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SUPPORTING METHODS

Computational Details

All computational experiments presented in this paper was conducted on a standard PC setup with 
an Intel i7-8700K CPU and 64 GBs memory. Algorithms were implemented in Python 3.8.2 with 
Numpy 1.19.5, Scikit-learn 0.24.2 and Scipy 1.6.3 open-source packages. 

Model and algorithm.
The subspace model
The subspace model assumes that each transient can be accurately approximated by a linear 
combination of a smaller number of basis functions (or basis transients)  with pixel {𝜙𝑙(𝑡)}𝐿

𝑙 = 1

dependent spatial coefficients  (  the pixel location), where  is the model order (i.e., {𝑐𝑙(𝑟)}𝐿
𝑙 = 1 𝑟 𝐿

the number of basis functions). Accordingly, the entire can then be expressed as:
.          (2)𝑠(𝑟,𝑡) = ∑𝐿

𝑙 = 1 𝑐𝑙(𝑟)𝜙𝑙 (𝑡)
Note that the basis transients derived from high-resolution data are of the same dimensionality 
with the same number of temporal data points as the standard long transients, denoted as , thus 𝑁𝑇

providing the same mass resolving power. With , spatial coefficients can be effectively {𝜙𝑙 (𝑡)}
determined using a much smaller number of temporal data points  ) by 𝑁𝑇′ (with 𝐿 < 𝑁𝑇′ ≪ 𝑁𝑇

solving: 
  (3)c = argmin

c
 ||s′ ― c𝚽′||2

2 + α||c||2

where  is the measured short transient with  points,  is the  basis matrix for fitting s′ 𝑁𝑇′ 𝚽′ 𝐿 × 𝑁𝑇′

(truncated from the original long basis for computational and memory efficiency) , and  is a α
regularization parameter. Once the spatial coefficients are determined by solving eq. (3), transients 
with the desired resolution are reconstructed:

                             (4) 𝑠 (𝑟,𝑡) = ∑𝐿
𝑙 = 1 𝑐𝑙(𝑟)𝜙𝑙 (𝑡)

This formulation avoids the need to sample transients with  points uniformly for all pixels to 𝑁𝑇

achieve the target mass resolution, which is time consuming and can generate a large amount of 
data. Once the basis is predetermined, spatial coefficients can be estimated using short transients 
with  points measured by a shorter acquisition to form the final reconstruction using eq.(4). 𝑁𝑇′

Because , the subspace model enables drastic reduction in data acquisition time through 𝑁𝑇′ ≪ 𝑁𝑇

the short-time acquisition followed by reconstruction. 

Integrating subspace model with compressed sensing (CS)
With spatial sparse sampling, all the pixels need to be jointly reconstructed in order to leverage 
the spatiotemporal correlation to interpolate the missing pixels effectively. To this end, we 
formulated a sparsity constrained subspace fitting for all pixels as follows: 

           (5)min
𝑪

‖𝑫 ― 𝜴𝑪𝜱′‖2
𝐹 + 𝜆‖𝑾𝑴𝑇𝑪‖1
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where  is the data matrix containing short transients with  points,  is the designed binary 𝑫 𝑁𝑇′ 𝜴
measurement matrix with one at the sampled pixel index and zero otherwise,  is the unknown 𝑪
spatial coefficient matrix for all the desired pixels,  is the pre-estimated basis matrix,  is a 𝜱′ 𝑾
wavelet transform operator, and  is an operation that arranges pixel indices into the proper 𝑴𝑇

spatial locations to form an image. Compared to ℓ2 regularization, ℓ1 regularization encourages 
the solution to be sparse in a transform domain (wavelet in this case), effectively addressing the 
ill-posedness of the reconstruction problem. However, solving eq. (5) requires a nonlinear 
optimization procedure. We propose to use the alternating direction method of multipliers (ADMM) 
algorithm to solve the equivalent form of eq. (5):

      (6)min
𝑪,𝑮

‖𝑫 ― 𝜴𝑪𝜱′‖2
𝐹 + 𝜆‖𝑮‖1   𝑠.𝑡.   𝑮 = 𝑾𝑴𝑇𝑪 

with the augmented Lagrangian function:

