Supporting information

Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III) Catalyzed Enantioselective Dehydrogenation

Honghao Guan,[†] Chen-Ho Tung,[†] Lei Liu^{*,†}

[†]School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

*Correspondence to: leiliu@sdu.edu.cn

Table of contents

General information	S3
General procedures	S4
Optimization of reaction conditions	S9
Analytical data for products	S10
Mechanism studies	
X-ray crystallographic data	
References	
NMR spectra	
HPLC spectra	

General Information

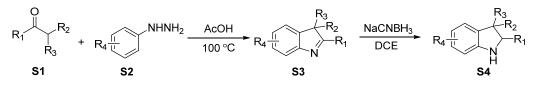
Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were recorded at 500 MHz or 400 MHz and 126 MHz or 101 MHz, respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ¹H NMR: CDCl₃ = 7.26 ppm; for ¹³C NMR: CDCl₃ = 77.23 ppm. Analytical TLC was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200–300 mesh). Optical rotations were measured using a 2.5 mL cell with a 10 cm path length on Hanon P850 Automatic Polarimeter and concentrations (c) were reported in g × (100 mL)⁻¹. HRMS were measured on the Q-TOF 6510 instruments. UV-vis spectra were carried on Agilent Cary 8454 UV-Visible spectrophotometer. Resonance Raman spectroscopy was measured on LabRAM HR Evolution in-situ UV laser confocal Raman Spectrometer. Enantiomeric excesses were determined by HPLC using a Daicel Chiralpak and Chiralcel column with hexane/*i*-PrOH as the eluent on Dionex instrument. All the solvents were freshly distilled prior to use according to the standard procedures.^[1]

General Procedures

General procedure A: Dehydrogenative kinetic resolution of racemic substrates catalyzed by pre-synthesised diiron complexes

To a solution of racemic substrate (0.1 mmol, 1.0 equiv) in CH_2Cl_2 (1.0 mL), dimeric iron complex **C1-C8** (0.005 mmol, 5 mmol %) was added at -40 °C. Then 30% aqueous hydrogen peroxide (0.1 mmol, 10 µL, 1.0 equiv) was added and the reaction was then stirred at same tempreture for 24 h. Then the mixture was diluted with CH_2Cl_2 (20 mL), washed with water (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel chromatography using ethyl acetate/petroleum ether as eluent to give the desired product.

General procedure B: Dehydrogenative kinetic resolution of racemic substrates catalyzed by self-assembled diiron complex

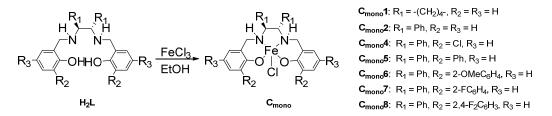

To a solution of racemic substrate (0.1 mmol, 1.0 equiv) in CH_2Cl_2 (1.0 mL), $C_{mono}8$ (0.005 mmol, 3.7 mg, 5 mmol %) and sodium 6-methoxy-2-naphthoate (0.01 mmol, 2.2 mg, 10 mmol %) was added at -40 °C. Then 30% aqueous hydrogen peroxide (0.1 mmol, 10 µL, 1.0 equiv) was added as 4 portions in 2-hours intervals. The reaction was then stirred at same tempreture for 1-32 h. Then the mixture was diluted with CH_2Cl_2 (20 mL), washed with water (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel chromatography using ethyl acetate/petroleum ether as eluent to give the desired product.

Synthesis of substrates

Substrates 1m, 5b, 5d, 5e, 5f, 5g, 8 and 11 were known compounds and prepared following the established procedures.^[2-9]

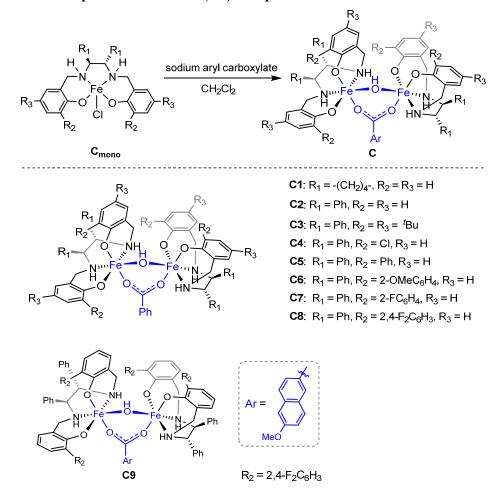
General procedure C: Synthesis of racemic Substrates 1a-1l, 3a-3j, 5a, 5c, and 10:

Scheme S1. Preparation of substrates.



A mixture of arylhydrazine S2 or its HCl salt (5.5 mmol) and S1 (5 mmol) in AcOH (10 mL) was stirred at 100 °C for 1–6 h. The reaction was monitored by TLC. Upon completion, the reaction mixture was cooled with cold water and diluted with 1,2-dichloroethane (10 mL) followed by treatment with NaCNBH₃ (7.5 mmol, 1.5 equiv) in portions with cooling in cold water and was then stirred for 1 h at room temperature. The reaction was quenched with water, extracted with EtOAc and washed with sat. NaHCO₃. The organic layer was dried over MgSO₄, filtered, and concentrated. The residue was purified by chromatography with EtOAc/petroleum ether to provide the products.

Synthesis of monomeric Fe(salan) and Fe(salen) complexes


Fe(salan) complex $C_{mono}3$ were prepared following established procedures.^[10]

Scheme S2. Preparation of monomeric Fe(salan) complexes.

General procedure D: Synthesis of monomeric Fe(salan) complex C_{mono}1, C_{mono}2, C_{mono}4-C_{mono}8:

FeCl₃ (0.42 mmol, 1.05 equiv) was added to a solution of H₂L (0.4 mmol, 1.0 equiv) in ethanol (10 mL) giving a purplish solution which was refluxed for 4 h. Then the reaction mixture was evaporated in vacuo. The residue was chromatographed on silica gel (CH₂Cl₂ / MeOH = 19 : 1) to give the corresponding complex respectively.

Scheme S3. Preparation of diiron(III) complexes.

General procedure E: Synthesis of diiron(III) complexes C1-C9:

Monomer complex $C_{mono}1-C_{mono}8$ (0.05 mmol, 1.0 equiv) dissolved in CH_2Cl_2 -EtOH-acetone-H₂O (3 mL/ 3 mL/3 mL/ 1 drop) solution and additive sodium aryl carboxylate (20 equiv) was added. The mixure was maintained open-flask at room temperature for several days until the solid dimmeric iron complexes precipitated. UV-vis absorption spectra and ESI-MS was conducted to characterize these complexes. UV-vis absorption spectra used CH_2Cl_2 as solvent and the concentration is 10^{-5} mol/L.

Complex C1:

Reddish purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₄₇H₅₃Fe₂N₄O₆: 881.27, found 881.25; m/z [M - H]⁻ calculated for C₄₇H₅₃Fe₂N₄O₇: 897.26, found 897.25.

UV-vis absorption features at 276, 311 and 498 nm and the corresponding monomer UV-vis absorption features at 275, 316 and 529 nm.

Complex C2:

Reddish purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₆₃H₅₇Fe₂N₄O₆: 1077.30, found 1077.30; m/z [M - H]⁻ calculated for C₆₃H₅₇Fe₂N₄O₇: 1093.29, found 1093.32. UV-vis absorption features at 280, 310 and 491 nm and the corresponding monomer UV-vis absorption features at 316 and 504 nm.

Complex C3:

Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₉₅H₁₂₁Fe₂N₄O₆: 1525.80, found 1525.76; m/z [M - H]⁻ calculated for C₉₅H₁₂₁Fe₂N₄O₇: 1541.79, found 1541.80. UV-vis absorption features at 279, 329 and 543 nm and the corresponding monomer UV-vis absorption features at 281, 333 and 541 nm.

Complex C4:

Reddish purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₆₃H₅₃Cl₄Fe₂N₄O₆: 1213.14, found 1213.24; m/z [M - H]⁻ calculated for C₆₃H₅₃Cl₄Fe₂N₄O₇: 1229.14, found 1229.17. UV-vis absorption features at 284 and 493 nm and the corresponding monomer UV-vis absorption features at 284, 317 and 525 nm.

Complex C5:

Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₈₇H₇₃Fe₂N₄O₆: 1381.42, found 1381.37; m/z [M - H]⁻ calculated for C₈₇H₇₃Fe₂N₄O₇: 1397.42, found 1397.41. UV-vis absorption features at 301 and 520 nm and the corresponding monomer UV-vis absorption features at 302 and 527 nm.

Complex C6:

Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₉₁H₈₁Fe₂N₄O₁₀: 1501.46, found 1501.43; m/z [M - H]⁻ calculated for C₉₁H₈₁Fe₂N₄O₁₁: 1517.46, found 1517.48. UV-vis absorption features at 301 and 518 nm and the corresponding monomer UV-vis absorption features at 300 and 541 nm.

Complex C7:

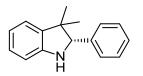
Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₈₇H₆₉F₄Fe₂N₄O₆: 1453.38, found 1453.49; m/z [M - H]⁻ calculated for C₈₇H₆₉F₄Fe₂N₄O₇: 1469.38, found 1469.38. UV-vis absorption features at 296 and 502 nm and the corresponding monomer UV-vis absorption features at 295 and 506 nm.

Complex C8:

Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₈₇H₆₅F₈Fe₂N₄O₆: 1525.35, found 1525.40; m/z [M - H]⁻ calculated for C₈₇H₆₅F₈Fe₂N₄O₇: 1541.34, found 1541.34. UV-vis absorption features at 295 and 498 nm and the corresponding monomer UV-vis absorption features at 294 and 512 nm.

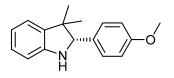
Complex C9:

Purple solid; ESI-MS m/z [M - OH]⁺ calculated for C₉₂H₆₉F₈Fe₂N₄O₇: 1605.37, found 1605.37; m/z [M - H]⁻ calculated for C₉₂H₆₉F₈Fe₂N₄O₈: 1621.37, found 1621.33. UV-vis absorption features at 302 and 521 nm.


Optimization of reaction conditions

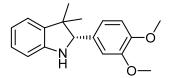
N H rac- 1a	C _{mono} 8 (5 mol % additive (10 mol % 30% H ₂ O ₂ (1.0 equ solvent, −40 °C	6) liv) (N H a	L N 2a	Ph
entry	additive	Solvent	conv. $(\%)^b$	ee (%) ^c	s ^d
1	PhCOONa	1,2-Dichloroethane	50	57	6.3
2	PhCOONa	Chloroform	55	22	1.7
3	PhCOONa	THF	45	0	n.d.
4	PhCOONa	Methanol	51	9	1.3
5	PhCOONa	Ethyl acetate	51	23	1.9
6	PhCOONa	Toluene	47	17	1.7
7	PhCOONa	Acetone	53	15	1.5
8	PhCOONa	Acetonitrile	47	13	1.5
9	PhCOONa	CH_2Cl_2	49	71	14
10^e	PhCOONa	CH_2Cl_2	55	41	2.9
$1 1^f$	PhCOONa	CH_2Cl_2	40	45	8.0
12	1-Naphthol	CH_2Cl_2	53	9	1.3

Table S1. Solvent, additive and reaction temprature optimization of dehydrogenative kinetic resolution reaction^a

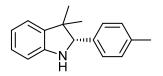

^{*a*}Reaction condition: to rac-**1a** (0.1 mmol), monoiron C_{mono} **8** (5 mol %) and additive (10 mol %) in solvent (1.0 mL) at -40 °C was added 30% aqueous H₂O₂ (0.1 mmol) as four portions in 2 h intervals for 6 h, and the mixture was stirred at -40 °C for 18-24 h, unless otherwise noted. ^{*b*}Conversion was calculated from the isolated yield of recovered (*S*)-**1a**. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}Selectivity (*s*) values were calculated through the equation *s* = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 + ee)], where C is the conversion. ^{*c*}Reaction temperature was -20 °C. ^{*f*}Reaction temperature was -60 °C.

Analytical data for products

(S)-3,3-Dimethyl-2-phenylindoline (1a)

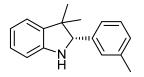

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1a** (11.2 mg, 50% yield). Yellow solid, m.p. 55-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (dd, J = 5.3, 3.5 Hz, 2H), 7.39–7.30 (m, 3H), 7.12–7.06 (m, 2H), 6.82 (td, J = 7.4, 0.9 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 4.62 (s, 1H), 1.45 (s, 3H), 0.76 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.1, 139.9, 138.4, 128.3, 127.7, 127.7, 127.6, 122.7, 119.5, 109.7, 74.7, 45.6, 26.7, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 296 nm), retention time: t_{major} = 9.723 min, t_{minor} = 5.240 min, ee = 94.10%; [α]_D²⁰ = + 173.35 (c = 0.31, THF). HRMS (EI) m/z [M + H]⁺ calculated for C₁₆H₁₈N: 224.1434, found 224.1428. The absolute configuration was assigned as *S* by comparing the optical rotation and HPLC analysis with reported data.^[11]

(S)-2-(4-Methoxyphenyl)-3,3-dimethylindoline (1b)

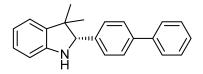

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1b** (12.5 mg, 49% yield) and **2b**. Yellow solid, m.p. 75-76 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.34 (m, 2H), 7.11–7.04 (m, 2H), 6.92–6.87 (m, 2H), 6.80 (td, J = 7.4, 0.7 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 4.56 (s, 1H), 3.83 (s, 3H), 1.41 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.1, 149.0, 138.3, 131.7, 128.5, 127.4, 122.5, 119.2, 113.5, 109.4, 74.1, 55.3, 45.3, 26.4, 24.5. HPLC: the evalue was determined by

HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: $t_{major} = 7.863$ min, $t_{minor} = 5.160$ min, ee = 97.96%; $[\alpha]_D^{20} = + 126.4$ (c = 0.23, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₂₀NO: 254.1539, found 254.1551.

(S)-2-(3,4-Dimethoxyphenyl)-3,3-dimethylindoline (1c)

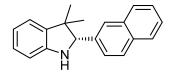

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **1c** (13.6 mg, 48% yield). White solid, m.p. 98-99 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.08 (m, 3H), 6.96 (dd, J = 8.2, 1.8 Hz, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.80 (td, J = 7.4, 0.8 Hz, 1H), 6.73 (d, J = 7.7 Hz, 1H), 4.55 (s, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 1.42 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.9, 148.6, 138.4, 132.5, 127.6, 122.7, 119.7, 119.4, 110.9, 110.8, 109.5, 74.5, 56.1, 45.5, 26.5, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 254 nm), retention time: t_{major} = 13.733 min, t_{minor} = 7.470 min, ee = 96.04%; [α]_D²⁰ = + 174.2 (c = 0.23, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₈H₂₂NO₂: 284.1645, found 284.1633.

(S)-3,3-Dimethyl-2-(p-tolyl)indoline (1d)

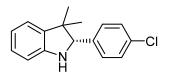

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1d** (12.1 mg, 51% yield). Yellow solid, m.p. 66-67 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.12–7.05 (m, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 4.58 (s, 1H), 2.38 (s, 3H), 1.44 (s, 3H), 0.76 (s, 3H); ¹³C

NMR (126 MHz, CDCl₃) δ 149.4, 138.4, 137.3, 136.9, 129.0, 127.6, 127.6, 122.7, 119.2, 109.5, 74.6, 45.5, 26.7, 24.7, 21.3. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 296 nm), retention time: $t_{major} = 10.580$ min, $t_{minor} = 4.897$ min, ee = 90.96%; $[\alpha]_D^{20} = + 86.44$ (c = 0.31, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₂₀N: 238.1590 found 238.1595.

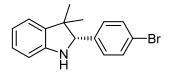
(S)-3,3-Dimethyl-2-(m-tolyl)indoline (1e)


It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1e** (11.7 mg, 49% yield). Pale yellow solid, m.p. 57-58 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.23 (m, 3H), 7.12–7.05 (m, 3H), 6.81 (td, *J* = 7.4, 0.9 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 4.57 (s, 1H), 4.24 (brs, 1H), 2.37 (s, 3H), 1.43 (s, 3H), 0.75 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.3, 139.9, 138.5, 137.9, 128.4, 128.3, 128.2, 127.6, 124.7, 122.7, 119.2, 109.4, 74.7, 45.5, 26.8, 24.7, 21.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 243 nm), retention time: t_{major} = 7.320 min, t_{minor} =4.840 min, ee = 95.52%; [α]_D²⁰ = + 100.7 (c = 0.33, CHCl₃). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₂₀N: 238.1590, found 239.1597.

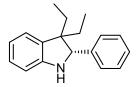
(S)-2-([1,1'-Biphenyl]-4-yl)-3,3-dimethylindoline (1f)


It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1f** (14.4 mg, 48% yield). Yellow solid, m.p. 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66–

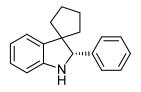
7.59 (m, 4H), 7.54 (d, J = 8.2 Hz, 2H), 7.49–7.44 (m, 2H), 7.39–7.35 (m, 1H), 7.14– 7.08 (m, 2H), 6.83 (td, J = 7.4, 0.8 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 4.66 (s, 1H), 1.48 (s, 3H), 0.81 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.3, 141.0, 140.6, 139.1, 138.3, 129.0, 128.1, 127.6, 127.4, 127.2, 127.0, 122.7, 119.4, 109.6, 74.5, 45.7, 26.7, 24.8. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 248 nm), retention time: $t_{major} = 9.803$ min, $t_{minor} = 6.130$ min, ee = 96.76%; $[\alpha]_D^{20} = + 176.2$ (c = 0.11, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₂₂H₂₂N: 300.1747, found 300.1742.


(S)-3,3-Dimethyl-2-(naphthalen-2-yl)indoline (1g)

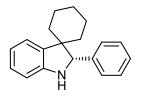
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1g** (13.2 mg, 48% yield). White solid, m.p. 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 7.89–7.82 (m, 3H), 7.59 (dd, J = 8.5, 1.6 Hz, 1H), 7.53–7.47 (m, 2H), 7.17–7.08 (m, 2H), 6.84 (td, J = 7.4, 0.9 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 4.78 (s, 1H), 1.52 (s, 3H), 0.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 138.3, 137.7, 133.4, 133.3, 128.1, 127.9, 127.8, 127.7, 126.3, 126.3, 126.0, 125.9, 122.7, 119.3, 109.5, 74.8, 45.8, 27.0, 24.9. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 12.497 min, t_{minor} = 5.613 min, ee = 93.78%; [α]_D²⁰ = + 143.6 (c = 0.29, CHCl₃). HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₂₀H₂₀N: 274.1590, found 274.1597.


(S)-2-(4-Chlorophenyl)-3,3-dimethylindoline (1h)

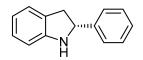
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1h** (13.4 mg, 52% yield). Pale yellow solid, m.p. 93-94 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.40 (m, 2H), 7.39–7.29 (m, 2H), 7.15–7.05 (m, 2H), 6.82 (td, *J* = 7.4, 0.9 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 4.59 (s, 1H), 4.12 (brs, 1H), 1.44 (s, 3H), 0.74 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 138.6, 138.0, 133.3, 128.9, 128.4, 127.7, 122.7, 119.4, 109.5, 74.0, 45.5, 26.6, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 254 nm), retention time: t_{major} = 12.657 min, t_{minor} = 5.570 min, ee = 84.22%; [α]_D²⁰ = + 175.4 (c = 0.33, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₆H₁₇ClN: 258.1044, found 258.1037.


(S)-2-(4-Bromophenyl)-3,3-dimethylindoline (1i)

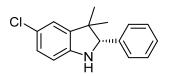
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1i** (15.7 mg, 52% yield). Yellow solid, m.p. 76-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.52–7.45 (m, 2H), 7.37–7.32 (m, 2H), 7.11–7.03 (m, 2H), 6.81 (td, *J* = 7.4, 0.8 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 4.56 (s, 1H), 1.42 (s, 3H), 0.73 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.9, 139.0, 138.1, 131.4, 129.3, 127.7, 122.7, 121.5, 119.6, 109.7, 74.1, 45.6, 26.6, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 11.957 min, t_{minor} = 5.393 min, ee = 85.10%; [α]_D²⁰ = + 91.6 (c = 0.31, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₆H₁₇BrN: 302.0539, found 302.0543.


