


Figure S177. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 40

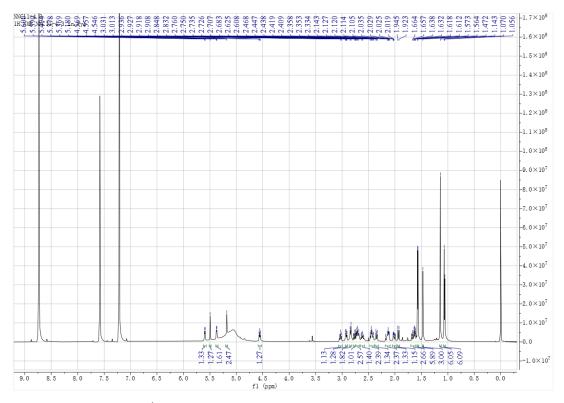


Figure S178. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 41

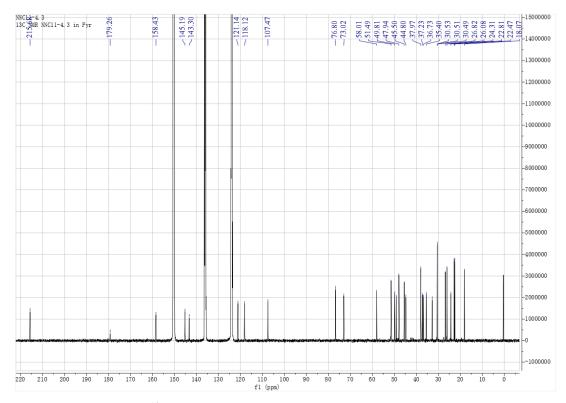


Figure S179. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 41

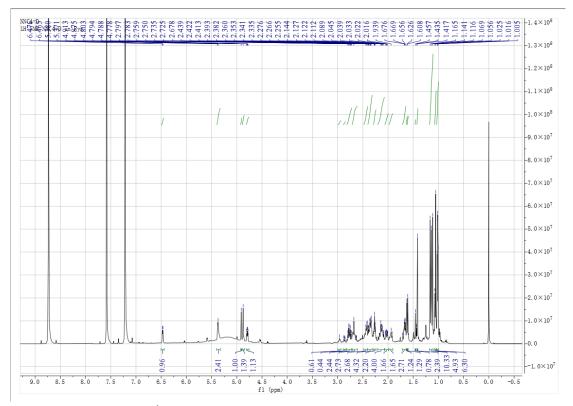


Figure S180. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 42

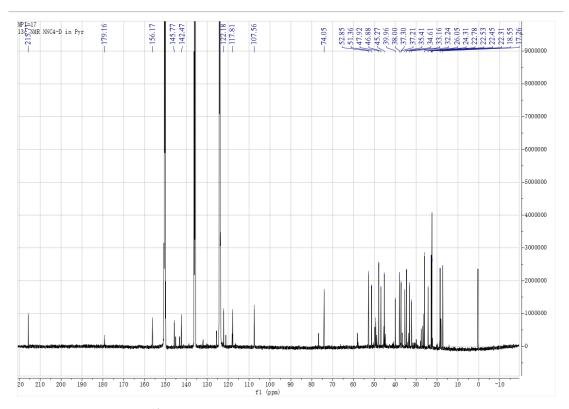


Figure S181. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 42

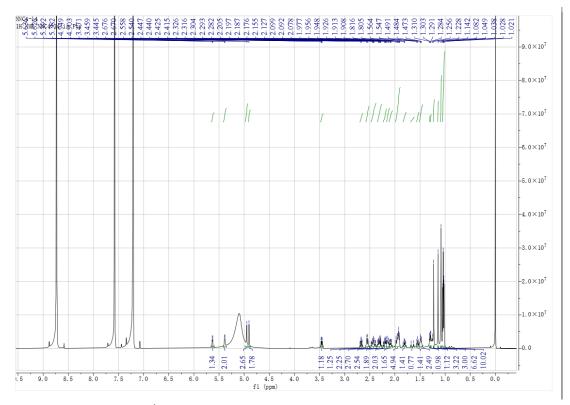


Figure S182. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 43

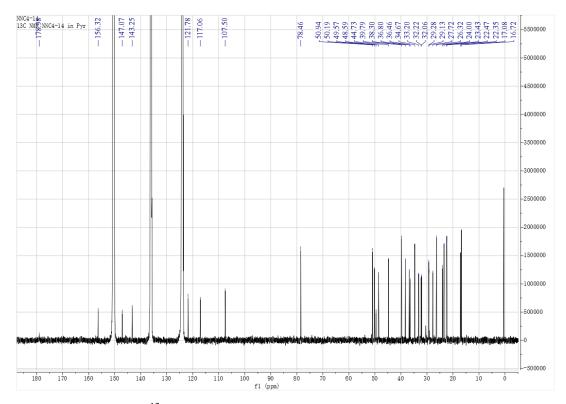