      (7)‖𝑫 ― 𝜴𝑪𝜱′‖2
𝐹 + 𝜆‖𝑮‖1 + 〈𝒀,𝑮 ― 𝑾𝑴𝑇𝑪〉 +

𝜌
2‖𝑮 ― 𝑾𝑴𝑇𝑪‖

2

𝐹 

where  is an introduced auxiliary variable,  is the Lagrangian multiplier and  is a penalty 𝑮 𝒀 𝜌
parameter. Eq. (7) can then be solved by alternatively solving the following subproblems:

     (8)𝑮(𝑙 + 1) = min
𝑮

𝜆‖𝑮‖1 +
𝜌
2‖𝑮 ― 𝑾𝑴𝑇𝑪(𝑙) +

1
𝜌𝒀(𝑙)‖2

𝐹

                             (9)𝑪(𝑙 + 1) = min
𝑪

𝜆‖𝑫 ― 𝜴𝑪𝜱′‖2
𝐹 +

𝜌
2‖𝑮(𝑙 + 1) ― 𝑾𝑴𝑇𝑪 +

1
𝜌𝒀(𝑙)‖2

𝐹

                              (10)𝒀(𝑙 + 1) = 𝒀(𝑙) + 𝜌(𝑮(𝑙 + 1) ― 𝑾𝑴𝑇𝑪(𝑙 + 1))

Solution to eq. (8) for  can be obtained through simple soft-thresholding:1𝑮(𝑙 + 1)

                               (11)𝑮(𝑙 + 1) = 𝒮(𝑾𝑴𝑇𝑪(𝑙) ―
1
𝜌𝒀(𝑙); 

𝜆
𝜌 )

where  is the soft-thresholding operator, 𝒮

𝒮(𝑸𝑛,𝑚;𝛼) = { 0,  𝑸𝑛,𝑚 < 𝛼
𝑸𝑛,𝑚

|𝑸𝑛,𝑚|(|𝑸𝑛,𝑚| ― 𝛼), 𝑸𝑛,𝑚 ≥ 𝛼

Solution to eq. (9) can be derived from a linear equation:

                  (12)𝜴𝑇𝜴𝑪𝜱′𝜱′𝑇 +
𝜌
2𝑴𝑾𝑇𝑾𝑴𝑇𝑪 = 𝜴𝑇𝑫𝜱′𝑇 +

𝜌
2𝑴𝑾𝑇𝑮(𝑙 + 1) +

1
2𝑴𝑾𝑇𝒀

(𝑙)
.

Eq. (12) can then be decoupled into solving for sampled pixels and non-sampled pixels, which can 
be computed row by row and is parallelizable, if orthogonal wavelet transform is used (𝑾𝑇𝑾 =
)Let  to be the -th row of the summation matrix on the right-hand side in eq. (12), the spatial 𝑰 𝑏𝑖 𝑖

coefficients are solved as follows:

                                       (13){𝑐𝑖𝜱′𝜱′𝑇 +
𝜌
2𝑐𝑖 = 𝑏

𝑖
,  𝑖𝑓 𝑖.𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝜌
2𝑐𝑖 = 𝑏

𝑖
,  𝑖𝑓 𝑖.𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑑
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The Lagrangian multiplier  is updated in eq. (10). The algorithm cycles through eqs. (11), (12) 𝒀
and (10) until convergence, by checking the relative change of the  and  at each step (Figure 𝑪 𝒀
S10). 

Basis estimation
We can estimate the basis ( ) from a collection of high-resolution transients with  points. First, 𝜱 𝑁𝑇

a Casorati matrix is formed by arranging these transients as follows:

𝑺 = [𝑠(𝑟1,𝑡1) 𝑠(𝑟1,𝑡2) ⋯ 𝑠(𝑟1,𝑡𝑁𝑇 ― 1) 𝑠(𝑟1,𝑡𝑁𝑇
)

𝑠(𝑟2,𝑡1) 𝑠(𝑟2,𝑡2) ⋯ 𝑠(𝑟2,𝑡𝑁𝑇 ― 1) 𝑠(𝑟2,𝑡𝑁𝑇
)