(S)-3,3-Diethyl-2-phenylindoline (1j)

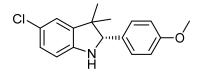
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1j** (13.1 mg, 52% yield). Pale yellow solid, m.p. 36-39 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 2H), 7.40–7.26 (m, 3H), 7.11 (td, *J* = 7.6, 0.9 Hz, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.80 (t, *J* = 7.4 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 4.89 (s, 1H), 4.09 (brs, 1H), 2.03 (dq, *J* = 14.9, 7.5 Hz, 1H), 1.65 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.52 (dq, *J* = 14.9, 7.5 Hz, 1H), 1.00 (t, *J* = 7.5 Hz, 3H), 0.88 (dq, *J* = 14.5, 7.4 Hz, 1H), 0.64 (d, *J* = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 140.4, 133.7, 128.1, 127.7, 127.3, 127.3, 124.7, 118.3, 109.2, 70.2, 52.5, 27.4, 26.3, 9.4, 8.2. HPLC: the evalue was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 270 nm), retention time: t_{major} = 16.910 min, t_{minor} = 6.547 min, ee = 80.62%; [α]_D²⁰ = + 53.2 (c = 0.16, THF). HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₇H₂₂N: 252.1747, found 252.1753.


(S)-2'-Phenylspiro[cyclopentane-1,3'-indoline] (1k)

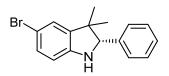
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1k** (11.8 mg, 47% yield). Yellow solid, m.p. 49-51 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (dt, J = 3.8, 2.1 Hz, 2H), 7.35–7.27 (m, 3H), 7.13–7.04 (m, 2H), 6.80 (td, J = 7.4, 0.9 Hz, 1H), 6.72 (d, J = 7.6 Hz, 1H), 4.66 (s, 1H), 2.08–1.98 (m, 2H), 1.87–1.77 (m, 1H), 1.74–1.60 (m, 2H), 1.46 (t, J = 7.2 Hz, 2H), 1.29–1.21 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 141.2, 138.3, 128.4, 127.84, 127.82, 127.5, 123.0, 119.4, 109.2, 73.9, 57.5, 39.9, 35.1, 24.8, 24.8. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 300 nm), retention time: t_{major} = 7.987 min, t_{minor} = 5.530 min, ee = 96.04%; [α]_D²⁰ = + 13.5 (c = 0.27, THF). HRMS (EI) m/z [M + H]⁺ calculated for C₁₈H₂₀N: 250.1590, found 250.1587.


(S)-2'-Phenylspiro[cyclohexane-1,3'-indoline (11)

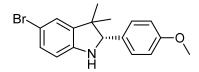
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **11** (12.7 mg, 48% yield). White solid, m.p. 76-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.25 (m, 6H), 7.10 (td, *J* = 7.6, 1.2 Hz, 1H), 6.78 (td, *J* = 7.4, 0.7 Hz, 1H), 6.70 (d, *J* = 7.7 Hz, 1H), 4.58 (s, 1H), 1.90–1.78 (m, 2H), 1.71 (dd, *J* = 11.9, 6.6 Hz, 2H), 1.61–1.53 (m, 1H), 1.52–1.37 (m, 3H), 1.25–1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 141.3, 137.5, 128.3, 128.1, 127.8, 127.7, 124.5, 118.8, 109.1, 73.2, 49.4, 37.6, 32.0, 26.0, 23.2, 22.4. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 305 nm), retention time: t_{major} = 8.070 min, t_{minor} = 5.913 min, ee = 95.26%; [α]_D²⁰ = - 54.7 (c = 0.34, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₉H₂₂N: 264.1747, found 264.1738.


(*R*)-2-Phenylindoline (1m)

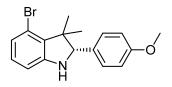
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **1m** (10.4 mg, 53% yield). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, J = 5.4, 3.4 Hz, 2H), 7.31–7.25 (m, 2H), 7.22 (dt, J = 5.1, 2.1 Hz, 1H), 7.02 (dd, J = 12.5, 7.4 Hz, 2H), 6.69 (td, J = 7.5, 0.8 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 4.90 (t, J = 9.0 Hz, 1H), 3.39 (dd, J = 15.6, 9.2 Hz, 1H), 2.94 (dd, J = 15.6, 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 144.6, 128.8, 128.4, 127.8, 127.7, 126.5, 125.4, 124.8, 119.2, 109.3, 63.7, 39.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 215 nm), retention time: t_{major} = 8.923 min, t_{minor} = 14.263 min, ee = 69.92%; [α]_D²⁰ = + 31.6 (c = 0.18, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₄H₁₄N: 196.1121, found 196.1115.


(S)-5-Chloro-3,3-dimethyl-2-phenylindoline (3a)

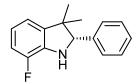
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **3a** (12.4 mg, 48% yield). Yellow solid, m.p. 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.49–7.40 (m, 2H), 7.40–7.29 (m, 3H), 7.03 (dd, J = 8.2, 2.2 Hz, 1H), 6.99 (d, J = 2.1 Hz, 1H), 6.63 (d, J = 8.2 Hz, 1H), 4.61 (s, 1H), 1.42 (s, 3H), 0.74 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 140.3, 139.5, 128.4, 127.9, 127.6, 127.3, 123.8, 123.1, 110.2, 75.0, 45.9, 26.7, 24.6. HPLC: the evalue was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 17.350 min, t_{minor} = 6.153 min, ee = 93.52%; [α]_D²⁰ = + 113.8 (c = 0.42, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₆H₁₇CIN: 258.1044, found 258.1051.


(S)-5-Chloro-2-(4-methoxyphenyl)-3,3-dimethylindoline (3b)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **3b** (13.8 mg, 48% yield). White solid, m.p. 106-107 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.39–7.30 (m, 2H), 7.01 (dd, J = 8.2, 2.2 Hz, 1H), 6.98 (d, J = 2.1 Hz, 1H), 6.92–6.83 (m, 2H), 6.61 (d, J = 8.2 Hz, 1H), 4.54 (s, 1H), 3.82 (s, 3H), 1.38 (s, 3H), 0.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 148.0, 140.4, 131.5, 128.6, 127.2, 123.7, 123.1, 113.7, 110.2, 74.5, 55.5, 45.8, 26.6, 24.5. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 255 nm), retention time: t_{major} = 12.883 min, t_{minor} = 5.277 min, ee = 95.36%; [α]_D²⁰ = + 71.62 (c = 0.21, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₉CINO: 288.1150, found 288.1152.


(S)-5-Bromo-3,3-dimethyl-2-phenylindoline (3c)

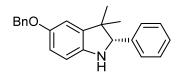
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **3c** (14.2 mg, 47% yield). Yellow solid, m.p. 77-79 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (dd, J = 8.2, 1.2 Hz, 2H), 7.38–7.31 (m, 3H), 7.17 (dd, J = 8.2, 2.0 Hz, 1H), 7.12 (d, J = 2.0 Hz, 1H), 6.59 (d, J = 8.2 Hz, 1H), 4.60 (s, 1H), 1.41 (s, 3 H), 0.73 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.4, 140.7, 139.5, 130.2, 128.4, 127.9, 127.5, 125.9, 110.8, 74.9, 45.9, 26.7, 24.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 320 nm), retention time: t_{major} = 16.910 min, t_{minor} = 6.030 min, ee = 95.72%; [α]_D²⁰ = + 116.7 (c = 0.29, THF). HRMS (EI) m/z [M + H]⁺ calculated for C₁₆H₁₇BrN: 302.0539, found 302.0533.


(S)-5-Bromo-2-(4-methoxyphenyl)-3,3-dimethylindoline (3d)

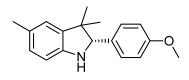
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **3d** (15.6 mg, 47% yield). Yellow solid, m.p. 102-103 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.30 (m, 2H), 7.15 (dd, J = 8.2, 2.0 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 6.91–6.85 (m, 2H), 6.57 (d, J = 8.2 Hz, 1H), 4.53 (s, 1H), 3.82 (s, 3H), 1.37 (s, 3H), 0.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 148.5, 140.8, 131.5, 130.1, 128.6, 125.9, 113.8, 110.7, 74.5, 55.5, 45.7, 26.7, 24.5. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 307 nm), retention time: t_{major} = 13.857 min, t_{minor} = 5.370 min, ee = 96.00%; $[\alpha]_D^{20} = + 80.72$ (c = 0.15, CHCl₃). HRMS (EI) m/z [M + H]⁺ calculated for C₁₇H₁₉BrNO: 332.0645, found 332.0634.


(S)-4-Bromo-2-(4-methoxyphenyl)-3,3-dimethylindoline(3e)

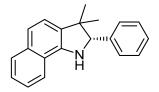
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **3e** (16.3 mg, 49% yield). Yellow solid, m.p. 95-96 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 8.6 Hz, 2H), 7.00–6.84 (m, 4H), 6.62 (dd, J = 7.0, 1.6 Hz, 1H), 4.52 (s, 1H), 3.83 (s, 3H), 1.57 (s, 3H), 0.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.5, 151.6, 134.7, 131.0, 129.2, 129.1, 123.9, 119.6, 113.7, 108.4, 74.0, 55.5, 47.8, 25.7, 21.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 10.933 min, t_{minor} = 6.173 min, ee = 90.04%; [α]_D²⁰ = + 83.1 (c = 0.17, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₉BrNO: 332.0645, found 332.0641.


(S)-7-Fluoro-3,3-dimethyl-2-phenylindoline (3f)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **3f** (12.6 mg, 52% yield). Brown solid, m.p. 38-39 °C.¹H NMR (500 MHz, CDCl₃) δ 7.49–7.45 (m, 2H), 7.41–7.29 (m, 3H), 6.92–6.81 (m, 2H), 6.75–6.70 (m, 1H), 4.65 (s, 1H), 1.44 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.1 (d, *J* = 240.3 Hz), 141.9 (d, *J* = 4.5 Hz), 139.4, 128.4, 127.9, 127.6, 119.7 (d, *J* = 5.6 Hz), 118.2 (d, *J* = 2.9 Hz), 114.2 (d, *J* = 17.4 Hz), 75.3, 46.3 (d, *J* = 2.4 Hz), 26.6, 24.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 240 nm), retention time: t_{major} = 5.840 min, t_{minor} = 4.547 min, ee = 74.36%; [α]_D²⁰ = + 12.6 (c = 0.12, THF). HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₆H₁₇FN: 242.1340, found 242.1331.

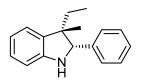

(S)-3,3-Dimethyl-2-phenyl-5-(trifluoromethoxy)indoline (3g)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **3g** (15.4 mg, 50% yield). Yellow solid, m.p. 67-69 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.46–7.42 (m, 2H), 7.41–7.30 (m, 3H), 6.93 (dd, *J* = 15.4, 7.0 Hz, 2H), 6.65 (d, *J* = 8.3 Hz, 1H), 4.65 (s, 1H), 1.44 (s, 3H), 0.75 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 142.3, 139.8, 139.5, 128.4, 128.0, 127.6, 121.0 (q, *J* = 255.1 Hz), 120.6, 116.6, 109.2, 75.1, 45.8, 26.6, 24.6. HPLC: the evalue was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 304 nm), retention time: t_{major} = 15.567 min, t_{minor} = 6.167 min, ee = 86.68%; [α]_D²⁰ = + 56.43 (c = 0.33, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₇F₃NO: 308.1257, found 308.1262.

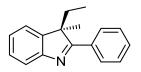

(S)-5-(Benzyloxy)-3,3-dimethyl-2-phenylindoline (3h)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **3h** (17.2 mg, 52% yield). Yellow solid, m.p. 93-95 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.39 (m, 5H), 7.09 (dd, *J* = 14.9, 7.4 Hz, 2H), 6.99 (d, *J* = 8.6 Hz, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 5.09 (s, 2H), 4.56 (s, 1H), 1.42 (s, 3H), 0.77 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.5, 149.4, 138.4, 137.3, 132.3, 128.8, 128.7, 128.2, 127.7, 127.5, 122.7, 119.2, 114.6, 109.4, 72.2, 70.2, 45.4, 26.6, 24.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 20.373 min, t_{minor} = 6.627 min, ee = 81.08%; [α]_D²⁰ = + 166.6 (c = 0.41, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₂₃H₂₄NO: 330.1852, found 330.1871.

(S)-2-(4-Methoxyphenyl)-3,3,5-trimethylindoline (3i)

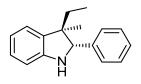

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **3i** (13.1 mg, 49% yield). Pale yellow solid, m.p. 61-62 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 8.5 Hz, 2H), 6.90 (m, 4H), 6.64 (d, *J* = 7.7 Hz, 1H), 4.53 (s, 1H), 3.83 (s, 3H), 2.31 (s, 3H), 1.40 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 147.0, 138.7, 132.2, 128.7, 128.5, 127.8, 123.5, 113.6, 109.3, 74.5, 55.5, 45.4, 26.5, 24.6, 21.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 9.197 min, t_{minor} = 5.367 min, ee = 92.34%; [α]_D²⁰ = + +113.4 (c = 0.17, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₈H₂₁NO: 268.1696, found 268.1704.

(S)-3,3-Dimethyl-2-phenyl-2,3-dihydro-1H-benzo[g]indole (3j)

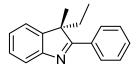

It was prepared following the general procedure B and purified by silica gel flash chromatography using CH₂Cl₂/petroleum ether (1:1) as eluent to afford **3j** (13.7 mg, 50% yield). Yellow solid, m.p. 84-85 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.58–7.53 (m, 2H), 7.43–7.32 (m, 4H), 7.23 (m, 1H), 7.07 (d, J = 8.5 Hz, 1H), 4.72 (s, 1H), 1.77 (s, 3H), 1.01 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.7, 131.2, 130.0, 129.7, 129.1, 128.3, 128.3, 127.9, 126.4, 121.8, 113.1, 75.4, 47.4, 27.6, 23.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 248 nm), retention time: t_{major} = 9.923 min, t_{minor} = 6.053 min, ee = 80.50%; [α]_D²⁰ = +

176.2 (c = 0.31, THF). HRMS (EI) $m/z [M + H]^+$ calculated for C₂₀H₂₀N: 274.1590, found 274.1586.

(2S,3S)-3-Ethyl-3-methyl-2-phenylindoline (5a)

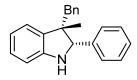

It was prepared following the general procedure B and purified by silica gel flash chromatography using CH₂Cl₂/petroleum ether (1:1) as eluent to afford **5a** (11.4 mg, 48% yield). Pale yellow solid, m.p. 63-64 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.3 Hz, 2H), 7.49 (dt, J = 25.6, 7.2 Hz, 3H), 7.24 (dd, J = 16.3, 7.7 Hz, 2H), 6.94 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 4.81 (s, 1H), 4.07 (brs, 1H), 1.60–1.52 (m, 4H), 0.95–0.87 (m, 1H), 0.80 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.9, 139.5, 136.2, 128.2, 127.8, 127.6, 127.5, 124.3, 118.6, 109.6, 76.0, 48.4, 28.0, 22.6, 8.4. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 301 nm), retention time: t_{major} = 12.993 min, t_{minor} = 6.150 min, ee = 93.04%; $[\alpha]_D^{20} = + 34.6$ (c = 0.13, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₂₀N: 238.1590, found 238.1597. The absolute configuration was assigned as *S* by comparing the optical rotation and HPLC analysis with reported data^[5]. The diastereomer was determined by comparing with reported data.^[5]

(*R*)-3-Ethyl-3-methyl-2-phenyl-3H-indole (6a)

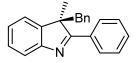

It was prepared following the general procedure B and purified by silica gel flash chromatography using CH₂Cl₂/petroleum ether (1:1) as eluent to afford **6a** (10.6 mg, 45% yield).Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.02 (m, 2H), 7.62 (d, *J* = 7.7 Hz, 1H), 7.44–7.39 (m, 3H), 7.29 (ddd, *J* = 7.7, 6.8, 2.0 Hz, 1H), 7.23–7.18 (m, 2H), 2.20 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.06 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.51 (s, 3H), 0.30 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 182.5, 145.7, 130.8, 128.9,

128.3, 128.0, 126.0, 121.2, 120.9, 59.6, 59.0, 32.2, 24.5, 8.9. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 331 nm), retention time: $t_{major} = 4.163 \text{ min}$, $t_{minor} = 5.743 \text{ min}$, ee = 81.32%; $[\alpha]_D^{20} = +12.2$ (c = 0.12, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₈N: 236.1434, found 236.1439.

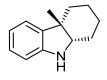
(2S,3R)-3-Ethyl-3-methyl-2-phenylindoline (5b)


It was prepared following the general procedure B and purified by silica gel flash chromatography using CH₂Cl₂/petroleum ether (1:1) as eluent to afford **5b** (10.9 mg, 46% yield). Yellow solid, m.p. 37-39 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.26 (m, 5H), 7.09 (t, *J* = 7.6 Hz, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 4.73 (s, 1H), 1.89–1.63 (m, 2H), 1.00 (td, *J* = 7.4, 1.2 Hz, 3H), 0.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 141.3, 135.9, 128.3, 127.6, 127.5, 123.5, 118.9, 109.0, 70.3, 49.7, 32.4, 23.7, 9.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 272 nm), retention time: t_{major} = 9.067 min, t_{minor} = 5.070 min, ee = 81.22%; [α]_D²⁰ = + 87.6 (c = 0.26, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₉N: 238.1590, found 238.1597. The diastereomer was determined by comparing with reported data.^[5]

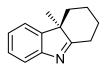
(S)-3-Ethyl-3-methyl-2-phenyl-3H-indole (6b)


It was prepared following the general procedure B and purified by silica gel flash chromatography using CH₂Cl₂/petroleum ether (1:1) as eluent to afford **6b** (11.1 mg, 47% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.02 (m, 2H), 7.62 (d, *J*

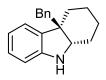
= 7.7 Hz, 1H), 7.44–7.39 (m, 3H), 7.29 (ddd, J = 7.7, 6.8, 2.0 Hz, 1H), 7.23–7.18 (m, 2H), 2.20 (dq, J = 14.7, 7.4 Hz, 1H), 2.06 (dq, J = 14.8, 7.4 Hz, 1H), 1.51 (s, 3H), 0.30 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 182.5, 145.7, 130.8, 128.9, 128.3, 128.0, 126.0, 121.2, 120.9, 59.6, 59.0, 32.2, 24.5, 8.9. HPLC: the evalue was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 331 nm), retention time: t_{major} = 5.773 min, t_{minor} = 4.173 min, ee = 82.22%; [α]_D²⁰ = -33.0 (c = 0.20, THF). HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₇H₁₈N: 236.1434, found 236.1445.


(2S,3S)-3-Benzyl-3-methyl-2-phenylindoline (5c)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **5c** (13.5 mg, 45% yield). White solid, m.p. 84-85 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, *J* = 7.3 Hz, 2H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 (dd, *J* = 8.3, 6.3 Hz, 1H), 7.17–7.07 (m, 4H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.67–6.56 (m, 3H), 6.20 (d, *J* = 7.3 Hz, 1H), 4.82 (brs, 1H), 2.72 (d, *J* = 12.8 Hz, 1H), 1.80 (d, *J* = 12.8 Hz, 1H), 1.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.7, 139.0, 138.1, 134.9, 131.5, 128.4, 128.1, 127.9, 127.7, 127.3, 126.0, 125.8, 118.2, 109.6, 76.5, 49.0, 41.4, 22.5. HPLC: the evalue was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 15.097 min, t_{minor} = 5.897 min, ee = 81.16%; HRMS (EI) *m/z* [M + H]⁺ calculated for C₂₂H₂₂N: 300.1747, found 300.1756. The diastereomer was determined by comparing with reported synthetic method.^[5]

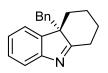

(R)-3-Benzyl-3-methyl-2-phenyl-3H-indole (6c)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford **6c** (13.7 mg, 46% yield). White solid, m.p. 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 6.7, 3.0 Hz, 2H), 7.45 (dd, J = 8.1, 4.7 Hz, 4H), 7.30–7.21 (m, 1H), 7.19–7.15 (m, 2H), 6.97–6.90 (m, 1H), 6.85 (dd, J = 10.2, 4.6 Hz, 2H), 6.49 (d, J = 7.2 Hz, 2H), 3.31 (q, J = 13.5 Hz, 2H), 1.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 181.5, 145.0, 136.1, 130.9, 129.5, 128.9, 128.7, 128.1, 127.7, 126.7, 125.7, 122.3, 121.0, 56.0, 44.7, 24.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 3.680 min, t_{minor} = 4.010 min, ee = 87.84%; HRMS (EI) m/z [M + H]⁺ calculated for C₂₂H₂₀N: 298.1590, found 298.1584.

