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Note S1. Choice of CNN architecture. Convolutional neural network (CNN) architectures have 

evolved at a rapid pace, and there are several well-established nets for image classification with 

differing levels of complexity. In our approach to develop a method for characterizing single-atom 

catalysts (SACs), we compared ResNet18,1 a deep residual net with 18 layers that is popular 

benchmark for CNN models for detection problems, with a smaller custom architecture containing 

fewer layers (SAC-CNN, see Table S1). The custom architecture was developed to provide a 

better fit between network capacity (i.e., the number of parameters) and input dimensionality. In 

terms of classification performance, ResNet18 architecture obtained a slightly worse accuracy 

compared to SAC-CNN. However, more significantly, we found that ResNet18 overfits much 

more than SAC-CNN during training (Figure S4), which impacts its proper generalization. 

Note S2. Choice of CNN architecture. Computer vision techniques have been widely applied to 

extract features from grey-level images (e.g., photographs, electron micrographs). The most 

common approach consists of applying a two-dimensional Gaussian fitting algorithm to the image 

to detect blob-like image structures.2,3 For comparison, our proposed deep-learning method was 

compared to a traditional computer vision (CV) model using a similar protocol. The same 

procedure was used to generate image crops of equivalent size (512×512 px) from manually-

tagged images. The Gaussian kernel is adjusted to fit the approximate atom size and improve 

detection when filtering through the image, with an optimal value of  = 0.22 and no offset. After 

kernel-filtering, an optimized threshold is applied and a labeling technique is used to obtain the 

final localization of the predicted atoms. These steps follow the same procedure of the inference 

pipeline in the deep learning technique after generation of the likelihood landscape, albeit using 

different parameters (e.g., threshold values). 
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Table S1. Characteristics of the proposed SAC-CNN for single-atom detection in Pt1/NC. 

Layer Type Neurons Output tensor Parameters 

1 Convolution 2D 32 (x,x,32) 288 

2 Batch normalization 2D 32 (x,x,32) 64 

3 Convolution 2D 64 (x,x,64) 18432 

4 Batch normalization 2D 64 (x,x,64) 128 

5 Convolution 2D 128 (x,x,128) 73728 

6 Batch normalization 2D 128 (x,x,128) 256 

7 Adaptive pooling 2D - (3,3,128) 0 

8 Fully-connected 128 (128,) 147456 

9 Fully-connected 128 (128,) 16384 

10 Fully-connected 2 (2,) 256 

 Total   427840 

 

Table S2. Performance of SAC-CNN for single-atom detection in Pt1/NC. 

Image Precision Recall F1 

Test 1 0.615 0.706 0.658 

Test 2 0.660 0.700 0.680 

Test 3 0.614 0.623 0.619 

Test 4 0.684 0.772 0.726 

Test 5 0.582 0.639 0.609 

Test 6 0.676 0.814 0.739 

Test 7 0.574 0.660 0.614 

Test 8 0.644 0.644 0.644 

Test 9 0.542 0.957 0.692 

Test 10 0.695 0.759 0.726 

Mean 0.629 0.728 0.671 

STD 0.052 0.103 0.049 
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Table S3. Performance of standard CV approach for single-atom detection in Pt1/NC. 

Image Precision Recall F1 

Test 1 0.581 0.735 0.649 

Test 2 0.619 0.780 0.690 

Test 3 0.506 0.609 0.553 

Test 4 0.620 0.842 0.714 

Test 5 0.403 0.787 0.533 

Test 6 0.524 0.729 0.610 

Test 7 0.465 0.623 0.532 

Test 8 0.604 0.711 0.653 

Test 9 0.458 0.936 0.615 

Test 10 0.695 0.722 0.639 

Mean 0.536 0.747 0.619 

STD 0.076 0.097 0.063 

 

Table S4. Performance of SAC-CNN for single-atom detection in Pt1/NC after training with half 

of the training set. 