⋮ ⋮ ⋱ ⋮ ⋮
𝑠(𝑟𝑁,𝑡1) 𝑠(𝑟𝑁,𝑡2) ⋯ 𝑠(𝑟𝑁,𝑡𝑁𝑇 ― 1) 𝑠(𝑟𝑁,𝑡𝑁𝑇

)]
We then apply singular value decomposition (SVD) to . Given a  matrix, it can be 𝑺 𝑁 × 𝑁𝑇

decomposed through the compact SVD:
                                   (14)𝑺 = 𝑼𝜮𝑽𝑻

where  is a  matrix,  is an  matrix, and  is a  square matrix with non-𝑼 𝑁 × 𝑁𝑇 𝑽 𝑁𝑇 × 𝑁𝑇 𝜮 𝑁𝑇 × 𝑁𝑇

negative real numbers on the diagonal as singular values. Model order  is selected heuristically 𝐿
based on the decay of singular values, giving the basis transients expressed as: 

                                                                              (15)𝜱 = 𝑽𝑇
𝐿

where  contains the top  rows of  that correspond to the  largest singular values. In our 𝑽𝑇
𝐿 𝐿 𝑽𝑻 𝐿

experimental implementation, the basis transients were estimated from 4,000 randomly sampled 
transients from the fully sampled high-resolution dataset. More details and analysis on the basis 
estimation can be found in the reference2. A scikit-learn implementation of truncated SVD with 
ARPACK solver was used. With the selected number of sampled high-resolution transients and 
model order, the algorithm took about 15 mins to complete. 

Experimental Details

Animals. Ten- to 12-week old male Sprague-Dawley® outbred rats (Rattus norvegicus) were 
obtained from Envigo (https://www.envigo.com/). Animal euthanasia was performed in 
accordance with the Illinois Institutional Animal Care and Use Committee and both federal and 
ARRIVE guidelines for the humane care and treatment of animals. 
Tissue sectioning and matrix application. Rats were euthanized using CO2 asphyxiation.  
Immediately after euthanasia, transcardiac perfusion of the vascular system was performed using 
ice cold modified Gey's balanced salt solution (mGBSS) containing (in mM) 1.5 CaCl2, 4.9 KCl, 
0.2 KH2PO4, 11 MgCl2, 0.3 MgSO4, 138 NaCl, 27.7 NaHCO3, 0.8 Na2HPO4, 25 HEPES and 
10 glucose, pH 7.2. The entire rat brain was rapidly excised and frozen on dry ice. 16-μm-thick 
sagittal (right hemisphere) and coronal (both hemispheres) brain slices were prepared at –20 ˚C 
using Leica cryostat (Leica). The tissue slices were thaw-mounted onto indium-tin oxide glass 
slides. 30 mg/mL in 70% methanol 2,5-dihydroxybenzoic acid (DHB) MALDI matrix was applied 
using an HTX-M5 Sprayer (HTX Technologies, Chapel Hill, NC). MALDI matrix solution was 

https://www.envigo.com/
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sprayed at a flow rate of 100 μL/min, a temperature of 75 ⁰C, and nebulizing gas pressure of 10 
psi. The distance of the sprayer nozzle to sample surface was 50 mm, row spacing 2.5 mm, and 
sprayer nozzle velocity of 1200 mm/min.

FT-ICR MSI and sampling implementation. MSI was performed on a solariX 7T MALDI FT-
ICR mass spectrometer (Bruker Corp., Billerica, MA) equipped with a dual ESI/MALDI source. 
The fully sampled high-resolution datasets for retrospective sparse sampling were acquired with a 
mass window of m/z 150–1200 and 1,048,576 data points per transient, yielding 0.731 s transient 
duration, which resulted in a resolving power of 160,000 at m/z 400. MALDI mass spectra were 
acquired in positive-mode using a Smartbeam-II UV laser (Bruker Corp.) in ‘minimum’ mode 
with a 50-μm raster width. Each MALDI acquisition consisted of 400 laser shots at a frequency of 
1000 Hz. External calibration was performed using PepMix II (Bruker Corp.). For the 
experimental implementation of the integrated subspace and CS based sparse sampling, short 
transients were collected with 65,536 data points, yielding 0.045 s transient duration and a 
resolving power of 10,000 at m/z 400 prior to reconstruction. The mass resolution was calculated 
theoretically by: 

 
𝑚

∆𝑚 =
1.274 × 107𝑧𝐵0𝑇𝑎𝑞𝑛

𝑚

where  is the magnetic field strength (7T in our case), and  is the transient acquisition time. 𝑩𝟎 𝑻𝒂𝒒𝒏