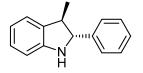

(4aS,9aS)-4a-Methyl-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5d)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **5d** (8.8 mg, 47% yield). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.09–7.02 (m, 2H), 6.77 (td, *J* = 7.5, 0.9 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 3.43 (t, *J* = 4.4 Hz, 1H), 1.75–1.58 (m, 4H), 1.45 (m, 4H), 1.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 139.6, 127.1, 121.7, 119.0, 110.3, 66.1, 42.9, 35.2, 27.7, 23.8, 21.7, 21.3. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 3/97, 1.0 mL/min, 215 nm), retention time: t_{major} = 5.473 min, t_{minor} = 4.823 min, ee = 88.32%; [α]_D²⁰ = - 26.4 (c = 0.35, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₃H₁₈N: 188.1434, found 188.1427. The absolute configuration was assigned as *S* by comparing the optical rotation with reported data.^[7]

(R)-4a-Methyl-2,3,4,4a-tetrahydro-1H-carbazole (6d)

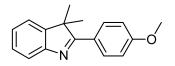

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **6e** (8.4 mg, 45% yield). Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.7 Hz, 1H), 7.37–7.28 (m, 2H), 7.19 (td, *J* = 7.4, 0.8 Hz, 1H), 2.92–2.83 (m, 1H), 2.59 (td, *J* = 13.3, 5.7 Hz, 1H), 2.23 (ddd, *J* = 25.8, 13.2, 2.6 Hz, 2H), 1.85–1.68 (m, 2H), 1.42 (dt, *J* = 13.3, 4.3 Hz, 1H), 1.31 (s, 3H), 1.22–1.13 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.6, 154.2, 147.0, 127.7, 125.1, 121.6, 120.3, 54.0, 38.9, 29.9, 29.2, 21.6, 20.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OJ, *i*-PrOH/Hexane = 1/99, 1.0 mL/min, 253 nm), retention time: t_{minor} = 8.303 min, t_{major} = 10.370 min, ee = 80.86%; [α]_D²⁰ = + 34.2 (c = 0.7, THF). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₃H₁₆N: 186.1277, found 186.1261. The absolute configuration was assigned as *R* by comparing the optical rotation and HPLC analysis with reported data.^[7]

(4aR,9aS)-4a-Benzyl-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5e)

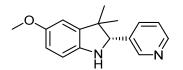

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **5e** (12.1 mg, 46% yield). Pale brown solid. m.p. 68-69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.17 (m, 3H), 7.07 (td, J = 7.5, 1.4 Hz, 1H), 7.00–6.93 (m, 2H), 6.79 (dd, J = 7.3, 0.9 Hz, 1H), 6.72 (ddd, J = 10.6, 5.8, 2.1 Hz, 2H), 3.46 (dd, J = 7.7, 5.5 Hz, 1H), 2.89 (dd, J = 40.1, 13.2 Hz, 2H), 1.93–1.83 (m, 1H), 1.79–1.70 (m, 1H), 1.69–1.49 (m, 3H), 1.40–1.18 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 138.5, 135.0, 131.1, 127.7, 127.4, 126.2, 123.7, 118.6, 110.8, 63.4, 48.6, 45.0, 32.0, 29.8, 22.1, 22.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 1/99, 1.0 mL/min, 215 nm), retention time: $t_{major} = 8.877$ min, $t_{minor} = 9.953$ min, ee =

82.84%; $[\alpha]_D^{20} = -56.4$ (c = 0.5, THF). HRMS (EI) $m/z [M + H]^+$ calculated for $C_{19}H_{21}N$: 264.1747, found 264.1742.

(S)-4a-Benzyl-2,3,4,4a-tetrahydro-1H-carbazole (6e)

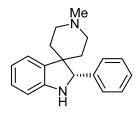

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **6e** (12.6 mg, 48% yield). Brown oil. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.7 Hz, 1H), 7.28 (dd, J = 7.5, 1.2 Hz, 1H), 7.15 (dd, J = 7.7, 7.1 Hz, 1H), 7.10–7.05 (m, 4H), 6.77 (dd, J = 7.6, 1.7 Hz, 2H), 3.23 (d, J = 13.5 Hz, 1H), 3.00 (t, J = 12.1 Hz, 2H), 2.78 (td, J = 13.3, 5.7 Hz, 1H), 2.48 (dd, J = 13.5, 2.7 Hz, 1H), 2.30 (ddd, J = 11.7, 5.0, 2.9 Hz, 1H), 2.03 (dt, J = 13.8, 3.7 Hz, 1H), 1.81–1.77 (m, 1H), 1.53–1.45 (m, 1H), 1.23–1.17 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 189.0, 154.6, 144.3, 136.2, 129.6, 128.0, 127.8, 126.8, 124.6, 122.9, 120.2, 58.9, 39.3, 37.3, 30.8, 29.4, 21.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 3/97, 1.0 mL/min, 215 nm), retention time: t_{minor} = 17.190 min, t_{major} = 13.483 min, ee = 85.26%; [α]_D²⁰ = + 43.2 (c = 0.35, THF). HRMS (EI) *m*/*z* [M + H]⁺ calculated for C₁₉H₂₀N: 262.1590, found 262.1576.

(2R,3R)-3-Methyl-2-phenylindoline (5f)

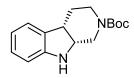

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **5f** (10.7 mg, 51% yield). Yellow solid. m.p. 41-43 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.52 (m, 2H), 7.45–7.33 (m, 3H), 7.18–7.08 (m, 2H), 6.84 (td, J = 7.4, 0.9 Hz, 1H), 6.72 (d, J = 7.7 Hz, 1H), 4.44 (d, J = 9.9 Hz, 1H), 3.28–3.15 (m, 1H), 1.41 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 143.5, 133.3, 128.7, 127.8, 127.8,

127.2, 123.4, 119.0, 109.1, 73.0, 46.6, 17.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: $t_{major} = 10.643$ min, $t_{minor} = 7.530$ min, ee = 85.32%; HRMS (EI) m/z [M + H]⁺ calculated for C₁₅H₁₅N: 210.1277, found 210.1285. The diastereomer was determined by comparing with reported data.^[5]

2-(4-Methoxyphenyl)-3,3-dimethyl-3H-indole (2b)

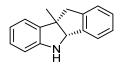

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **2b** (12.3 mg, 49% yield). Yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.24–8.15 (m, 2H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.41–7.31 (m, 2H), 7.25 (td, *J* = 7.4, 0.9 Hz, 1H), 7.04–6.99 (m, 2H), 3.84 (s, 3H), 1.59 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 182.5 161.5, 153.3, 147.5, 130.1, 127.7, 125.8, 125.4, 120.8, 120.4, 114.0, 55.3, 53.1, 25.0. HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₇H₁₈NO: 252.1383, found 252.1395.

(R)-5-Methoxy-3,3-dimethyl-2-(pyridin-3-yl)indoline (8)

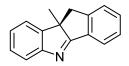

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford **8** (12.5 mg, 49% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 8.5 Hz, 2H), 6.90 (m, 4H), 6.64 (d, J = 7.7 Hz, 1H), 4.53 (s, 1H), 3.83 (s, 3H), 2.31 (s, 3H), 1.40 (s, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 147.0, 138.7, 132.2, 128.7, 128.5, 127.8, 123.5, 113.6, 109.3, 74.5, 55.5, 45.4, 26.5, 24.6, 21.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: t_{major} = 24.073 min, t_{minor} = 13.037 min, ee =

89.52%; $[\alpha]_D^{20} = +11.62$ (c = 0.14, CH₂Cl₂). HRMS (EI) m/z [M + H]⁺ calculated for C₁₆H₁₉N₂O: 255.1492, found 255.1497.

(S)-1'-Methyl-2-phenylspiro[indoline-3,4'-piperidine] (10)


It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford 10 (14.0 mg, 50% vield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.26 (m, 6H), 7.11 (td, J = 7.6, 1.1 Hz, 1H), 6.78 (td, J = 7.4, 0.8 Hz, 1H), 6.69 (d, J = 7.7 Hz, 1H), 4.61(s, 1H), 4.12 (s, 1H), 2.87–2.80 (m, 1H), 2.69–2.62 (m, 1H), 2.55–2.48 (m, 1H), 2.35 (d, J = 4.4 Hz, 3H), 2.12-2.05 (m, 2H), 2.01-1.94 (m, 1H), 1.84 (d, J = 8.4 Hz, 1H),1.48–1.41 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.4, 140.9, 135.8, 128.5, 128.1, 128.0, 124.4, 118.8, 108.9, 72.5, 52.7, 52.4, 46.8, 46.4, 36.8, 31.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 215 nm), retention time: $t_{major} = 14.353$ min, $t_{minor} = 10.413$ min, ee = 82.14%; HRMS (EI) m/z [M + H]⁺ calculated for C₁₉H₂₃N₂: 279.1856, found 279.1859.

Tert-butyl

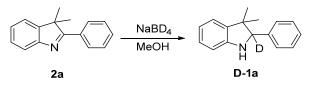

(4aS,9aR)-1,3,4,4a,9,9a-hexahydro-2H-pyrido[3,4-b]indole-2-carboxylate (5g) It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:1) as eluent to afford 5g (12.9)mg, 46% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.04 (dd, J = 16.5, 8.2 Hz, 2H), 6.73 (t, J = 6.9 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 3.95 (s, 1H), 3.56–3.27 (m, 5H), 2.06–1.95 (m, 1H), 1.86 (s, 1H), 1.44 (s, 9H). $^{13}\mathrm{C}$ NMR (126 MHz, CDCl₃) δ

155.8, 150.8, 131.2, 127.9, 123.8, 118.9, 109.8, 79.6, 57.6, 43.7, 41.4, 39.4, 28.6, 26.3. HPLC: the ee value was determined by HPLC analysis (Chiralcel IA, *i*-PrOH/Hexane = 1/99, 1.0 mL/min, 254 nm), retention time: $t_{major} = 53.723$ min, $t_{minor} = 73.427$ min, ee = 73.04%; HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₆H₂₃N₂O₂: 275.1754, found 275.1747. The diastereomer and absolute configuration was adetermined by comparing with reported data.^[9]

(4bR,9bS)-9b-Methyl-4b,5,9b,10-tetrahydroindeno[1,2-b]indole (11)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford **11** (10.9 mg, 49% yield). Colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, *J* = 6.6 Hz, 1H), 7.23–7.13 (m, 4H), 7.00 (td, *J* = 7.6, 1.2 Hz, 1H), 6.75 (td, *J* = 7.4, 0.8 Hz, 1H), 6.61 (d, *J* = 7.8 Hz, 1H), 4.81 (s, 1H), 4.28 (brs, 1H), 3.39 (d, *J* = 16.2 Hz, 1H), 3.20 (d, *J* = 16.2 Hz, 1H), 1.55 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.4, 144.5, 142.8, 137.6, 128.2, 128.0, 127.3, 125.1, 124.2, 123.3, 119.6, 110.6, 74.7, 53.8, 47.0, 27.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, *i*-PrOH/Hexane = 10/90, 1.0 mL/min, 254 nm), retention time: t_{major} = 8.497 min, t_{minor} = 7.223 min, ee = 89.48%; [α]_D²⁰ = - 1.6 (c = 0.08, CHCl₃). HRMS (EI) *m/z* [M + H]⁺ calculated for C₁₆H₁₆N: 222.1277, found 222.1269. The diastereomer was determined by comparing with reported data.^[8]

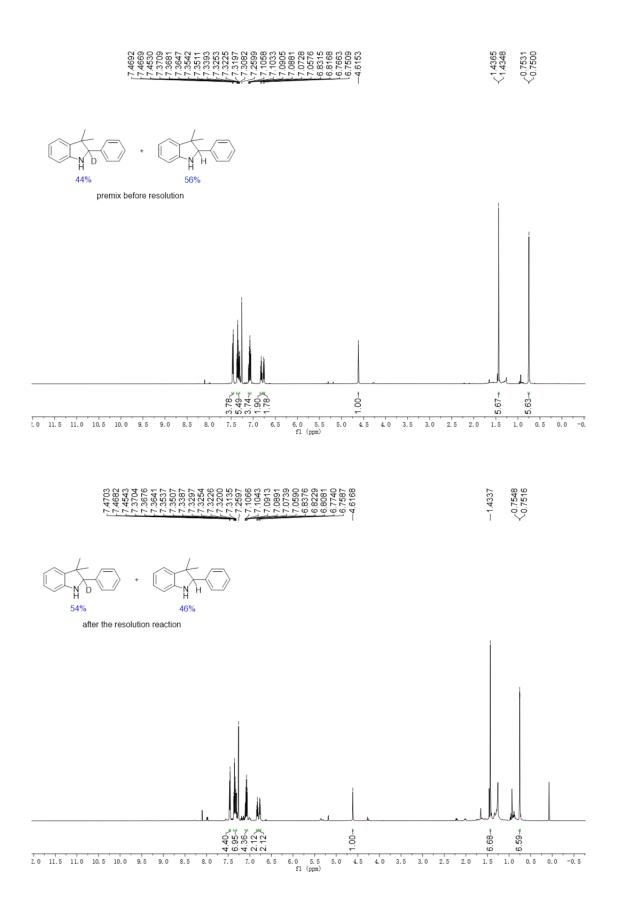
(R)-9b-Methyl-9b,10-dihydroindeno[1,2-b]indole (12)


It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford **12** (10.1 mg, 46% yield). Yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 5.1 Hz, 1H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.46–7.40 (m, 4H), 7.38–7.33 (m, 1H), 7.21 (t, *J* = 7.4 Hz,

1H), 3.12 (d, J = 14.5 Hz, 1H), 2.85 (d, J = 14.6 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 153.6, 144.3, 131.2, 128.4, 128.1, 127.2, 125.3, 124.0, 123.2, 121.6, 64.0, 39.0, 26.9. HPLC: the ee value was determined by HPLC analysis (Chiralcel OJ, *i*-PrOH/Hexane = 5/95, 1.0 mL/min, 311 nm), retention time: t_{major} = 28.283 min, t_{minor} = 24.640 min, ee = 85.70%; $[\alpha]_D^{20} = +$ 17.6 (c = 0.10, CHCl₃). HRMS (EI) m/z [M + H]⁺ calculated for C₁₆H₁₄N: 220.1121, found 220.1127.

Mechanism studies

Kinetic isotope effect experiment


Scheme S4. Preparation of [D]-1a

[D]-1a was prepared through the reduction of **2a** by NaBD₄. In a 100 mL round bottom flask, **2a** was dissolved in MeOH (0.2 M) and the reaction mixture was cooled to 0 °C. NaBD₄ (1.2 equiv) was added and the reaction mixture was allowed to warm to room temperatue and stirred 5 h. The reaction mixture was concentrated by rotary evaporation under reduced pressure partitioned between DCM and water (20 mL each). The organic layer was removed and the aqueous layer extracted with DCM (2 x 20 mL). The combined organic layers were dried with MgSO₄, filtered, concentrated and purified by flash column chromatography, furnishing **[D]-1a** containing 6% of non-deuterated **1a**. The analytical data was as follows: ¹H NMR (500 MHz, CDCl₃) δ 7.54–7.46 (m, 2H), 7.43–7.33 (m, 3H), 7.16–7.09 (m, 2H), 6.84 (td, *J* = 7.4, 0.9 Hz, 1H), 6.76 (d, *J* = 7.7 Hz, 1H), 1.48 (s, 3H), 0.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 149.5, 140.1, 138.2, 128.3, 127.7, 127.6, 127.6, 122.7, 119.2, 109.4, 74.2 (t, *J* = 21.2 Hz), 45.4, 26.7, 24.7.

The kinetic isotope effect experiment was conducted at 0.05 mmol scale following the general procedure using a mixture of **H-1a** and **D-1a** (11.2 mg, 44% D). It was stirred at -40 °C for 1 h and purified by silica gel flash chromatography (7 mg, 62.5% yield). The ratio of **H-1a** and **D-1a** was determined by ¹H NMR which shows 54% of the remaining product was **D-1a**. The KIE was calculated as follows:

$$\mathsf{KIE} = \frac{\kappa_{H}}{\kappa_{D}} = \frac{\frac{C_{H0} - C_{Ht}}{t}}{\frac{C_{D0} - C_{Dt}}{t}} = \frac{C_{H0} - C_{Ht}}{C_{D0} - C_{Dt}} = \frac{\frac{m_{H0} - m_{Ht}}{V}}{\frac{m_{D0} - m_{Dt}}{V}} = \frac{m_{H0} - m_{Ht}}{m_{D0} - m_{Dt}} = \frac{11.2^{*}0.56 - 7^{*}0.46}{11.2^{*}0.44 - 7^{*}0.54} = 2.7$$

Correlation of the enantiomeric excess of $C_{mono}8$ and 1a with sodium 6-methoxy-2-naphthoate additive

The CH₂Cl₂ solutions of $C_{mono}8$ and ent- $C_{mono}8$ (0.005 M, respectively) were prepared and mixed to regulate each (0% ee, 20% ee, 40% ee, 60% ee, 80% ee and 100% ee, 0.005 M, respectively) complex solution in an appropriate manner. To the solutions at -40 °C, **1a** (0.1 mmol, 22.3 mg) and sodium 6-methoxy-2-naphthoate (0.01 mmol, 2.2 mg, 10 mmol%) was added. Then 30% aqueous hydrogen peroxide (0.1 mmol, 10 µL) were added as 4 portions in 2-hours intervals. After stirring for 8 h at this temperature, the reaction mixture was diluted with CH₂Cl₂ (20 mL) at 50% conversion of **1a**, washed with water (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel flash chromatography using EtOAc/petroleum ether (10:90) as eluent. The ee values of **1a** were determined by HPLC analysis on chiral phase column (Chiralpak IB-H, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 296 nm). A negative nonlinear effect was observed.

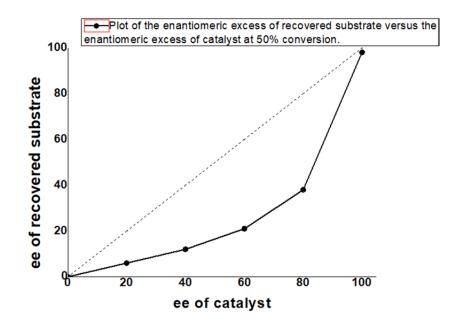


Figure S1. Plot of the ee of recovered 1a versus the ee of $C_{mono}8$ at 50% conversion. The dotted line symbolizes the linear correlation.

Correlation of the enantiomeric excess of C_{mono} 8 and 1a without sodium 6-methoxy-2-naphthoate additive

The CH₂Cl₂ solutions of $C_{mono}8$ and ent- $C_{mono}8$ (0.005 M, respectively) were prepared and mixed to regulate each (0% ee, 20% ee, 40% ee, 60% ee, 80% ee and 100% ee, 0.005 M, respectively) complex solution in an appropriate manner. To the solutions at -40 °C, **1a** (0.1 mmol, 22.3 mg) was added. Then 30% aqueous hydrogen peroxide (0.1 mmol, 10 µL) were added as 4 portions in 2-hours intervals. After stirring for 8 h at this temperature, the reaction mixture was diluted with CH₂Cl₂ (20 mL) at 50% conversion of **1a**, washed with water (10 mL), dried over MgSO₄, filtered and concentrated. The residue was purified by silica gel flash chromatography using EtOAc/petroleum ether (10:90) as eluent. The ee values of **1a** were determined by HPLC analysis on chiral phase column (Chiralpak IB-H, *i*-PrOH/Hexane = 20/80, 1.0 mL/min, 296 nm). An approximate linear effect was observed.

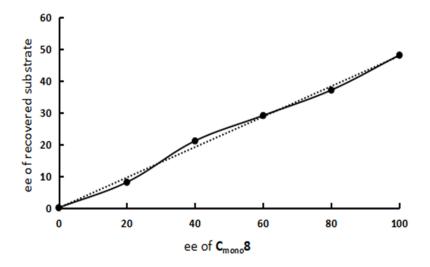
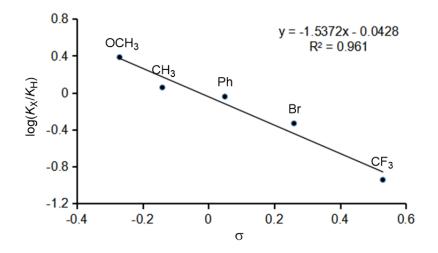
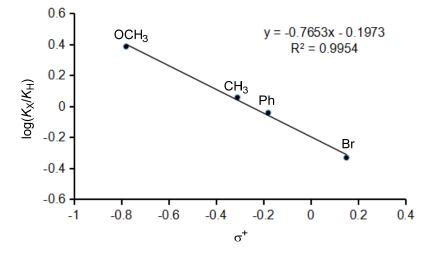


Figure S2. Plot of the ee of recovered 1a versus the ee of C_{mono} 8 at 50% conversion without additive. The dotted line symbolizes the linear correlation.