Figure S183. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 43

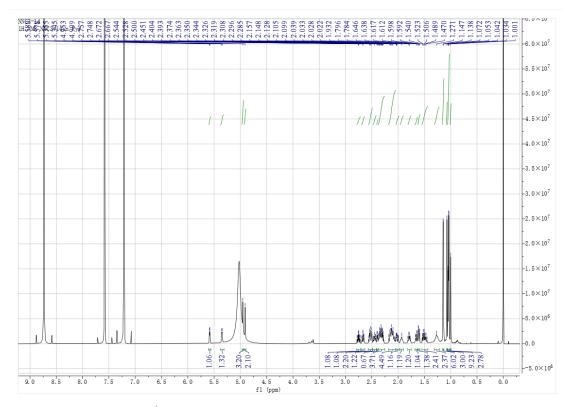


Figure S184. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 44

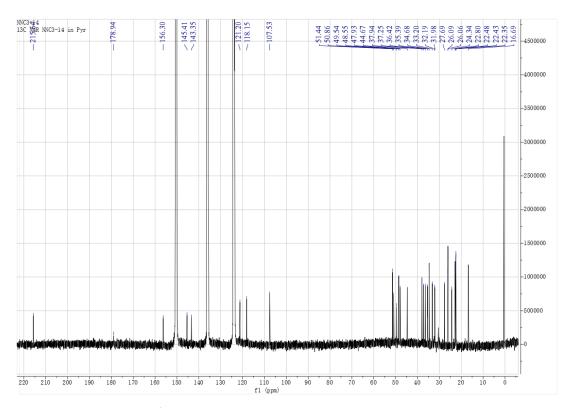


Figure S185. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 44

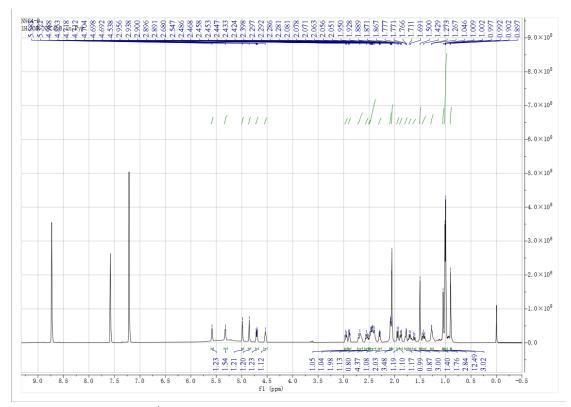


Figure S186. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 45

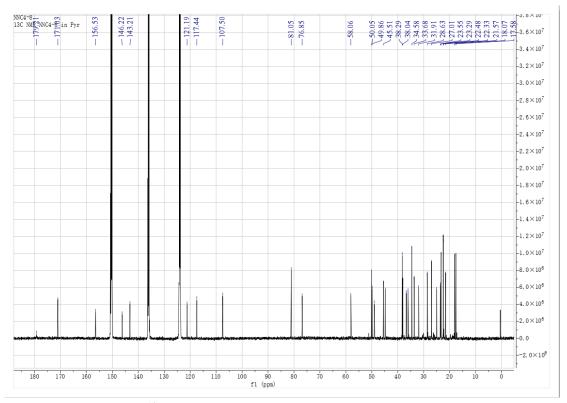


Figure S187. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 45

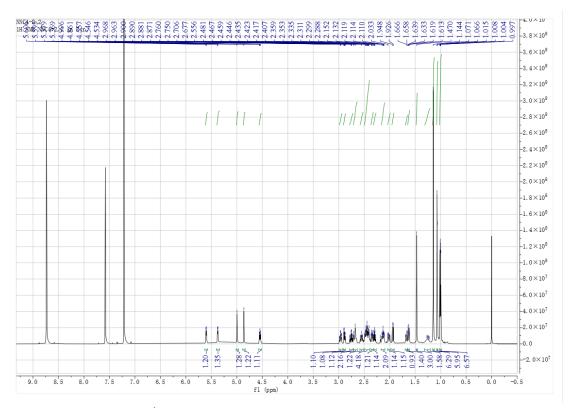


Figure S188. ¹H NMR spectrum (600 MHz, C₅D₅N) of compound 46



Figure S189. ¹³C NMR spectrum (150 MHz, C₅D₅N) of compound 46