The peak resolution R provided was given by calculating the full width at half maximum (FWHM) 
of the particular Lorentzian peaks. Tissues were imaged with a 25 μm raster width, and the number 
of laser shots was set to 300. Spatial sparse sampling requires preselection of random pixel 
locations to scan over a defined tissue region. Tissue sections placed on ITO slides were imaged 
at 1200 dpi with a flatbed scanner (Canon U.S.A. Inc., Melville, NY). Optical images were loaded 
into Bruker flexImaging software for tissue region of interest (ROI) selection. For each tissue ROI, 
a geometry file mapping the relative pixel position to the physical stage position and an autoXecute 
file defining the acquisition sequence were generated. A customized Python script was used to 
modify the autoXecute file by randomly selecting a subset of scanning positions (e.g. 30% of all 
scanning positions) from the acquisition sequence. The modified autoXecute file was then read by 
the autoXecuteRun program to start a single (or batch) acquisition.
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Figure S1. General workflow of the proposed method to accelerated FT MSI using a joint compressed 
sensing and subspace modeling approach.
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Figure S2. The workflow for the simulated FT-ICR MSI data, described in the supporting methods. 
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Figure S3. Representative simulated transients and spectra. Clean simulated transients (left column, top two) and the 
correspondingly mass spectra (left column, bottom two) from two simulated spatial substructures were displayed. The 
same data with Gaussian white noise added were shown on the right column. 
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Figure S4. Evaluation on the simulated FT-ICR MSI dataset. The distributions of the spatial correlation between 
original and reconstructed image pairs at various sample rates using the noisy basis.
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Figure S5. Extracted basis transients from (A) the clean dataset and (B) the noisy dataset. The singular values decay 
faster for the clean data than the noisy data.

Figure S6. Original ion images, reconstructed images using the clean basis, and the reconstructed images using the 
noisy basis were compared at different m/z channels. Images shown were reconstructed using a 60% sample rate.
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Figure S7. Reconstruction from data generated by a retrospective sparse sampling of a fully sampled high-
resolution FT-ICR MSI dataset for a rat brain sagittal section. (A) Selected ion images at m/z 819.6644 and m/z 
788.6206 are shown as the reference (original data, column 1) and reconstruction from data with 30, 60 and 100% 
pixels sampled (columns 2 to 4 respectively). (B) The histograms of the spatial and spectral correlation measures of 
ion images and the mass spectra from reference and reconstructed data.
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Figure S8. Reconstructed ion images from the dataset 2-6 listed in Table 1. In each row, images from datasets 
measured by different acquisition settings were putatively annotated with chemical formulas and ppm errors.
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Figure S9. PCA of the reconstructed datasets listed in Table 1. Scores for the top 6 PCs were arranged into images, 
revealing the spatial variations of the contributions from different PCs.
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Figure S10. Demonstration of the spatial sparse sampling. Random spatial locations were selected for scanning by 
generating sampling masks from the whole tissue mask (left two columns; colors indicate the pixel location index). 
Ion images are obtained from raw data (right two columns, first column) and reconstructed data (second column).
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Figure S11. Convergence analysis of spatial coefficients and the Lagrangian multipliers for the proposed algorithm. 
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Table S1. Chemical formulas, ion forming adducts, m/z and relative intensities of the corresponding isotopic peaks 
for the simulation. Peak patterns consisting of three isotopic peaks are simulated for each singly charged cation.