Hammett polt for the competitive dehydrogenation experiments of substrates with a series of p-substituents (X) on α -aryl groups

To a solution of a mixture two different *p*-substituted **1** (**1a** and **1b**; **1a** and **1d**; **1a** and **1f**; **1a** and **1n**; 0.1 mmol each) in CHCl₃ (1.0 mL), $C_{mono}8$ (0.005 mmol, 3.7 mg, 5 mmol%) and sodium 6-methoxy-2-naphthoate (0.01 mmol, 2.2 mg, 10 mmol%) was added at -40 °C. Then 30% aqueous hydrogen peroxide (0.1 mmol, 10 µL, 1.0 eq) was added as 4 portions in 4-hours intervals and the reaction was quenched with water (10 mL) at 15-35% conversion and the mixture was extracted with CH₂Cl₂ (20 mL). The solvent was removed and the residue was purified by silica gel chromatography to give the desired product. The results were summarized as follows:.


H H H H H H H H H H							
$\square H = Ph \qquad \square H = Ph \qquad \square H = Ph \qquad \square H = Ph = $							
	1f	1i	1n				
entry	<i>p</i> -substituted X	$\log(k_{\rm X}/k_{\rm H})^{a}$	σ^{b}	σ^{+b}			
1	OCH ₃	0.385	-0.27	-0.78			
2	CH ₃	0.057	-0.14	-0.31			
3	Ph	-0.042	0.05	-0.18			
4	Br	-0.332	0.26	0.15			
5	CF ₃	-0.943	0.53				

^{*a*}Average of three experiments at 15-35% conversion.

^bData from: Anslyn, E. V.; Dougherty, D. A. (2006). *Modern Physical Organic Chemistry*, University science books.

Figure S3. Hammett Plot of $log(k_X/k_H)$ vs. σ for the competition experiments.

Figure S4. Hammett Plot of $log(k_X/k_H)$ vs. σ^+ for the competition experiments

Control experiments

The oxidation reactivity of stoichiometric C8 without H₂O₂

Scheme S5. Control experiment using stoichiometric C8 without H₂O₂

$$\begin{array}{c}
 & \overbrace{N}^{2} Ph \\
 & H \\
 & H \\
 & \text{rac-1a}
\end{array}$$

$$\begin{array}{c}
 & C8 (1.0 \text{ equiv}) \\
 & CH_2CI_2, -40 \ ^{\circ}C \\
 & \text{rac-1a}
\end{array}$$
no reaction

To a solution of rac-1a (0.05 mmol, 11.2 mg) in CH_2Cl_2 (0.5 mL) was added C8 (0.05 mmol, 77 mg) at -40 °C. The mixture was vigorously stirred for 12 h. No reaction occurred.

Resonance Raman spectroscopy

Resonance Raman spectra were measured with glass capillary tubes containing the complexes, maintained at room temperature, using a LabRAM HR Evolution raman spectrometer(HORIBA Scientific). An Helium-neon gas laser at 633nm was utilized as an excitation source. The laser power at the sample was about 5 mW and the acquisition time was 15s.

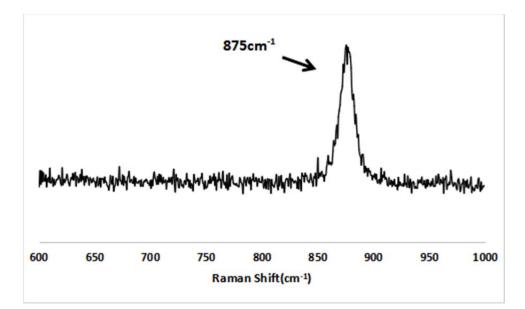


Figure S5. Raman spectrum of H₂O₂

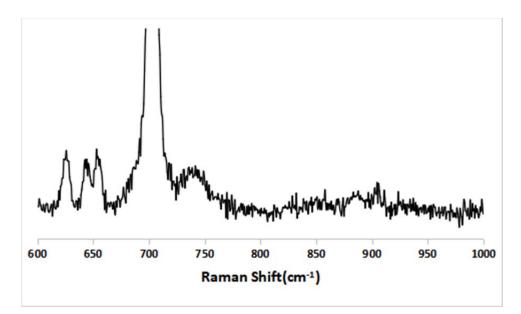
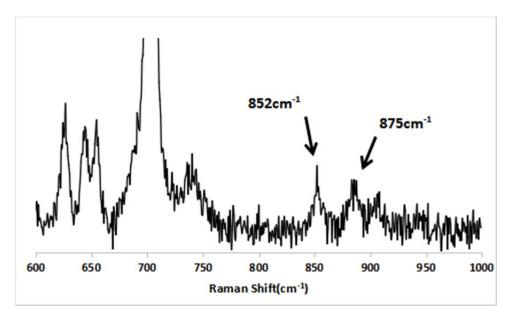
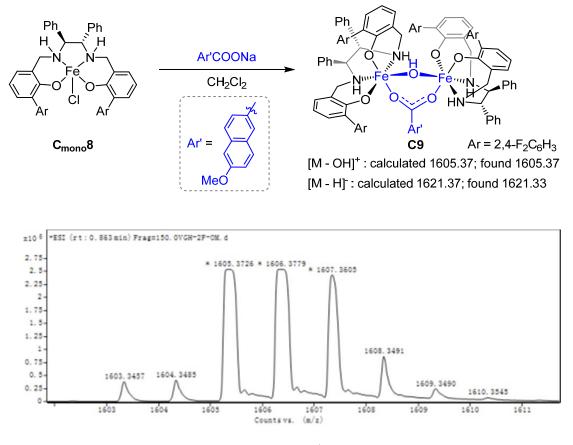
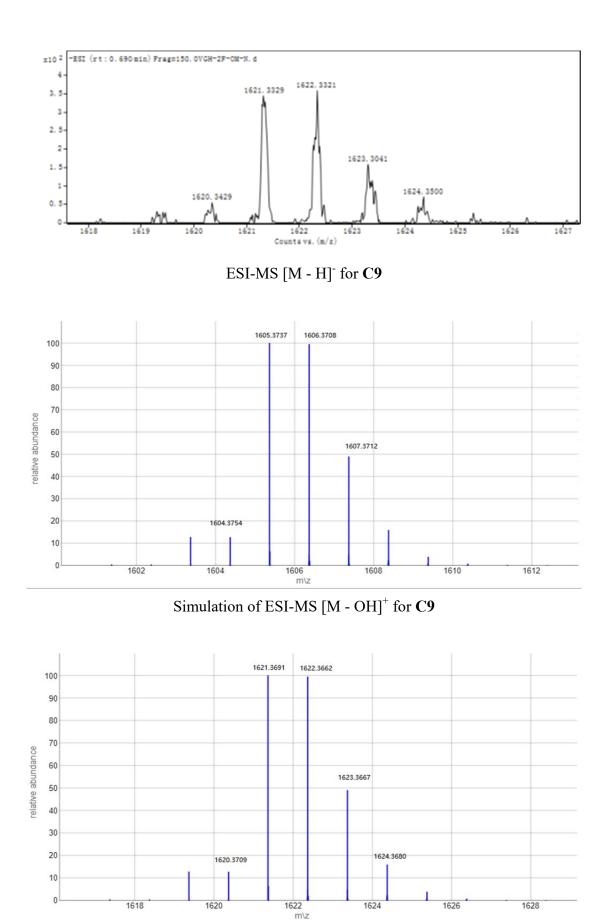
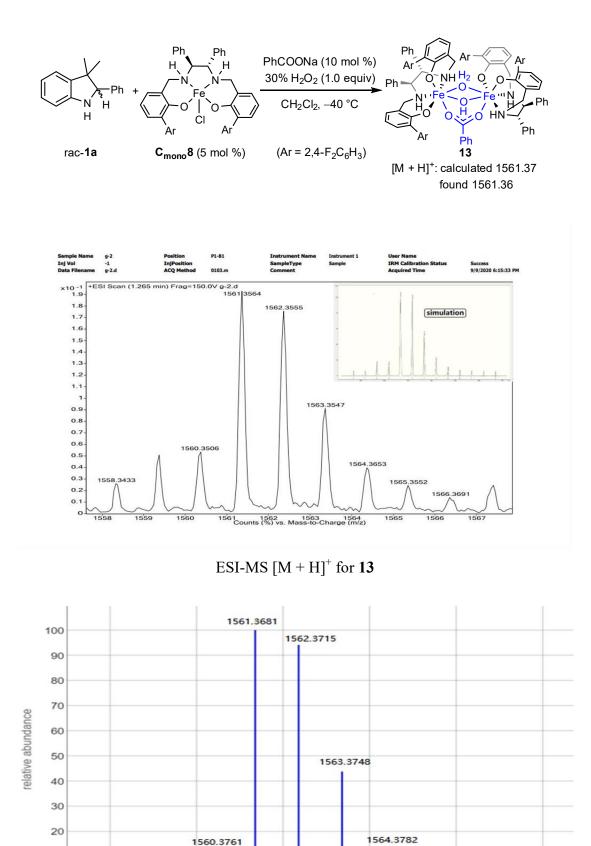


Figure S6. Raman spectrum of C8 without H_2O_2


Figure S7. Raman spectrum of C8 combining with 10 equiv of H_2O_2

ESI-MS analysis


ESI-MS analysis was conducted to confirm the structure of **C9** and **13**. The isotope distribution patterns were calculated by EnviPat Web 2.4 site to compare the pattern and profile of the m/z peak(s) to the found ones. For complex **C9**, ESI-MS m/z [M - OH]⁺ calculated for C₉₂H₆₉F₈Fe₂N₄O₇: 1605.37, found 1605.37; m/z [M - H]⁻ calculated for C₉₂H₆₉F₈Fe₂N₄O₈: 1621.37, found 1621.33. For complex **13**, ESI-MS m/z [M + H]⁺ calculated for C₈₇H₆₉F₈Fe₂N₄O₈: 1561.37, found 1561.36; The isotope distribution patterns of **C9** and **13** are identical to the calculated ones.

ESI-MS $[M - OH]^+$ for C9

Simulation of ESI-MS $[M - H]^{-}$ for C9

Simulation of ESI-MS $[M + H]^+$ for 13

Influence of various additives on selectivity

N H rac- 1a	C _{mono} 8 (5 mol %) AS (10 mol %) 30% H ₂ O ₂ (1.0 equiv) CH ₂ Cl ₂ , -40 °C	► (S)-1	Ph + 1 a	Ph 2a
R=0 R=0	H, AS1 Cl, AS2 DMe, AS3 NMe ₂ , AS4 AS5		ONa 〔 e AS6	COONa COONa AS7
R	COONa R = H, AS8 R = Br, AS9 R = Cl, AS10 R = OMe, AS11	AS12		R^{1} COONa R^{2} MeO, R^{2} = H, AS13 H, R^{2} = OMe, AS14
entry	acid derivative	conv. $(\%)^b$	ee $(\%)^c$	s^{d}
1	AS1	49	71	14
2	AS2	52	61	8.3
3	AS3	53	83	17
4	AS4	51	82	21
5	AS5	52	67	8.3
6	AS6	50	65	9.1
7	AS7	47	49	5.5
8	AS8	50	87	41
9	AS9	51	94	70
10	AS10	52	85	22
11	AS11	50	94	115
12	AS12	50	70	12
13	AS13	53	95	43
14	AS14	49	67	11

Table S2. The effect of different aryl carboxylic acid derivatives^a

^{*a*}Reaction condition: to rac-**1a** (0.1 mmol), monoiron $C_{mono}8$ (5 mol%) and carboxylic acid derivative (10 mol %) in CH₂Cl₂ (1.0 mL) at -40 °C was added 30% aqueous H₂O₂ (0.1 mmol) as four portions in 2 h intervals for 6 h, and the mixture was stirred at -40 °C for 18-24 h, unless otherwise noted.^{*b*}Conversion was calculated from the isolated yield of recovered (S)-1a. ^{*c*}Determined by HPLC analysis on a chiral stationary phase. ^{*d*}Selectivity (s) values were calculated through the equation s = ln[(1 - C)(1 - ee)]/ln[(1 - C)(1 + ee)].

The effect of aryl carboxylic acid derivatives on the selectivity are systematically examined (Table S2). We found that the selectivity was highly dependent on the nature and the position of the substituents on the aryl ring of the additive. In general, aryl carboxylic acids bearing an electron-withdrawing group show inferior selectivity to those with electron-donating ones (e.g. entries 1-4; entries 8-11, Table S2). The observation suggested that the chelating properties of carboxylic acid moiety are essential to selectivity. The selectivity was also sensitive to the position of the substituents on the arene ring of the additive. While no obvious trend on the substituent pattern was concluded, the obvious variation on the selectivity implied that the substituent pattern on the arene ring might influence the chiral environment around the diiron through modulating the 2-benzoate-bridge.

X-ray crystallographic data

Single crystals of C2 and C8 were prepared as follows:

 $C_{mono}2$ or $C_{mono}8$ (0.05 mmol, 1.0 equiv) were dissolved in a mixture of CH₂Cl₂-EtOH-acetone-H₂O (3 mL/3 mL/3 mL/1 drop) solution and sodium benzoate (20 equiv) was added. The mixure was maintained open-flask at room temperature for several days until the crystal formed.

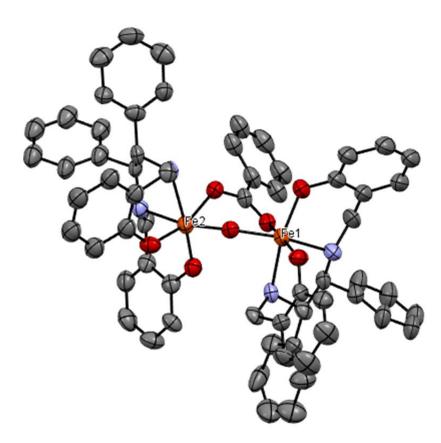


Figure S8. Molecular structure of complex C2 (CCDC 2127388)

Crystal data and structure refinement for mo_211115G_2_0m.				
Identification code	mo_211115G_2_0m			
Empirical formula	$C_{67}H_{69}Fe_2N_4O_9$			
Formula weight	1185.96			
Temperature/K	173.0			
Crystal system	orthorhombic			
Space group	P2 ₁ 2 ₁ 2 ₁			
a/Å	11.486(2)			
b/Å	19.300(3)			
c/Å	28.572(5)			
$\alpha/^{\circ}$	90			
β/°	90			
$\gamma/^{\circ}$	90			
Volume/Å ³	6334(2)			
Z	4			
$\rho_{cal}cg/cm^3$	1.244			
μ/mm^{-1}	0.516			
F(000)	2492.0			
Crystal size/mm ³	0.15 imes 0.02 imes 0.02			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/° 3.822 to 52.878				
Index ranges	$-14 \le h \le 14, -24 \le k \le 19, -32 \le l \le 35$			
Reflections collected	29957			
Independent reflections	12758 [$R_{int} = 0.1522, R_{sigma} = 0.1959$]			
Data/restraints/parameters	12758/192/743			
Goodness-of-fit on F ²	0.949			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0857, wR_2 = 0.2026$			
Final R indexes [all data]	$R_1 = 0.1757, wR_2 = 0.2616$			
Largest diff. peak/hole / e Å ⁻³ 0.67/-0.77				
Flack parameter	0.07(3)			

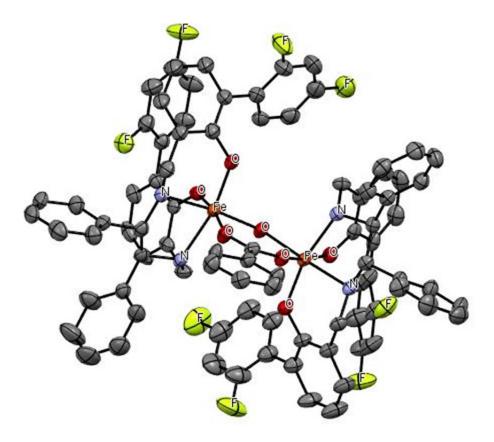


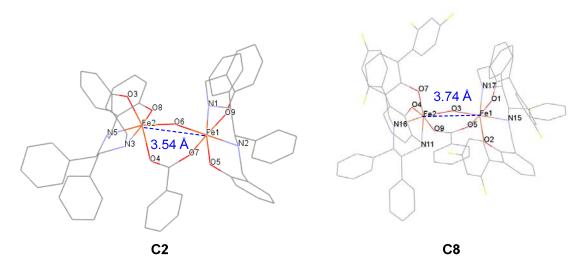
Figure S9. Molecular structure of complex C8 (CCDC 2127389)

Compound	200828c
Formula	$C_{180}H_{148}Cl_4F_{16}Fe_4N_8O_{16}$
D_{calc} ./ g cm ⁻³	1.392
µ/mm ⁻¹	4.193
Formula Weight	3348.26
Colour	clear light black
Shape	block
Size/mm ³	$0.03 \times 0.02 \times 0.01$
T/K	173.00(10)
Crystal System	orthorhombic
Flack Parameter	-0.009(2)
Hooft Parameter	-0.0065(17)
Space Group	$P2_{1}2_{1}2_{1}$
a/Å	15.2213(3)
b/Å	21.4654(5)
c/Å	24.4451(4)
$\alpha/_{\circ}$	90
β/°	90
γ/°	90
$V/Å^3$	7987.0(3)
Ζ	2
Z'	0.5
Wavelength/?	1.54184
Radiation type	Cu Ka
$\Theta_{\min}/^{\circ}$	2.740
$\Theta_{\rm max}/^{\circ}$	67.079
Measured Refl.	27176
Independent Refl.	13233
Reflections with $I > 2(I)$	11427
R _{int}	0.0407
Parameters	1029
Restraints	0
Largest Peak	0.433
Deepest Hole	-0.819
GooF	1.041
wR_2 (all data)	0.1538
wR ₂	0.1454
R ₁ (all data)	0.0667
R_1	0.0555

Selected key features in the crystal structures

X-ray diffraction studies revealed that complex C2 and C8 were dinuclear complexes mimiking the structure of the μ -hydroxo, carboxylate bridged non-heme diiron(III) core in the active site of MMO. A comparison of the molecular structures of complexes C2, C8 and MMO based on their X-ray crystallographic data was shown here.

The Fe–Fe distances in MMO, C2, and C8 are 3.1 Å, 3.54 Å, and 3.74 Å, respectively. C8 containing a bulkier salan basal ligand exhibits a longer Fe–Fe bond than C2, suggesting that varying the substituent on the basal salan ligand leads to an obvious change of the Fe–Fe bond length. Based on the selectivity difference of complex C2 and C8, we persumed that the Fe–Fe bond distance in chiral diiron(III) dimer complexes might be crucial to the enantioselectivity.



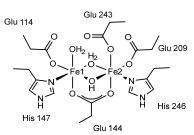


Figure S10. Stick figure of the X-ray crystal structure of C2 and C8

C2 Bond distances		C8 Bond distances	
Atom-Atom	Bond distance (Å)	Atom-Atom	Bond distance (Å)
Fe(1)-Fe(2)	3.54	Fe(1)-Fe(2)	3.74
Fe(1)-O(5)	1.91	Fe(1)-O(2)	1.93
Fe(1)-O(7)	1.96	Fe(1)-O(5)	1.91
Fe(1)-O(6)	2.12	Fe(1)-O(3)	1.99
Fe(1)-O(9)	1.89	Fe(1)-O(1)	1.91
Fe(1)-N(1)	2.15	Fe(1)-N(17)	2.18
Fe(1)-N(2)	2.21	Fe(1)-N(15)	2.20
Fe(2)-O(3)	1.94	Fe(2)-O(4)	1.90
Fe(2)-O(6)	1.95	Fe(2)-O(3)	1.98
Fe(2)-O(8)	1.89	Fe(2)-O(7)	1.94
Fe(2)-O(4)	2.07	Fe(2)-O(9)	2.06
Fe(2)-N(3)	2.16	Fe(2)-N(11)	2.20
Fe(2)-N(4)	2.18	Fe(2)-N(16)	2.20

Table S3. Selected bond distances (Å) of C2 and C8:

Atom	Atom	Distance (Å)
Fe1	Fe2	3.1
Fe1	Glu 114 O	1.9
Fe1	His 147 N	2.1
Fel	Glu 144 O	2.1
Fel	$\mu OH O$	1.7
Fe1	OH ₂ O	2.3
Fe1	$\mu OH_2 O$	2.3
Fe2	Glu 209 O	1.9
Fe2	His 246 N	2.2
Fe2	Glu 243 O	2.0
Fe2	Glu 144 O	2.5
Fe2	μΟΗ Ο	2.0
Fe2	OH ₂ O	2.5

References

1. Armarego, W. L. F.; Chai, C. L. L. *Purification of Laboratory Chemicals*, 7th ed.; Butterworth-Heinemann: Oxford, U.K., 2013.

2. Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chiral phosphoric acid-catalyzed oxidative kinetic resolution of indolines based on transfer hydrogenation to imines. *J. Am. Chem. Soc.* **2013**, *135*, 11740.

3. McComas, C. C.; Gilbert, E. J.; Van Vranken, D. L. Stereochemistry of 3-alkylindole dimerization: acyclic δ_1, δ_1 '-tryptophan dimers. *J. Org. Chem.* **1997**, *62*, 8600.

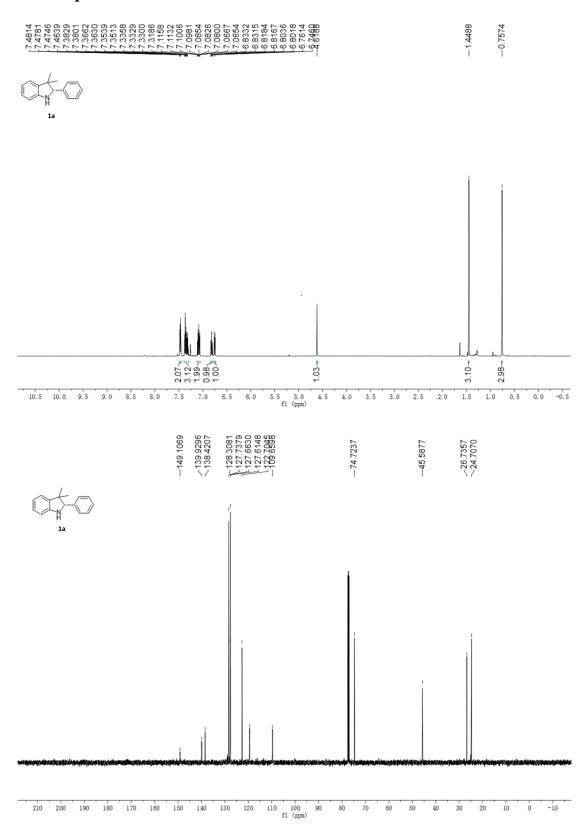
4. Lin, A.; Yang, J.; Hashim, M. N-Indolyltriethylborate: a useful reagent for synthesis of C3-quaternary indolenines. *Org. Lett.* **2013**, *15*, 1950.

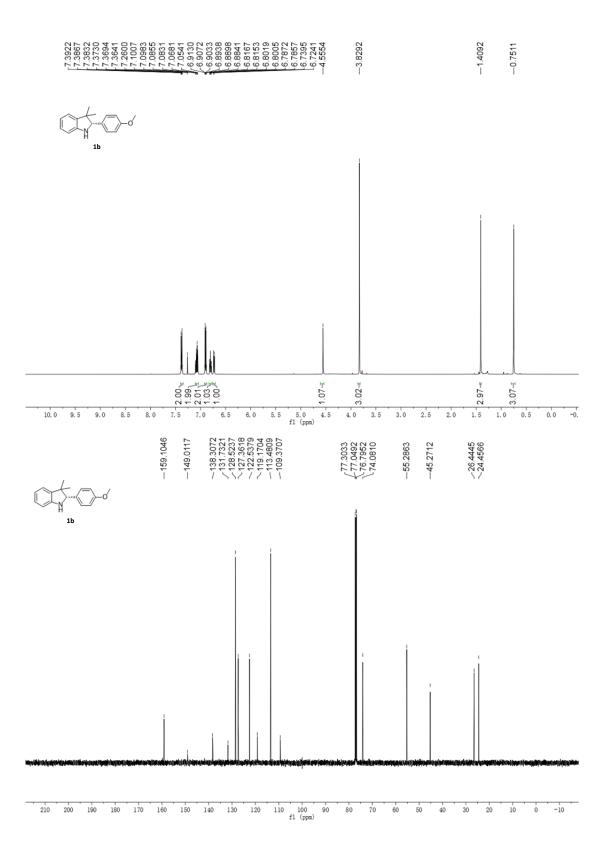
5. Wang, G.; Lu, R.; He, C.; Liu, L. Kinetic resolution of indolines by asymmetric hydroxylamine formation. *Nat. Commun.* **2021**, *12*, 2512.

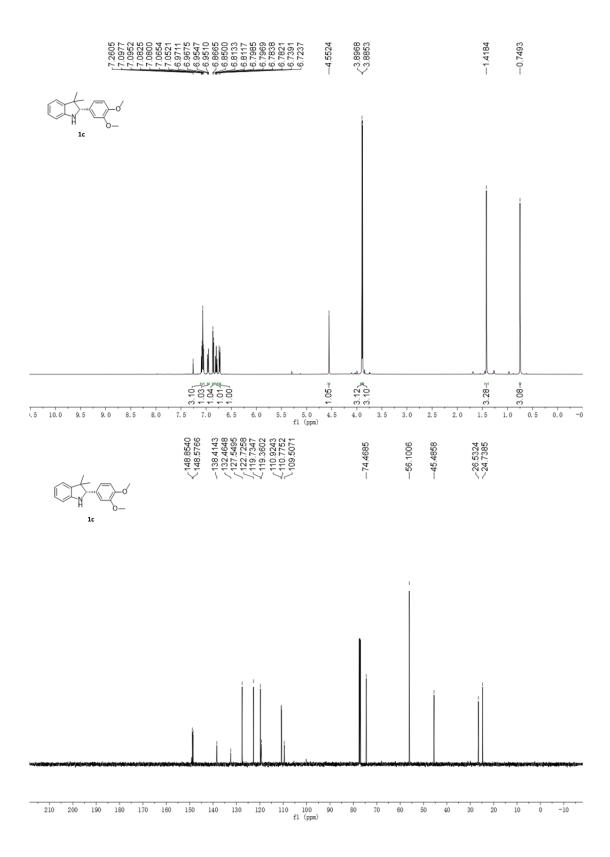
6. Saccoccia, F.; Brindisi, M.; Gimmelli, R.; Relitti N.; Guidi, A.; Saraswati, P.; Cavella, C.; Brogi, S.; Chemi, G.;. Butini, S.; Papoff, G.; Senger, J.; Herp, D.; Jung, M.; Campiani, G.; Gemma, S.; Ruberti, G. Screening and phenotypical characterization of schistosoma mansoni histone deacetylase 8 (*Sm*HDAC8) inhibitors as multistage antischistosomal agents. *ACS Infect. Dis.* 2020, *6*, 100.

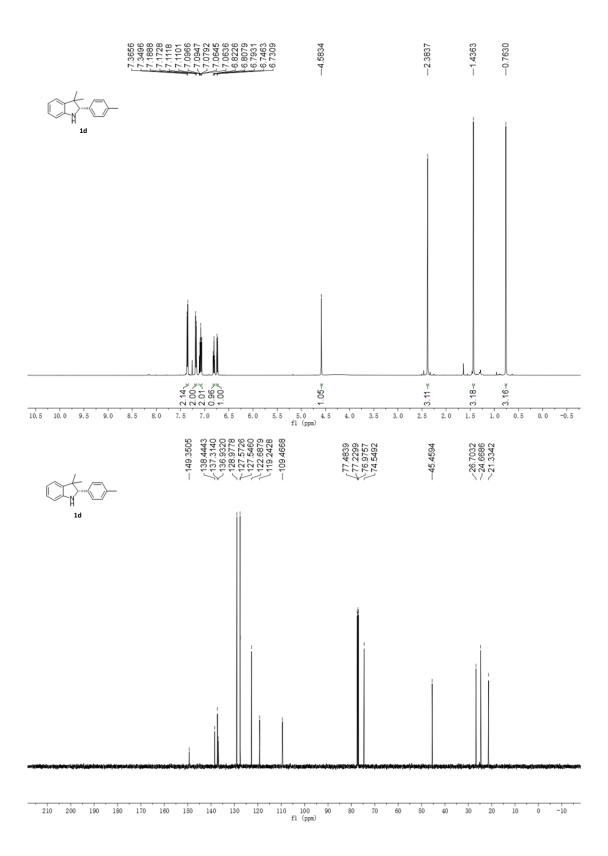
7. Yang, Z.; Chen, F.; He, Y.; Yang, N.; Fan, Q.-H. Highly enantioselective synthesis of indolines: asymmetric hydrogenation at ambient temperature and pressure with cationic ruthenium diamine catalysts. *Angew. Chem. Int. Ed.* **2016**, *55*, 13863.

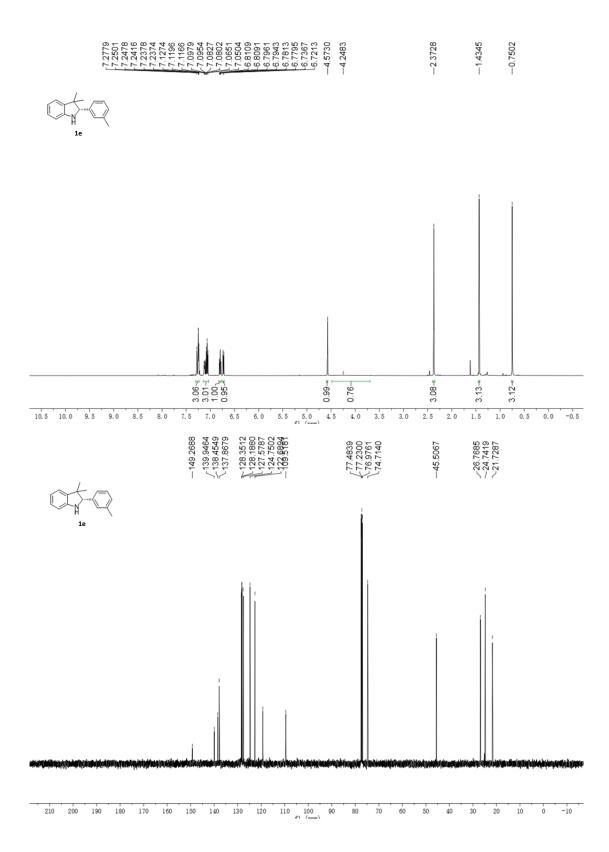
8. Brown, D. W.; Graupner, P. R.; Sainsbury, M.; Shertzer, H. G. New antioxidants incorporating indole and indoline chromophores. *Tetrahedron*, **1991**, *47*, 4383.

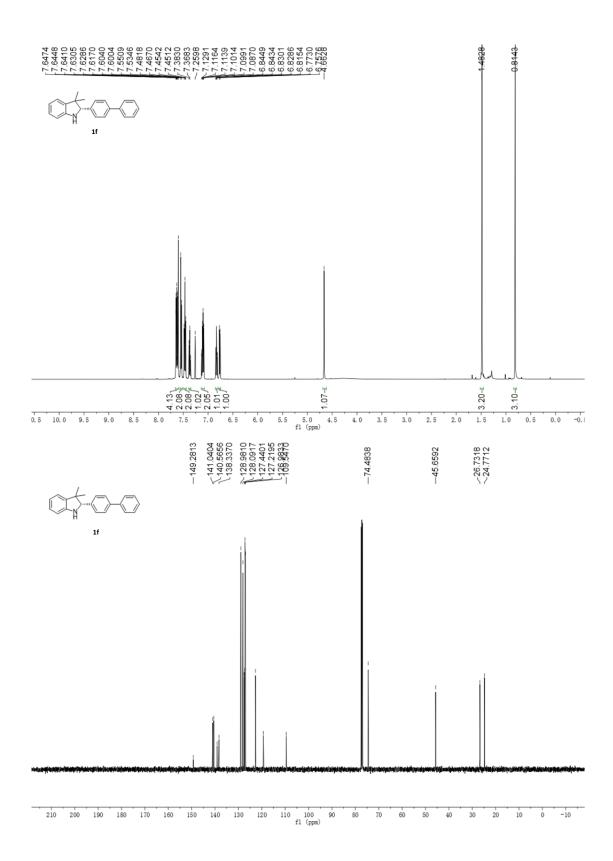

9. Murray, J. I.; Flodén, N. J.; Bauer, A.; Fessner, N. D.; Dunklemann, D. L.; Bob-Egbe, O.; Rzepa, H. S.; Bürgi, T.; Richardson, J.; Spivey, A. C. Kinetic resolution of 2-substituted indolines by *N*-Sulfonylation using an atropisomeric 4-DMAP-N-oxide organocatalyst. *Angew. Chem., Int. Ed.* **2017**, *56*, 5760.

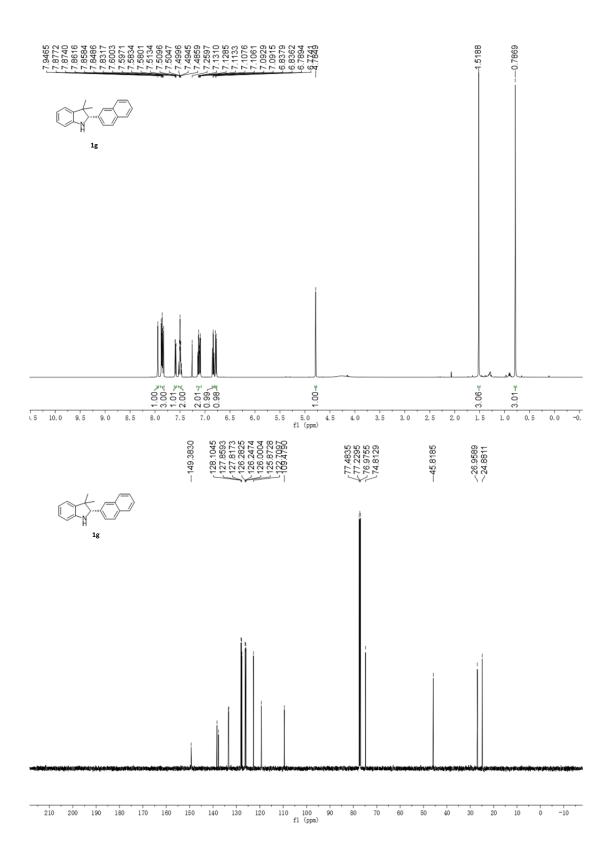

10. Lee, Y. E.; Cao, T.; Torruellas, C.; Kozlowski, M. C. Selective oxidative homoand cross-coupling of phenols with aerobic catalysts. J. Am. Chem. Soc. 2014, 136, 6782.

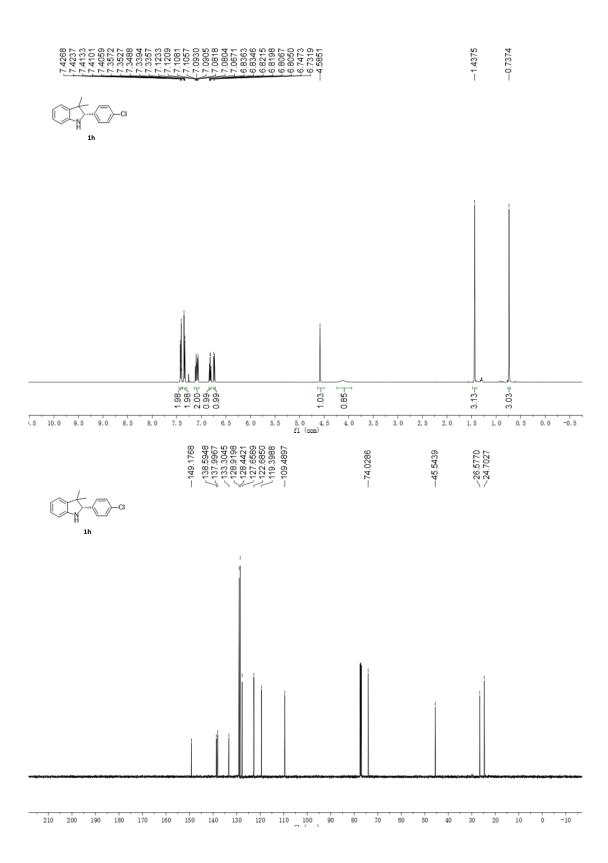

 Lackner, A. D.; Samant, A. V.; Toste, F. D. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. *J. Am. Chem. Soc.* 2013, *135*, 14090.

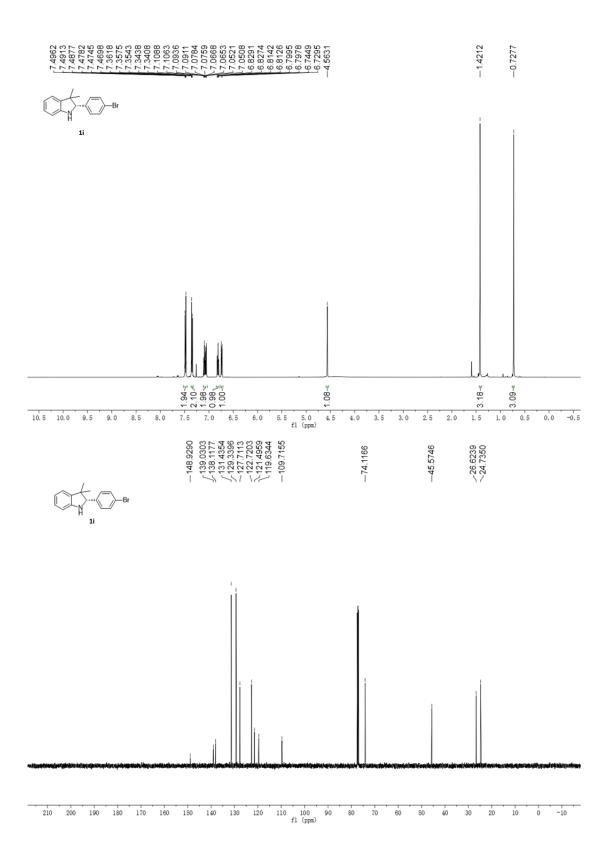

12. Rosenzweig, A. C.; Nordlund, P.; Takahara, P. M.; Frederick, C. A.; Lippard, S. J. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. *Chemistry & Biology.* **1995**, *2*: 409.