Image Precision Recall F1 

Test 1 0.696 0.471 0.561 

Test 2 0.758 0.500 0.602 

Test 3 0.756 0.449 0.564 

Test 4 0.766 0.356 0.487 

Test 5 0.773 0.279 0.410 

Test 6 0.714 0.509 0.594 

Test 7 0.875 0.396 0.546 

Test 8 0.813 0.289 0.426 

Test 9 0.706 0.766 0.735 

Test 10 0.786 0.407 0.537 

Mean 0.764 0.442 0.546 

STD 0.054 0.139 0.093 
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Table S5. Performance of AtomSegNet for single-atom detection in Pt1/NC. 

Image Precision Recall F1 

Test 1 0.282 0.588 0.381 

Test 2 0.277 0.780 0.408 

Test 3 0.287 0.565 0.381 

Test 4 0.442 0.644 0.524 

Test 5 0.278 0.689 0.396 

Test 6 0.373 0.695 0.485 

Test 7 0.308 0.679 0.424 

Test 8 0.291 0.711 0.413 

Test 9 0.353 0.872 0.503 

Test 10 0.301 0.685 0.418 

Mean 0.319 0.691 0.433 

STD 0.051 0.084 0.049 

 

Table S6. Performance of SAC-CNN for single-atom detection in Fe1/ECN (threshold = 0.97). 

Image Precision Recall F1 

1 0.558 0.795 0.655 

2 0.544 0.623 0.581 

3 0.875 0.574 0.693 

Mean 0.659 0.664 0.643 

STD 0.153 0.095 0.047 
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Table S7. Performance of CV for single-atom detection in Fe1/ECN (threshold = 0.21). 

Image Precision Recall F1 

1 0.514 0.781 0.620 

2 0.448 0.565 0.500 

3 0.814 0.574 0.673 

Mean 0.592 0.640 0.598 

STD 0.159 0.100 0.072 

 

Table S8. Performance of AtomSegNet for single-atom detection in Fe1/ECN. 

Image Precision Recall F1 

1 0.255 0.644 0.366 

2 0.193 0.594 0.291 

3 0.474 0.607 0.532 

Mean 0.307 0.615 0.396 

STD 0.121 0.021 0.101 
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Figure S1. Characterization of the Pt1/NC single-atom catalyst by bulk spectroscopies. (a) 

Fourier-transformed extended X-ray absorption spectrum evidencing the predominance of Pt-N/O 

and Pt-Cl contributions. A tentative metal site structure is shown inset. (b) Pt 4f photoelectron 

spectrum with fitted contributions assigned to Pt(II) and Pt(IV). (c) Powder X-ray diffraction 

pattern evidencing broad reflections consistent with the long-range graphitic structure of the 

nitrogen-doped carbon host. (d) The N 1s photoelectron spectrum fitted with components assigned 

to pyridine-N-oxide (N0), graphitic nitrogen (N3), pyrrolic (N5) and pyridinic (N6) groups. The 

results fully agree with previously reported characterization data for this catalyst.4 
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Figure S2. Typical unprocessed AC-STEM image of the Pt1/NC single-atom catalyst. The image 

corresponds to 15×15 nm.  
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Figure S3. Visualizations of the outputs of the three convolutional layers of the SAC-CNN model 

applied to a typical preprocessed AC-STEM image (15×15 nm) of Pt1/NC. The first convolutional 

layer (Conv0) tends to learn simple visual patterns which activate on pixel contrast (typical of 

image noise) but not on homogeneous blobs, characteristic of catalyst atomic features. The next 

convolutional layer (Conv3), which works at a higher visual scale, already focuses on the areas 

containing potential atoms, significantly reducing the relevance of background noise. Finally, the 

last convolutional layer (Conv6) produces an activation map with highly probable and well 

bounded atom locations. This map is used by the following fully-connected layers in the 

SAC-CNN network to make the final prediction regarding the presence of atoms. 
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Figure S4. Performance of the SAC-CNN model. Comparison of the manually-labeled (red 

circles) and SAC-CNN-detected (yellow crosses) single atoms over the validation set. The 

automated method shows consistently improved performance in the brightest image areas (white 

boxes). It also detects atoms close to the image edges (white arrows) and to other atoms (shaded 

boxes). All images correspond to 15×15 nm. 
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Figure S5. Perception of image contrast. Comparison of the contrast of two regions in the 