chemical formulas adduct isotopic 
peak 1 

m/z

isotopic 
peak 1 

intensity

isotopic 
peak 2 

m/z

isotopic 
peak 2 

intensity

isotopic 
peak 3 

m/z

isotopic 
peak 3 

intensity

{'H': 80, 'C': 40, 'O': 8, 'N': 1, 'P': 1} H 735.5773 0.63964 736.5806 0.286972 737.5836 0.073389
{'H': 80, 'C': 40, 'O': 8, 'N': 1, 'P': 1} Na 757.5592 0.639708 758.5626 0.286929 759.5656 0.073363
{'H': 80, 'C': 40, 'O': 8, 'N': 1, 'P': 1} K 773.5331 0.61141 774.5365 0.274313 775.5363 0.114276
{'H': 83, 'C': 41, 'O': 6, 'N': 2, 'P': 1} H 732.614 0.633047 733.6173 0.29291 734.6204 0.074043
{'H': 83, 'C': 41, 'O': 6, 'N': 2, 'P': 1} Na 754.5959 0.633115 755.5992 0.292868 756.6023 0.074017
{'H': 83, 'C': 41, 'O': 6, 'N': 2, 'P': 1} K 770.5699 0.605384 771.5732 0.280117 772.5731 0.114499
{'H': 50, 'C': 24, 'O': 7, 'N': 1, 'P': 1} H 497.3476 0.756622 498.3509 0.205622 499.3536 0.037756
{'H': 50, 'C': 24, 'O': 7, 'N': 1, 'P': 1} Na 519.3295 0.756706 520.3329 0.205558 521.3355 0.037737
{'H': 50, 'C': 24, 'O': 7, 'N': 1, 'P': 1} K 535.3035 0.71744 536.3068 0.194981 537.3048 0.087579
{'H': 44, 'C': 27, 'O': 7, 'N': 1, 'P': 1} H 527.3006 0.734009 528.304 0.222787 529.3067 0.043204
{'H': 44, 'C': 27, 'O': 7, 'N': 1, 'P': 1} Na 549.2826 0.73409 550.2859 0.222727 551.2887 0.043183
{'H': 44, 'C': 27, 'O': 7, 'N': 1, 'P': 1} K 565.2565 0.697077 566.2599 0.211584 567.2582 0.091339

{'H': 67, 'C': 40, 'O': 8, 'P': 1} H 708.4725 0.642698 709.4759 0.285035 710.4789 0.072268
{'H': 67, 'C': 40, 'O': 8, 'P': 1} Na 730.4544 0.642766 731.4578 0.284991 732.4609 0.072243
{'H': 67, 'C': 40, 'O': 8, 'P': 1} K 746.4283 0.614204 747.4317 0.272404 748.4315 0.113392

{'H': 86, 'C': 44, 'O': 8, 'N': 1, 'P': 1} H 789.6242 0.614332 790.6276 0.302619 791.6306 0.083049
{'H': 86, 'C': 44, 'O': 8, 'N': 1, 'P': 1} Na 811.6062 0.614397 812.6095 0.302581 813.6126 0.083023
{'H': 86, 'C': 44, 'O': 8, 'N': 1, 'P': 1} K 827.5801 0.588247 828.5835 0.289776 829.5836 0.121978

{'H': 71, 'C': 37, 'O': 8, 'P': 1} H 676.5038 0.662052 677.5072 0.272441 678.5102 0.065507
{'H': 71, 'C': 37, 'O': 8, 'P': 1} Na 698.4857 0.662123 699.4891 0.272394 700.4921 0.065483
{'H': 71, 'C': 37, 'O': 8, 'P': 1} K 714.4596 0.631857 715.4631 0.260022 716.4626 0.108121

{'H': 54, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} H 633.3636 0.699921 634.367 0.244326 635.3697 0.055753

{'H': 54, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} Na 655.3456 0.699997 656.3489 0.244272 657.3516 0.055731

{'H': 54, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} K 671.3195 0.666261 672.3229 0.232583 673.3218 0.101156

{'H': 82, 'C': 41, 'O': 8, 'N': 1, 'P': 1} H 749.5929 0.633158 750.5963 0.291058 751.5993 0.075784
{'H': 82, 'C': 41, 'O': 8, 'N': 1, 'P': 1} Na 771.5749 0.633226 772.5782 0.291016 773.5813 0.075759
{'H': 82, 'C': 41, 'O': 8, 'N': 1, 'P': 1} K 787.5488 0.605486 788.5522 0.278343 789.5521 0.116171
{'H': 48, 'C': 24, 'O': 6, 'N': 1, 'P': 1} H 479.337 0.758246 480.3404 0.2056 481.3431 0.036154
{'H': 48, 'C': 24, 'O': 6, 'N': 1, 'P': 1} Na 501.319 0.75833 502.3223 0.205536 503.325 0.036134
{'H': 48, 'C': 24, 'O': 6, 'N': 1, 'P': 1} K 517.2929 0.7189 518.2962 0.194939 519.2942 0.086161