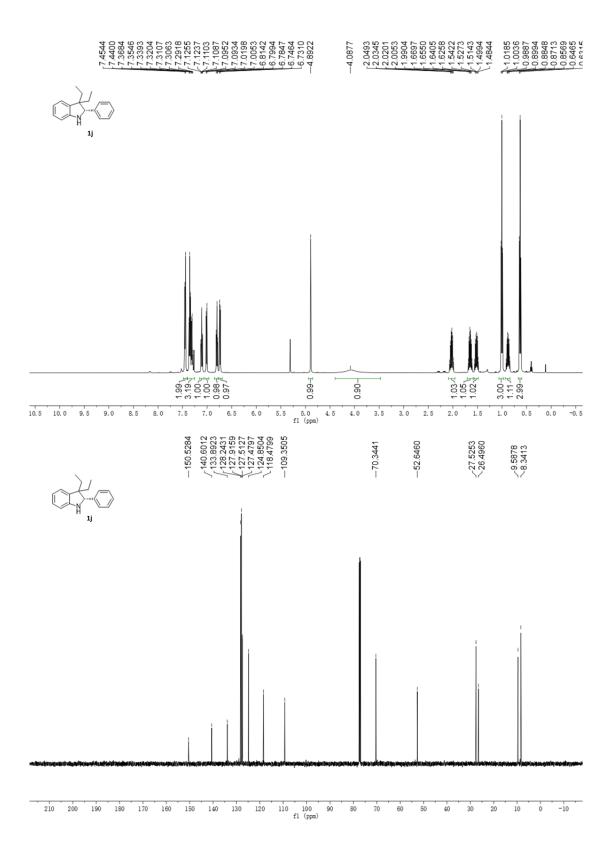

NMR spectra

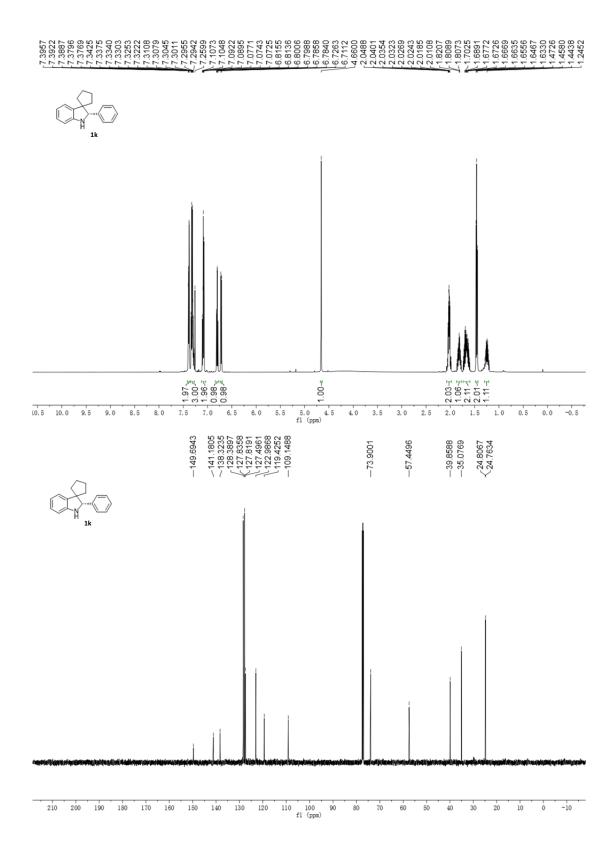


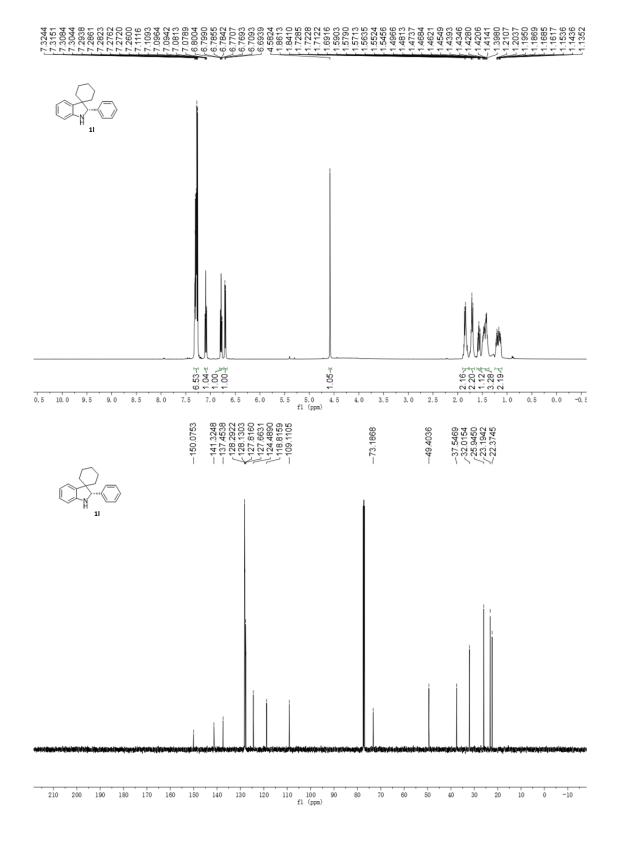


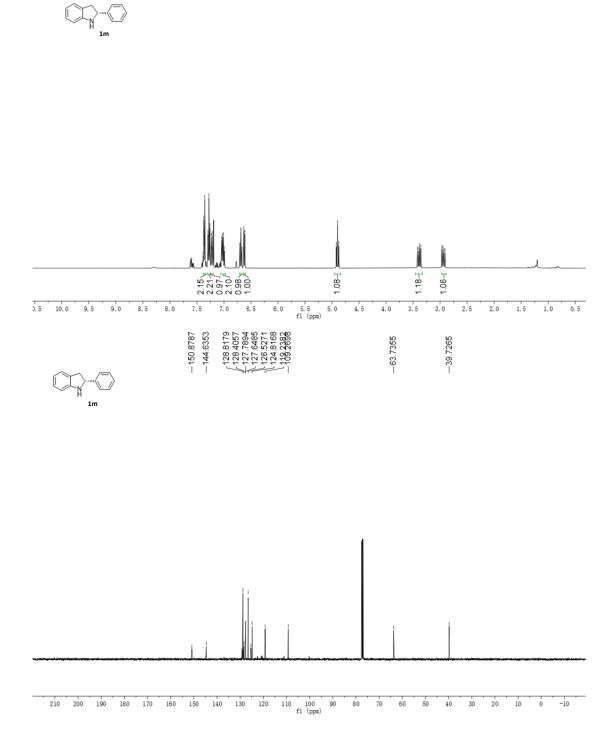


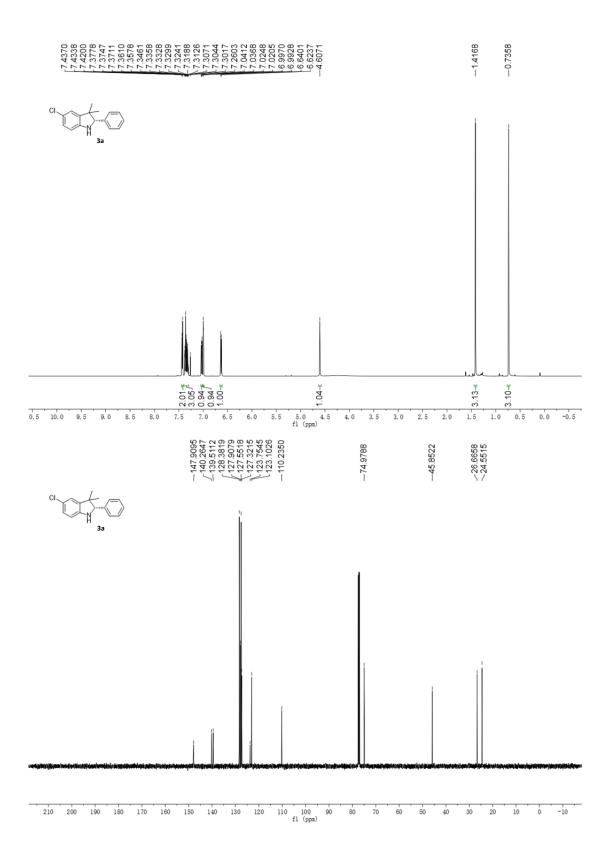


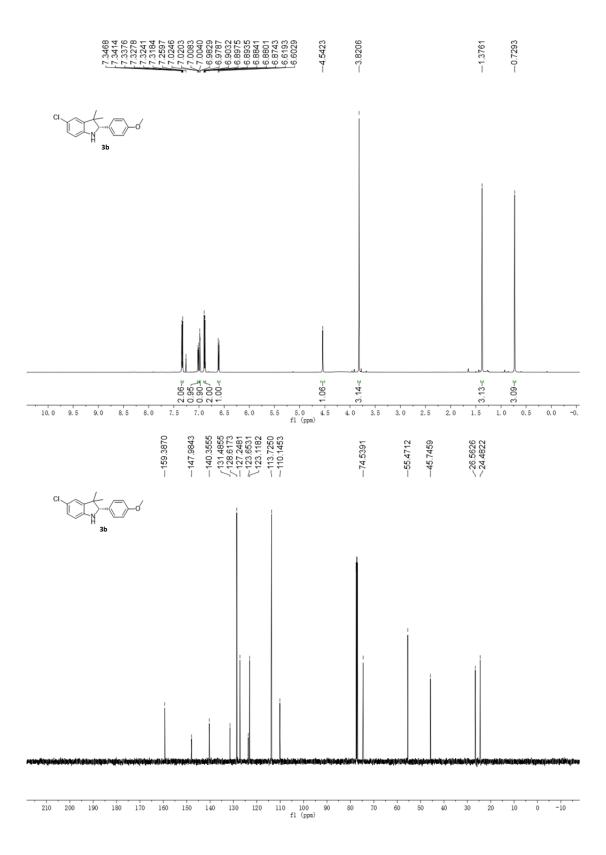


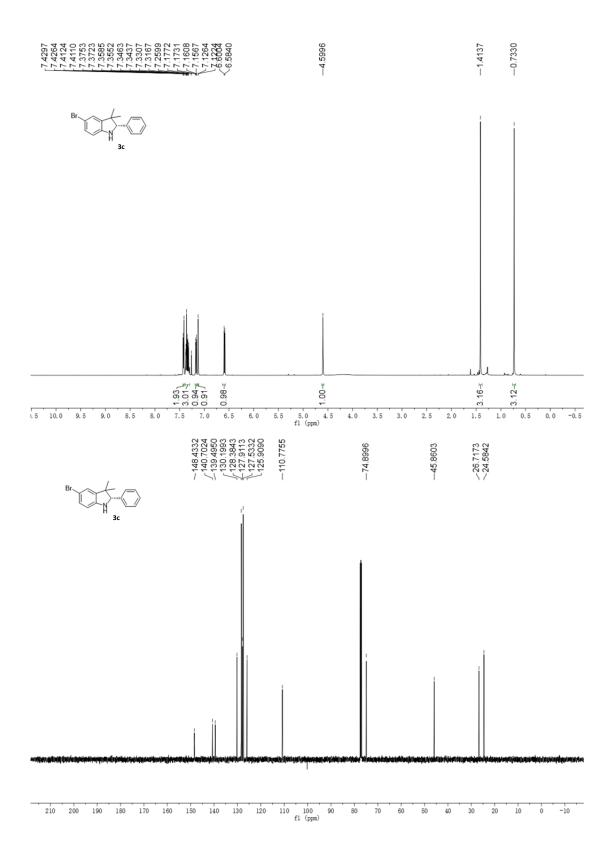


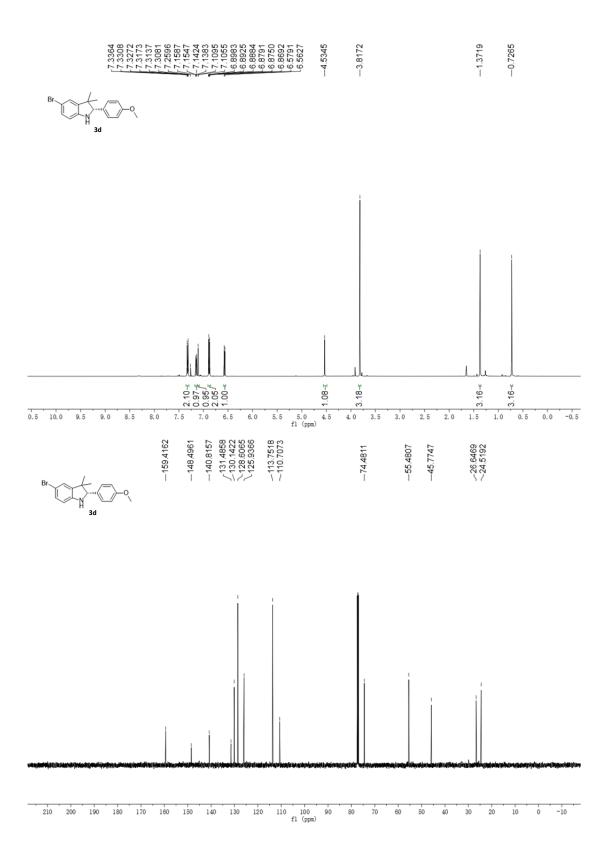


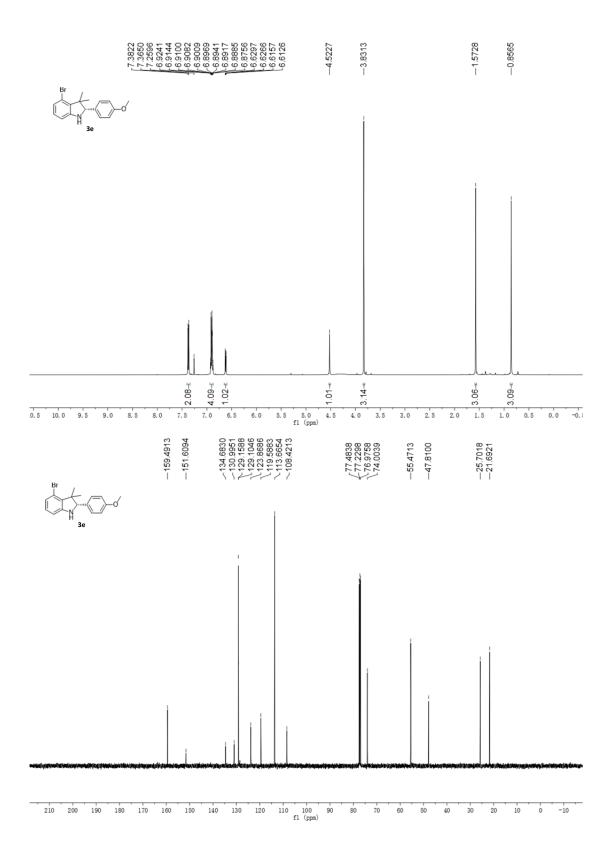


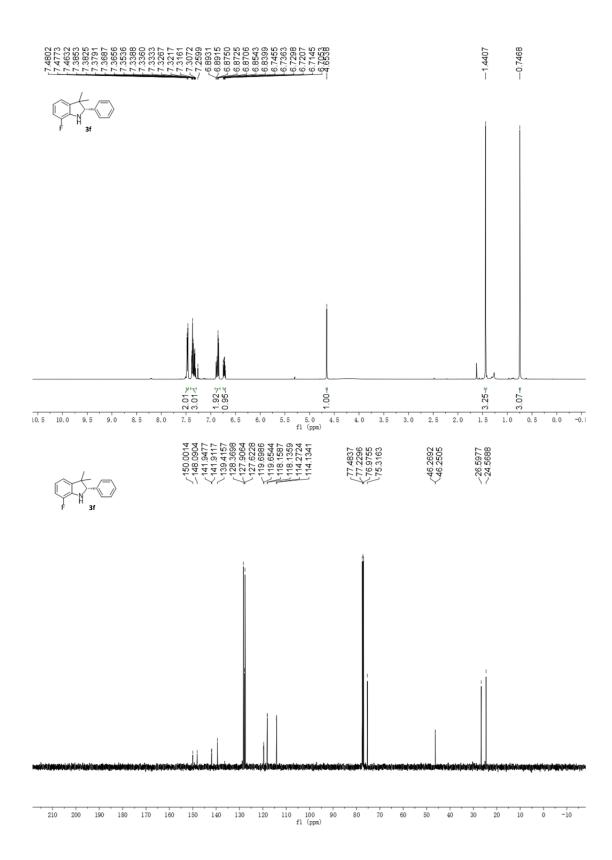


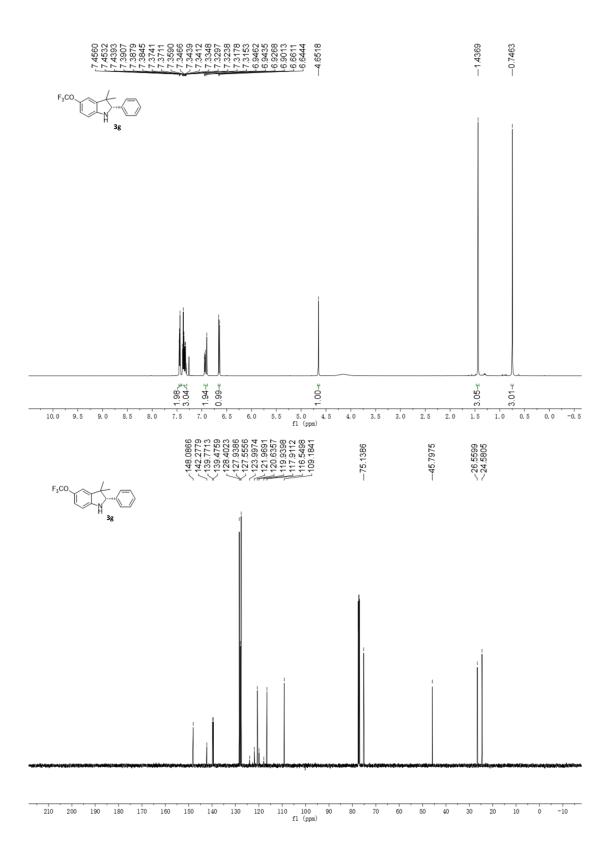


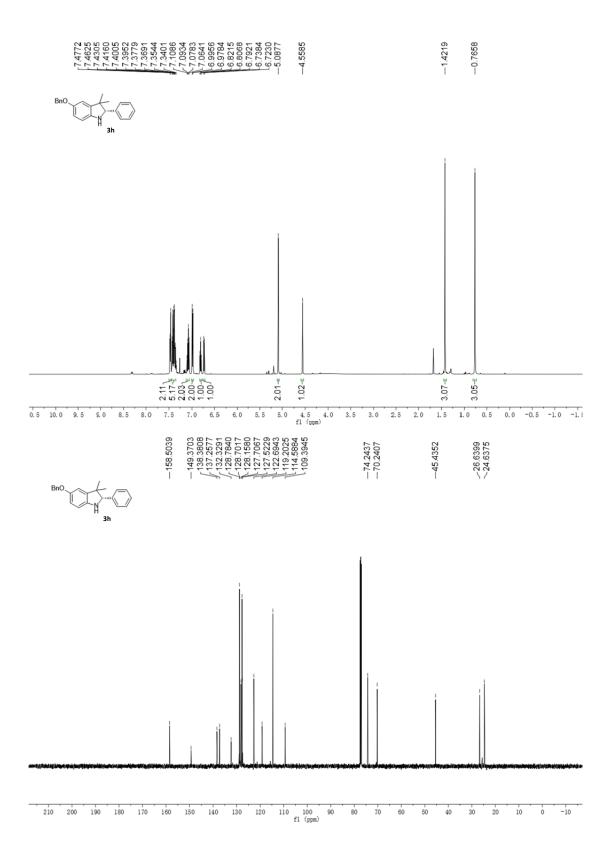


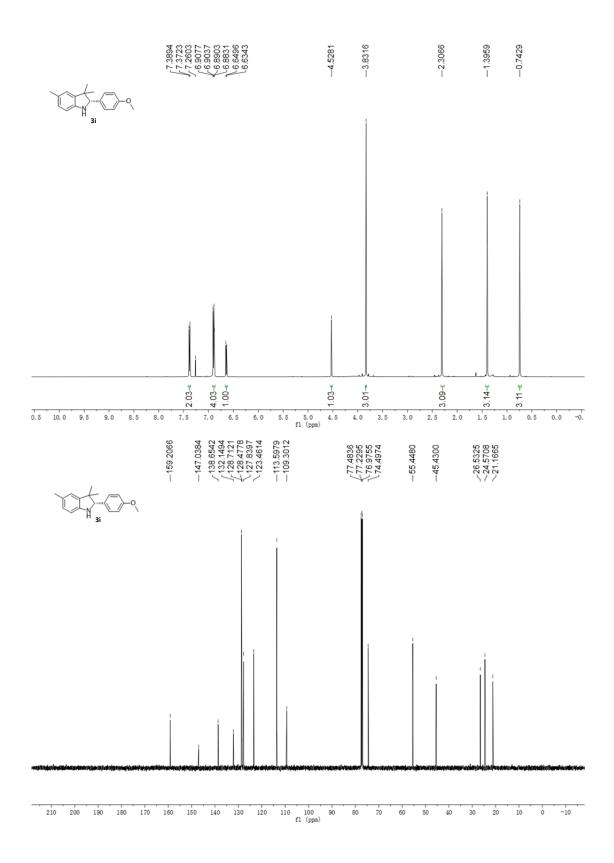


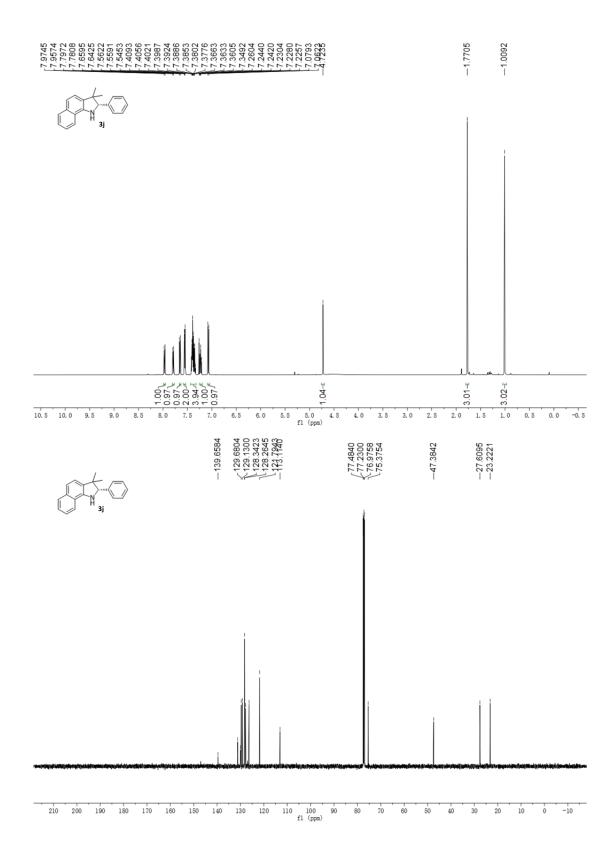


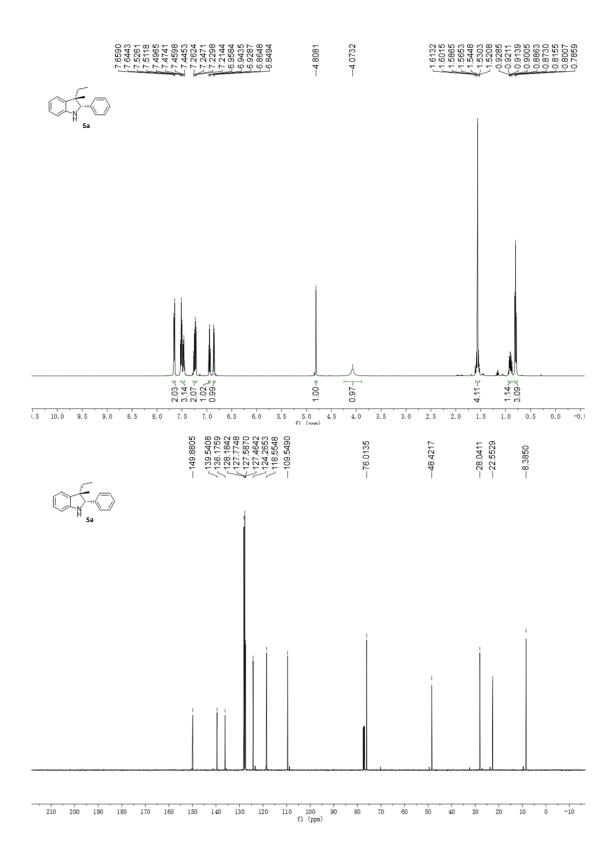


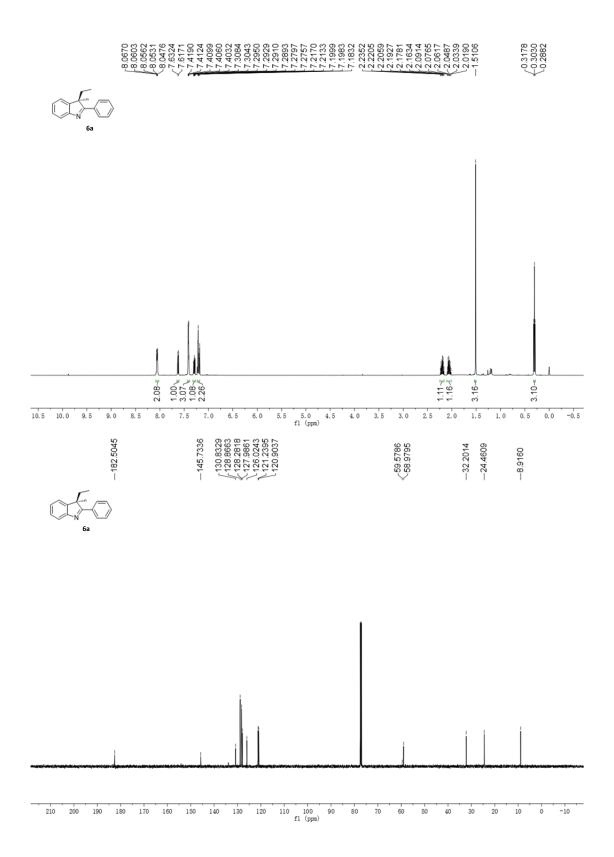


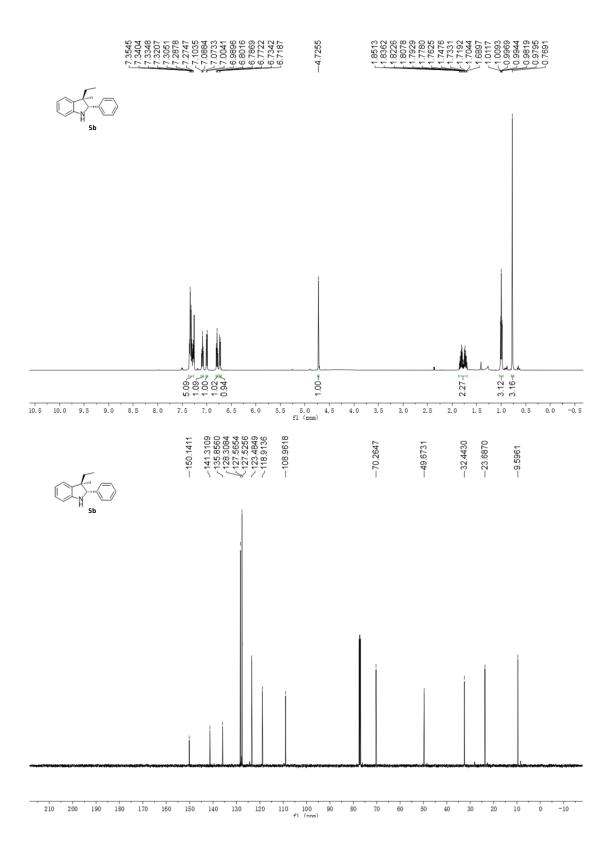


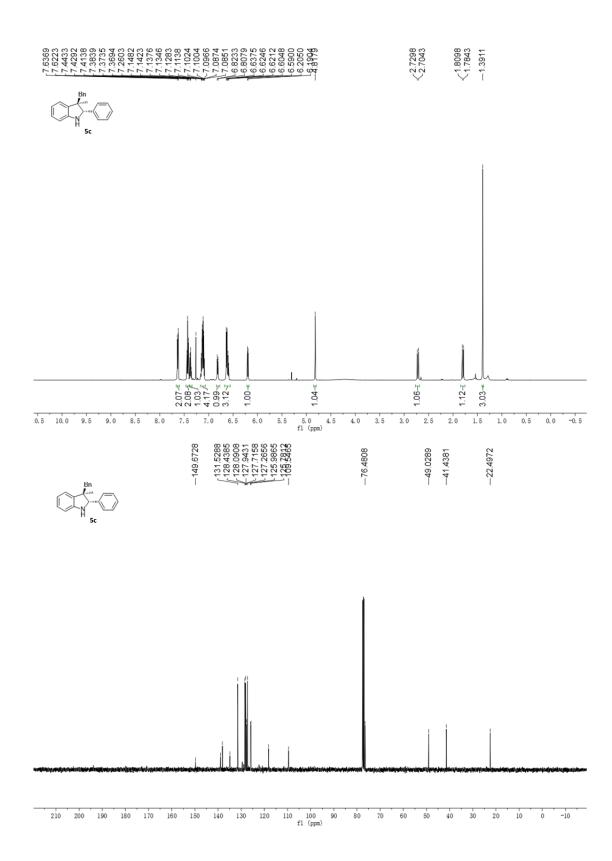


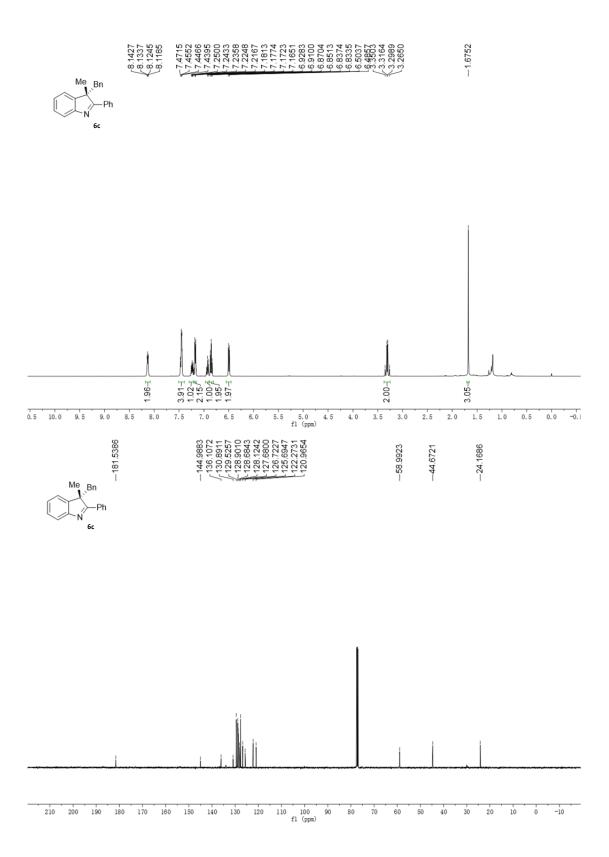


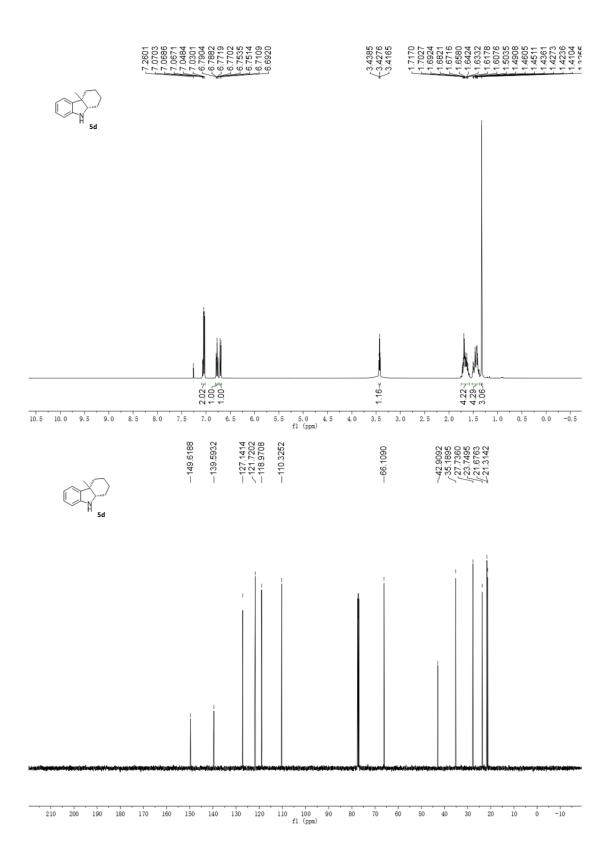


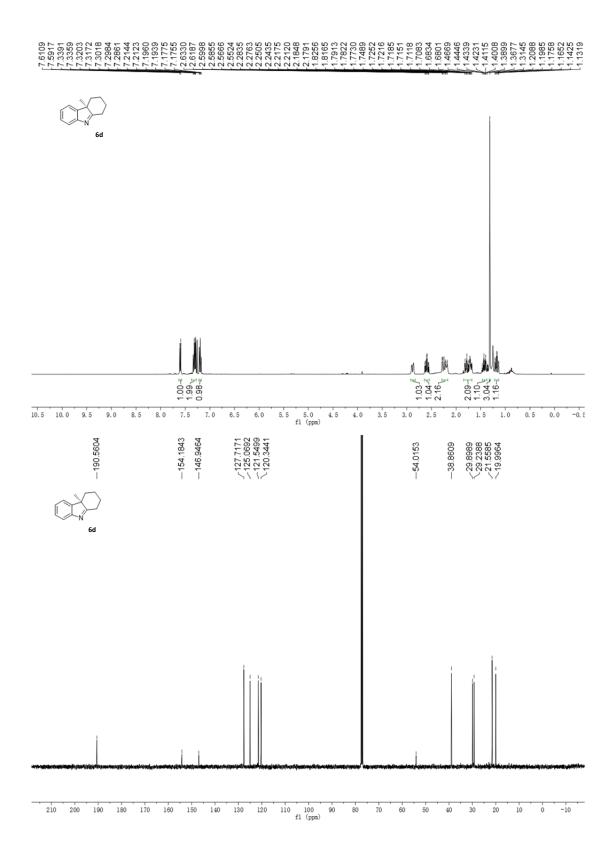


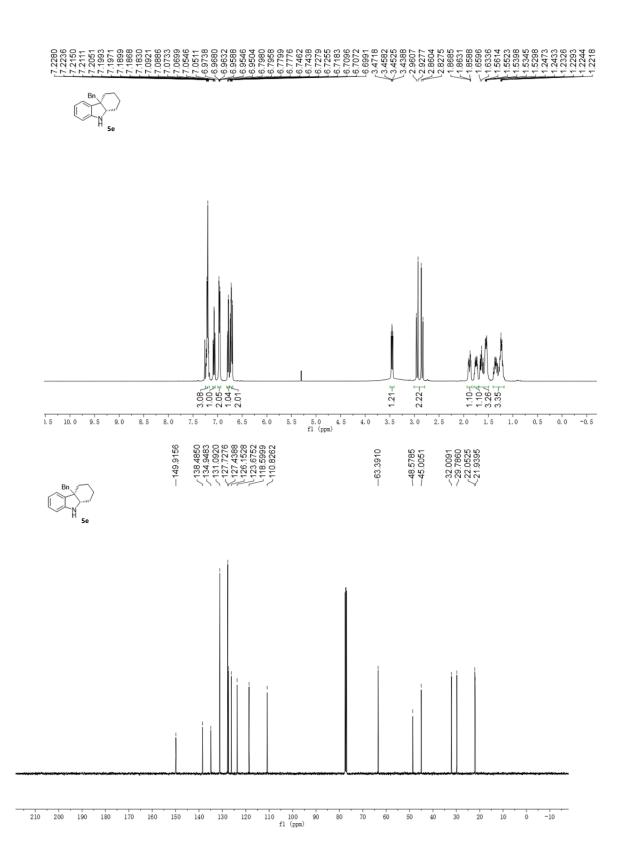


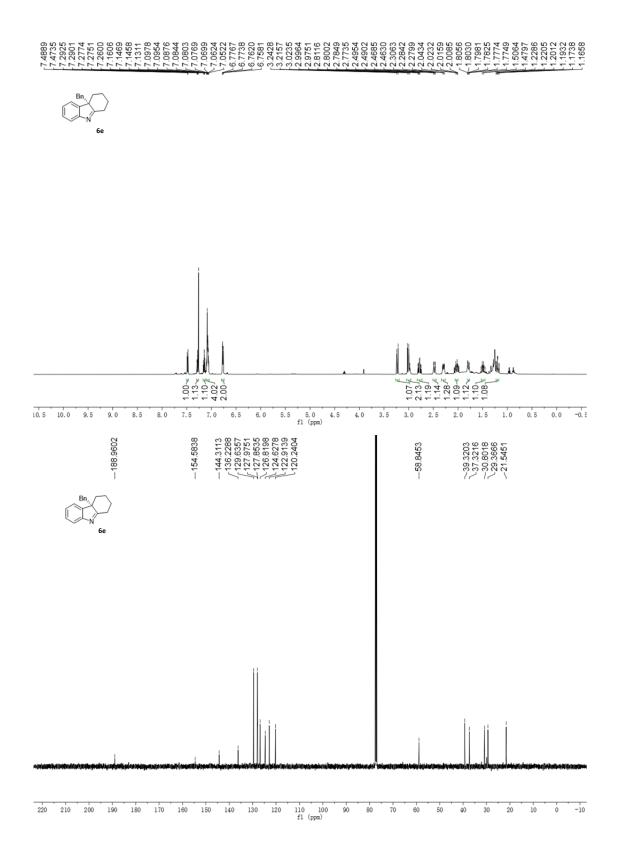


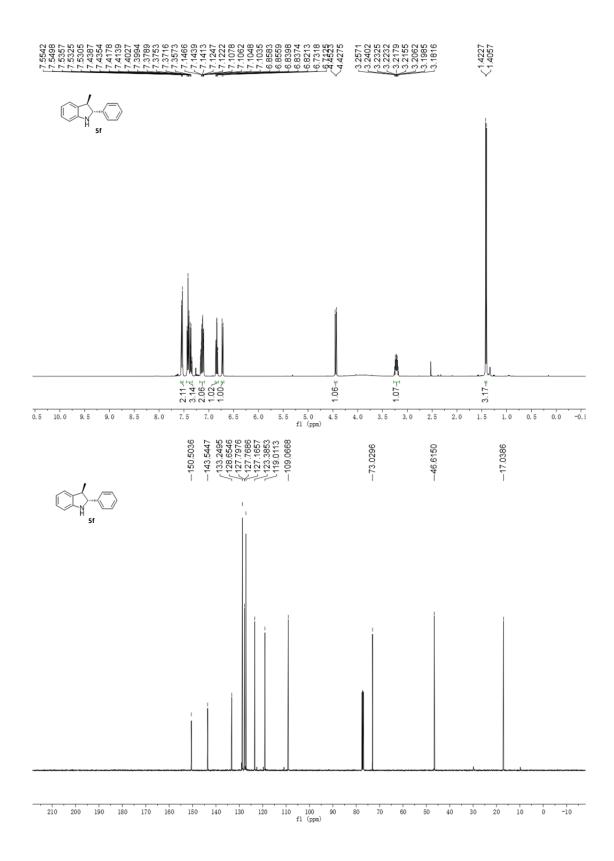


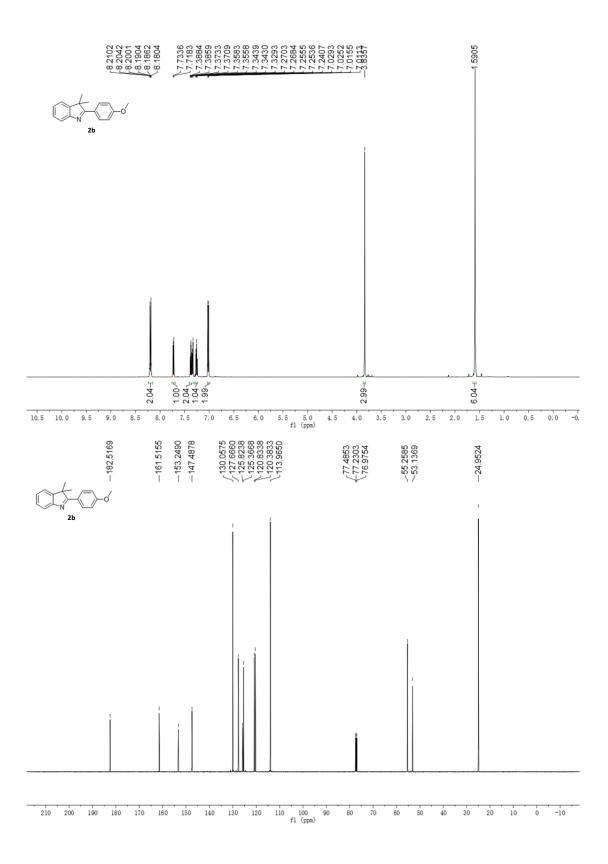


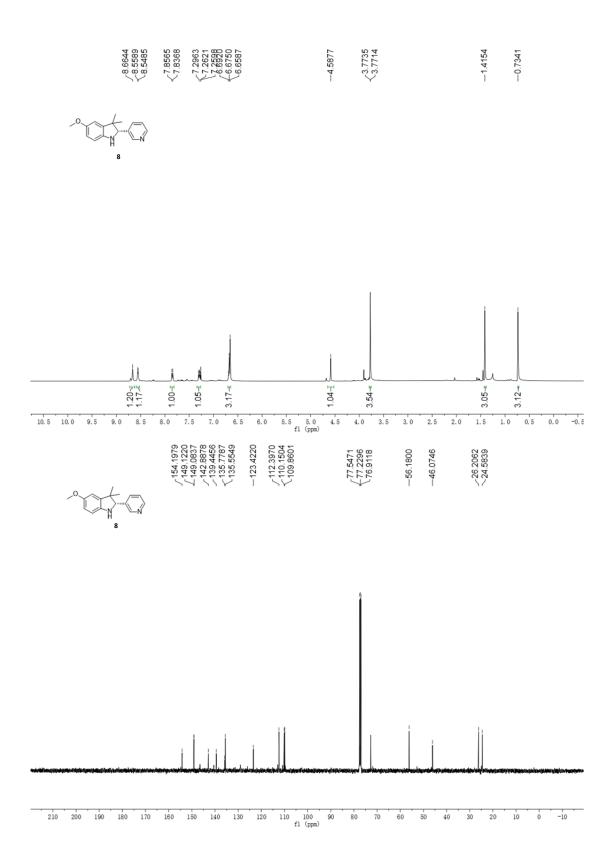


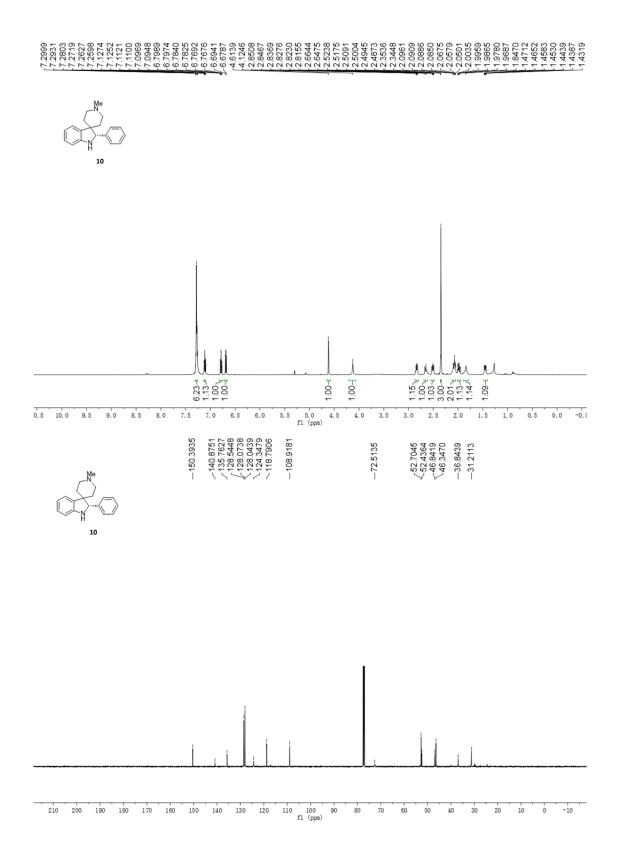


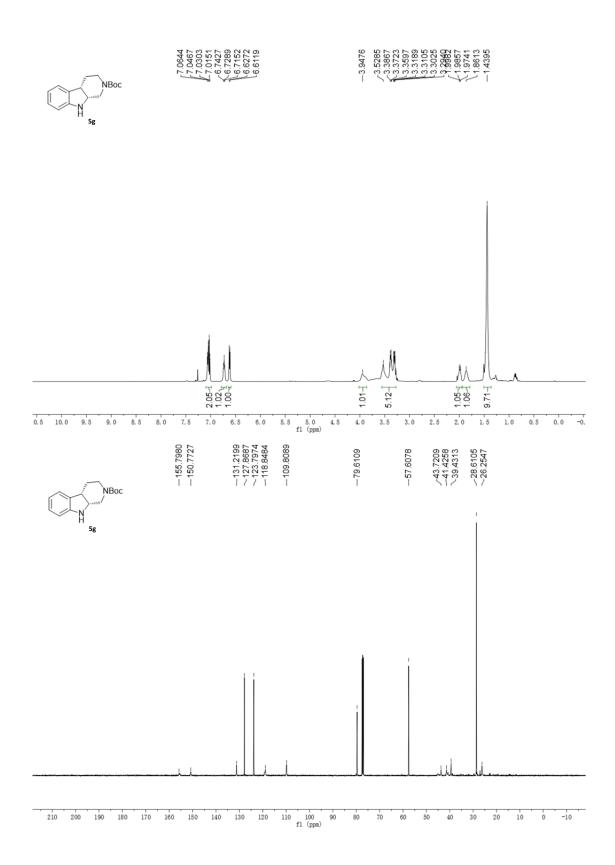


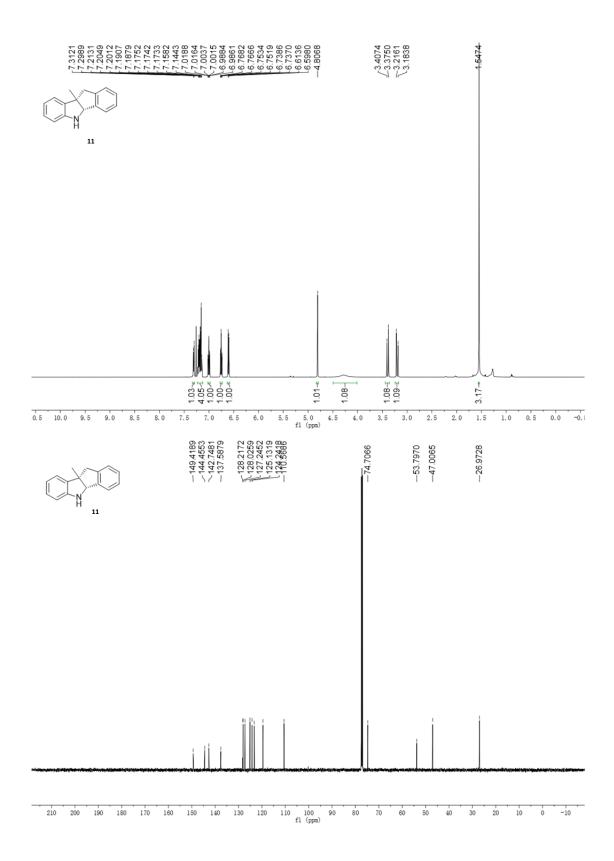


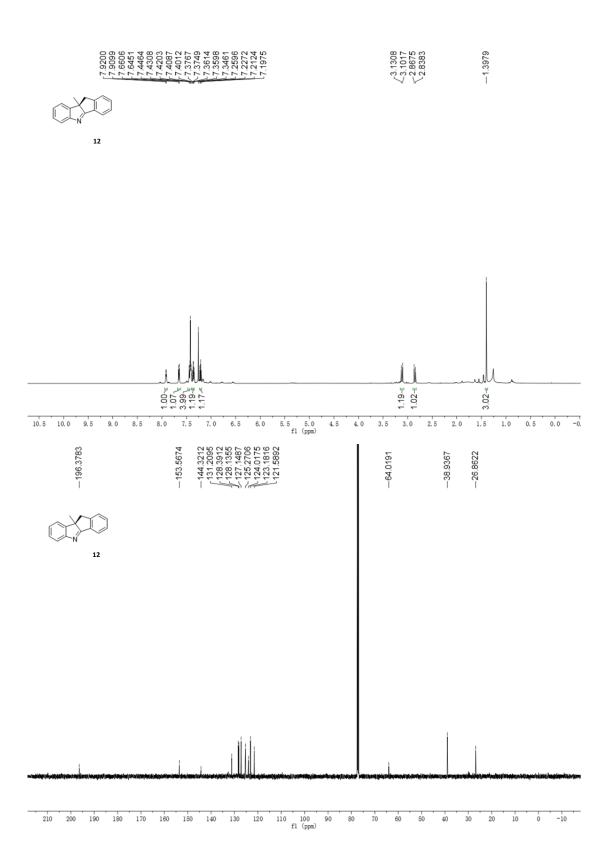


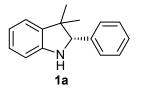


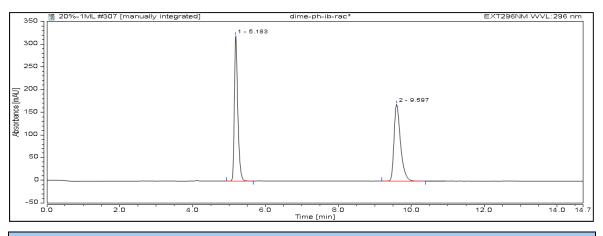


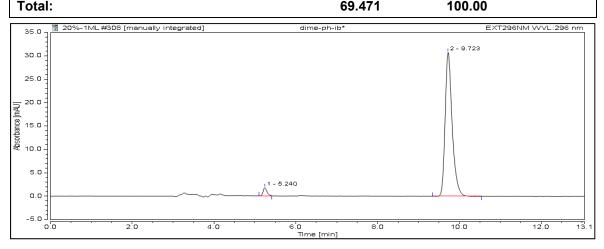




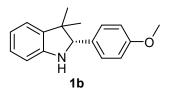


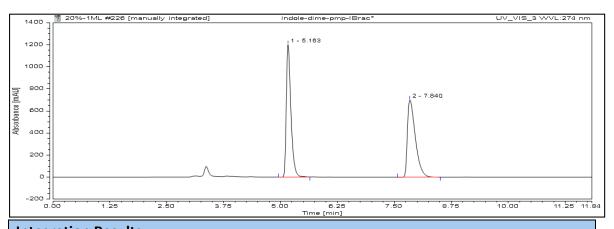




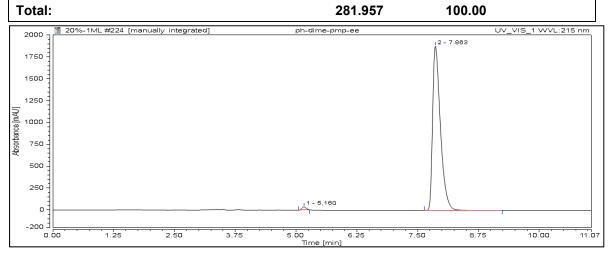


HPLC

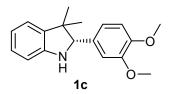


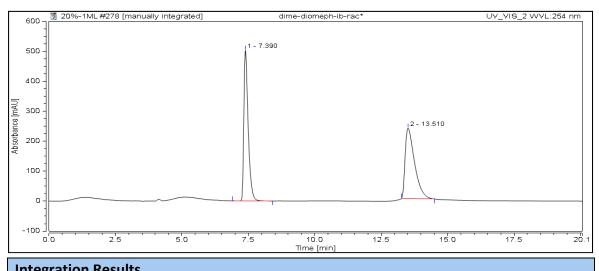