Aberration-corrected scanning transmission electron microscopy (AC-STEM) image (15×15 nm) 

of the platinum single-atom catalyst 1) where a manually-tagged feature was not detected by the 

SAC-CNN and 2) vice versa. The zooms (21×21 px, corresponding to the window size of the 

model) of these regions highlight the challenge of identifying single atoms by simple visual 

inspection (contrast-to-background ratios of the circled features are indicated). In contrast, the 

corresponding likelihood maps (indicating the associated probability) generated by the SAC-CNN 

clearly distinguish differences in the intensity patterns. 
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Figure S6. Performance of SAC-CNN model on AC-STEM images of the metal-free nitrogen-

doped carbon support. In general, few atoms were detected upon analysis of AC-STEM images of 

the metal-free carrier with the SAC-CNN (84% of images contained <5 detections), confirming 

the robustness of the approach. As illustrated for representative examples, when detection occurred 

it typically resulted from streaking in the image (identified by the occurrence of multiple atom 

detections on the same horizontal line) or structural variations in the carrier. All images correspond 
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to 15×15 nm (34.3 px nm−1). 

 

Figure S7. Performance of CV when applied to the validation set of AC-STEM images of Pt1/NC. 

The CV method typically results in a slightly higher recall but lower precision than the SAC-CNN 

model (corresponding images in Figure S2) because in general it detects more atoms per image. 

All images correspond to 15×15 nm. 
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Figure S8. Comparison of the F1, precision, and recall scores (shaded areas indicate the associated 

standard deviation) as a function of likelihood thresholds for the ResNet18 architecture trained (a) 

under the same conditions of our SAC-CNN model or (b) by optimizing the number of training 

epochs. Significantly inferior F1 scores compared to the customized model were observed in both 

cases, with notably lower precision at high thresholds and rapidly dropping recall in the case of 

(b). Performance of the SAC-CNN architecture with modified training conditions (c) reducing the 

number of training epochs to 12 or (d) including negative crops from images of the metal-free 

sample. Neither change significantly altered the performance. 

  



 15

 

Figure S9. Performance of AtomSegNet when applied to the validation set without additional 

training or specific optimization. A much higher number of detections (yellow crosses) compared 

to the SAC-CNN model (corresponding images in Figure S2) is evidenced across the sample. 

While this includes many of the manually-labeled atoms (red circles) there also appear to be a 

number of false positive detections. All images correspond to 15×15 nm. 
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Figure S10. Analysis of outliers in the full data set. The images identified as outliers in Figure 3 

display significant deviations from the expected nearest-neighbor distances. Inspection of the 

images reveals that many atomic positions were not recognized due to flattening of contrast (e.g., 

in thick regions of the sample) or increased feature size (e.g., through defocus), resulting in higher 

values of rMeasured than those expected for an analogous random arrangement of atoms. Bright 

artifacts in the image (such as those arising from nearby thick and out-of-focus sample regions) 

can also lead to excessive flattening of the contrast during pre-processing, resulting in a bias 

towards atom detection in only delimited areas of the whole sample. All images correspond to 

15×15 nm (34.3 px nm−1). 

  



 17

 

Figure S11. The atomic positions detected by the SAC-CNN model on consecutively-acquired 

identical location frames of the platinum single-atom catalyst. A subset of the atoms remains 

constant in each of the images (see connected outlines), while others change location. All images 

correspond to 15×15 nm (34.3 px nm−1). 
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Figure S12. Unprocessed AC-STEM images of the Fe1/C3N4 single-atom catalyst (top row) and 

output images showing the atom detections (yellow crosses) determined by CV (middle row) and 

AtomSegNet (bottom row). Red circles denote the manually labeled atom positions. Images 1 and 

2 correspond to 10×10 nm (34.1 px nm−1) and Image 3 is 7.44×7.44 nm (34.4 px nm−1). 
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