{'H': 89, 'C': 51, 'O': 8, 'N': 1} H 845.6739 0.573465 846.6773 0.326103 847.6804 0.100432
{'H': 89, 'C': 51, 'O': 8, 'N': 1} Na 867.6559 0.573524 868.6592 0.326071 869.6624 0.100405
{'H': 89, 'C': 51, 'O': 8, 'N': 1} K 883.6298 0.55067 884.6332 0.313146 885.6339 0.136184

{'H': 74, 'C': 38, 'O': 6, 'N': 1, 'P': 1} H 673.5405 0.655216 674.5438 0.278835 675.5469 0.065948
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{'H': 74, 'C': 38, 'O': 6, 'N': 1, 'P': 1} Na 695.5224 0.655287 696.5258 0.27879 697.5288 0.065923
{'H': 74, 'C': 38, 'O': 6, 'N': 1, 'P': 1} K 711.4964 0.625627 712.4997 0.26625 713.4993 0.108123
{'H': 71, 'C': 36, 'O': 6, 'N': 2, 'P': 1} H 660.5201 0.666502 661.5234 0.271426 662.5264 0.062073
{'H': 71, 'C': 36, 'O': 6, 'N': 2, 'P': 1} Na 682.502 0.666574 683.5053 0.271378 684.5083 0.062048
{'H': 71, 'C': 36, 'O': 6, 'N': 2, 'P': 1} K 698.476 0.635908 699.4793 0.258974 700.4787 0.105118

{'H': 69, 'C': 39, 'O': 8, 'P': 1} H 698.4881 0.649024 699.4915 0.28097 700.4945 0.070006
{'H': 69, 'C': 39, 'O': 8, 'P': 1} Na 720.4701 0.649093 721.4735 0.280925 722.4765 0.069982
{'H': 69, 'C': 39, 'O': 8, 'P': 1} K 736.444 0.619979 737.4474 0.268403 738.4471 0.111619
{'H': 79, 'C': 39, 'O': 8, 'P': 1} H 708.5664 0.64833 709.5698 0.281415 710.5728 0.070255
{'H': 79, 'C': 39, 'O': 8, 'P': 1} Na 730.5483 0.648399 731.5517 0.281371 732.5548 0.07023
{'H': 79, 'C': 39, 'O': 8, 'P': 1} K 746.5222 0.619346 747.5257 0.268841 748.5254 0.111813

{'H': 80, 'C': 44, 'O': 6, 'N': 2, 'P': 1} H 765.5905 0.614645 766.5938 0.304126 767.5969 0.081229
{'H': 80, 'C': 44, 'O': 6, 'N': 2, 'P': 1} Na 787.5724 0.61471 788.5758 0.304088 789.5789 0.081202
{'H': 80, 'C': 44, 'O': 6, 'N': 2, 'P': 1} K 803.5464 0.588533 804.5497 0.291213 805.5499 0.120254

{'H': 35, 'C': 19, 'O': 7, 'P': 1} H 408.2271 0.801208 409.2306 0.170101 410.2329 0.028691
{'H': 35, 'C': 19, 'O': 7, 'P': 1} Na 430.2091 0.801297 431.2125 0.170028 432.2149 0.028675
{'H': 35, 'C': 19, 'O': 7, 'P': 1} K 446.183 0.757406 447.1864 0.16081 448.1837 0.081784

{'H': 50, 'C': 26, 'O': 4} H 428.386 0.747976 429.3894 0.215865 430.3924 0.036159
{'H': 50, 'C': 26, 'O': 4} Na 450.368 0.748059 451.3714 0.215802 452.3744 0.036139
{'H': 50, 'C': 26, 'O': 4} K 466.3419 0.709662 467.3453 0.204815 468.3433 0.085524

{'H': 29, 'C': 15, 'O': 4, 'N': 1} H 289.2248 0.838366 290.228 0.143246 291.2305 0.018388
{'H': 29, 'C': 15, 'O': 4, 'N': 1} Na 311.2067 0.838461 312.21 0.143166 313.2124 0.018373
{'H': 29, 'C': 15, 'O': 4, 'N': 1} K 327.1806 0.790529 328.1839 0.135081 329.1805 0.07439
{'H': 37, 'C': 20, 'O': 8, 'P': 1} H 438.2377 0.791121 439.2411 0.176999 440.2435 0.03188
{'H': 37, 'C': 20, 'O': 8, 'P': 1} Na 460.2197 0.791209 461.2231 0.176928 462.2254 0.031863
{'H': 37, 'C': 20, 'O': 8, 'P': 1} K 476.1936 0.748385 477.197 0.167446 478.1945 0.084169
{'H': 46, 'C': 24, 'O': 7, 'P': 1} H 479.3132 0.75962 480.3166 0.203312 481.3193 0.037068
{'H': 46, 'C': 24, 'O': 7, 'P': 1} Na 501.2952 0.759704 502.2986 0.203247 503.3012 0.037049
{'H': 46, 'C': 24, 'O': 7, 'P': 1} K 517.2691 0.720135 518.2725 0.192751 519.2704 0.087114