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.183	34.677	49.92	n.a.			
2		9.597	34.794	50.08	n.a.			
Total			60 474	100.00				

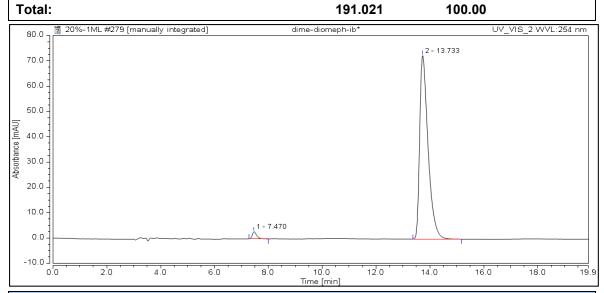


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.240	0.186	2.95	n.a.			
2		9.723	6.117	97.05	n.a.			
Total:			6.303	100.00				

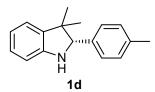


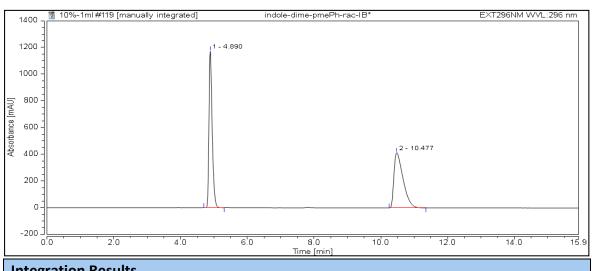


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.163	141.140	50.06	n.a.			
2		7.840	140.817	49.94	n.a.			

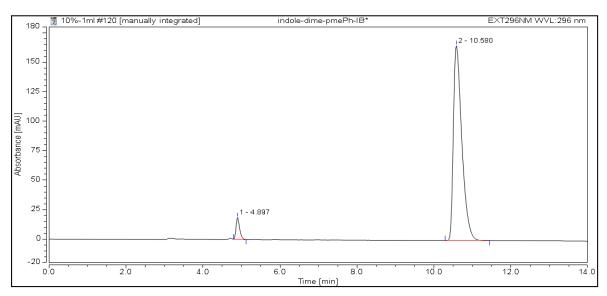


Integra	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		5.160	3.587	1.02	n.a.				
2		7.863	349.349	98.98	n.a.				
Total:			352.936	100.00					

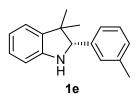


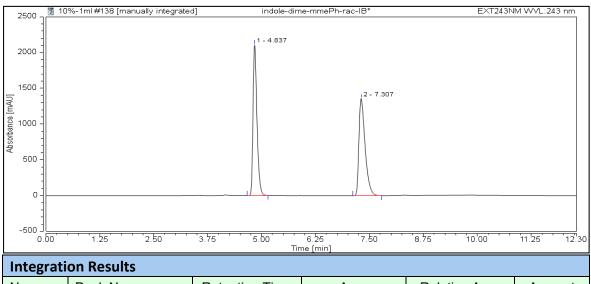


integration results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		7.390	94.399	49.42	n.a.			
2		13.510	96.622	50.58	n.a.			

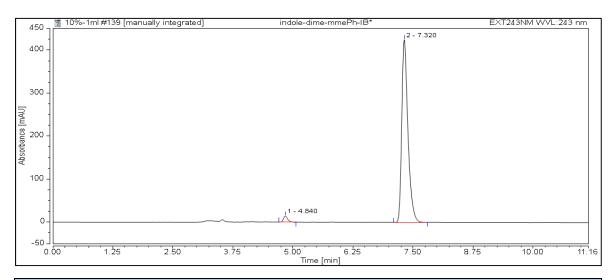


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		7.470	0.530	1.98	n.a.			
2		13.733	26.216	98.02	n.a.			
Total:			26.746	100.00				

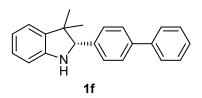


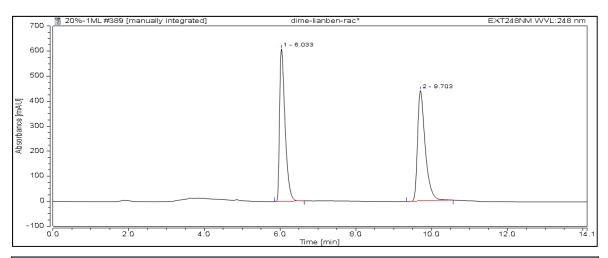


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		4.890	129.476	49.82	n.a.	
2		10.477	130.438	50.18	n.a.	
Total:			259.914	100.00		

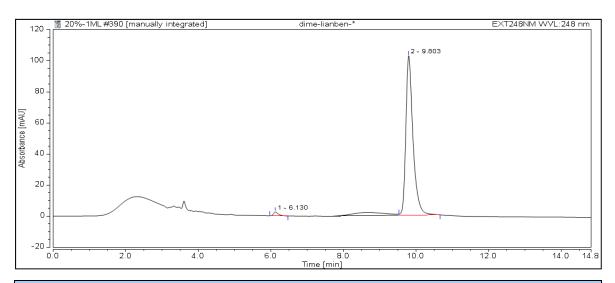


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		4.897	1.989	4.52	n.a.			
2		10.580	41.975	95.48	n.a.			
Total:			43.964	100.00				

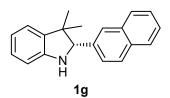


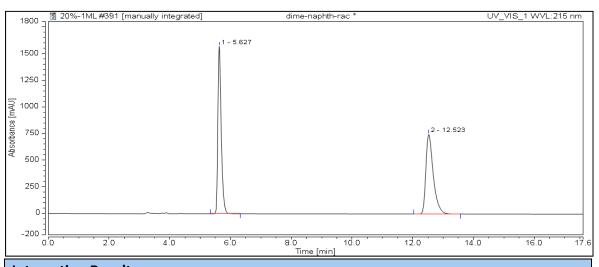