{'H': 64, 'C': 33, 'O': 9, 'N': 1, 'P': 1} H 651.447 0.686327 652.4503 0.254954 653.4532 0.058718
{'H': 64, 'C': 33, 'O': 9, 'N': 1, 'P': 1} Na 673.4289 0.686402 674.4323 0.254903 675.4351 0.058695
{'H': 64, 'C': 33, 'O': 9, 'N': 1, 'P': 1} K 689.4029 0.653931 690.4062 0.242927 691.4053 0.103142
{'H': 40, 'C': 23, 'O': 7, 'N': 1, 'P': 1} H 475.2693 0.765359 476.2727 0.198838 477.2753 0.035803
{'H': 40, 'C': 23, 'O': 7, 'N': 1, 'P': 1} Na 497.2513 0.765444 498.2546 0.198772 499.2572 0.035784
{'H': 40, 'C': 23, 'O': 7, 'N': 1, 'P': 1} K 513.2252 0.725291 514.2285 0.188436 515.2264 0.086273

{'H': 43, 'C': 23, 'O': 10, 'P': 1} H 512.2745 0.763346 513.2779 0.196662 514.2803 0.039992
{'H': 43, 'C': 23, 'O': 10, 'P': 1} Na 534.2564 0.76343 535.2599 0.196596 536.2623 0.039974
{'H': 43, 'C': 23, 'O': 10, 'P': 1} K 550.2304 0.723483 551.2338 0.1864 552.2317 0.090118
{'H': 77, 'C': 41, 'O': 8, 'N': 1} H 713.58 0.633495 714.5834 0.290848 715.5864 0.075657
{'H': 77, 'C': 41, 'O': 8, 'N': 1} Na 735.562 0.633562 736.5653 0.290806 737.5684 0.075632
{'H': 77, 'C': 41, 'O': 8, 'N': 1} K 751.5359 0.605794 752.5393 0.278136 753.5392 0.11607
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{'H': 37, 'C': 19, 'O': 12, 'N': 1} H 473.2467 0.790253 474.25 0.172349 475.2521 0.037397
{'H': 37, 'C': 19, 'O': 12, 'N': 1} Na 495.2286 0.790341 496.2319 0.172277 497.234 0.037382
{'H': 37, 'C': 19, 'O': 12, 'N': 1} K 511.2026 0.747609 512.2059 0.163057 513.2036 0.089334
{'H': 49, 'C': 31, 'O': 10, 'P': 1} H 614.3214 0.702719 615.3248 0.242331 616.3276 0.05495
{'H': 49, 'C': 31, 'O': 10, 'P': 1} Na 636.3034 0.702796 637.3068 0.242277 638.3095 0.054928
{'H': 49, 'C': 31, 'O': 10, 'P': 1} K 652.2773 0.668796 653.2807 0.23064 654.2796 0.100565

{'H': 52, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} H 631.348 0.700073 632.3513 0.244218 633.3541 0.055709

{'H': 52, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} Na 653.3299 0.700149 654.3333 0.244164 655.336 0.055687

{'H': 52, 'C': 31, 'O': 10, 'N': 1, 'P': 
1} K 669.3039 0.666399 670.3072 0.232477 671.3062 0.101124

{'H': 66, 'C': 37, 'O': 9, 'N': 1, 'P': 1} H 701.4626 0.659025 702.466 0.273475 703.4689 0.067499
{'H': 66, 'C': 37, 'O': 9, 'N': 1, 'P': 1} Na 723.4446 0.659096 724.4479 0.273429 725.4508 0.067475
{'H': 66, 'C': 37, 'O': 9, 'N': 1, 'P': 1} K 739.4185 0.629099 740.4219 0.261064 741.4214 0.109837
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