No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		4.837	222.599	49.76	n.a.
2		7.307	224.783	50.24	n.a.
Total:			447.382	100.00	

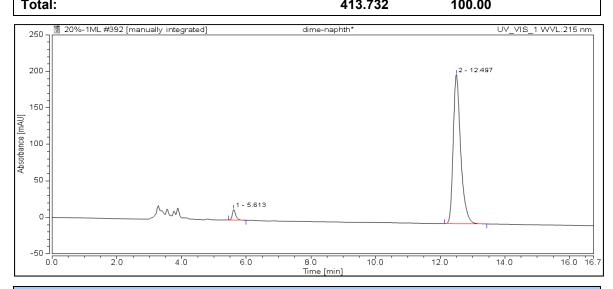


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		4.840	1.455	2.24	n.a.			
2		7.320	63.639	97.76	n.a.			
Total:			65.095	100.00				

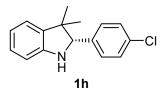


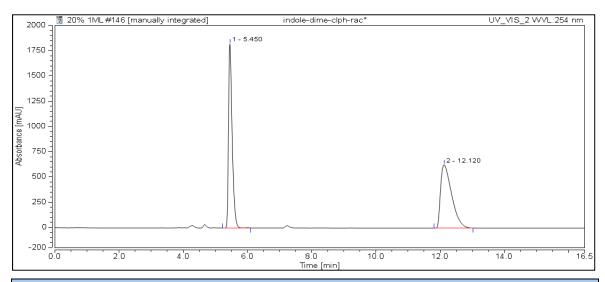


Integrati	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		6.033	101.840	49.53	n.a.				
2		9.703	103.791	50.47	n.a.				
Total:			205.631	100.00					

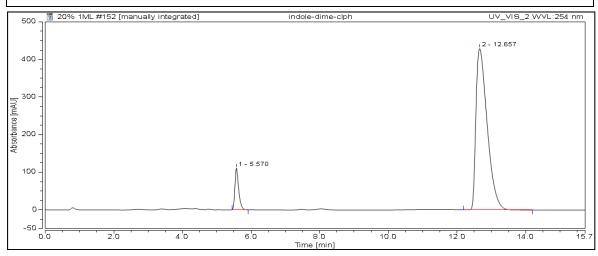


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		6.130	0.386	1.62	n.a.			
2		9.803	23.483	98.38	n.a.			
Total:			23.869	100.00				

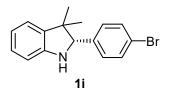


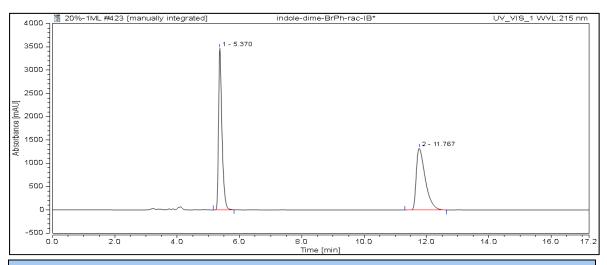


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.627	202.858	49.03	n.a.			
2		12.523	210.875	50.97	n.a.			
Total			113 732	100 00				

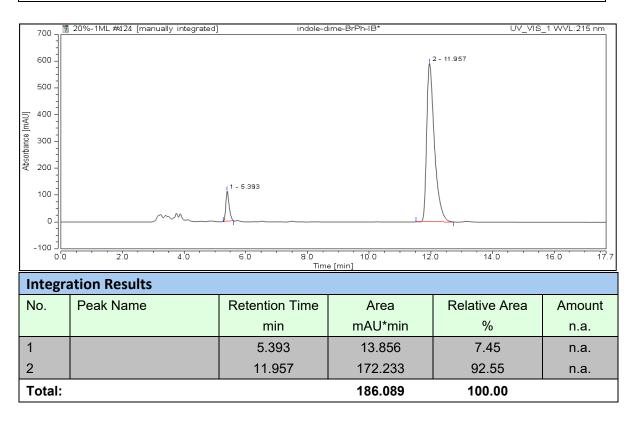


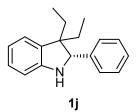
Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.613	1.756	3.11	n.a.			
2		12.497	54.637	96.89	n.a.			
Total:			56.393	100.00				

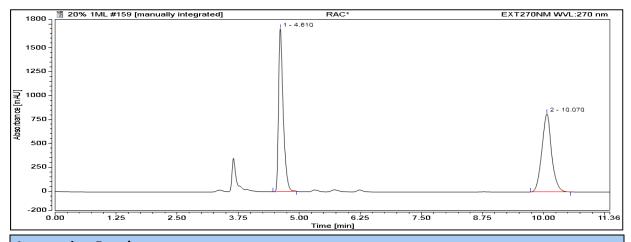


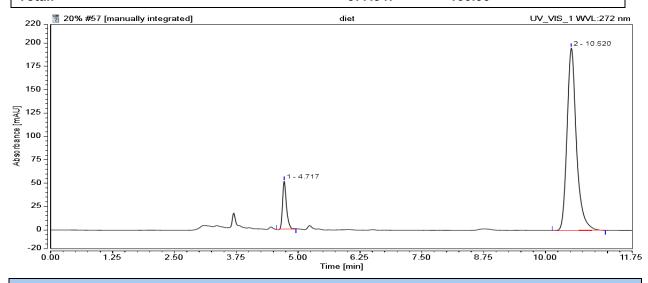


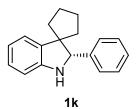
Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.450	238.753	48.89	n.a.			
2		12.120	249.638	51.11	n.a.			
Total:			488.391	100.00				

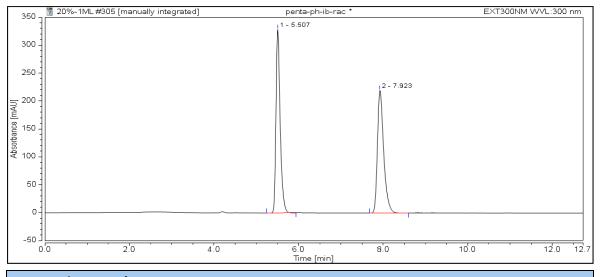



Integrati	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		5.570	13.925	7.89	n.a.				
2		12.657	162.511	92.11	n.a.				
Total:			176.436	100.00					

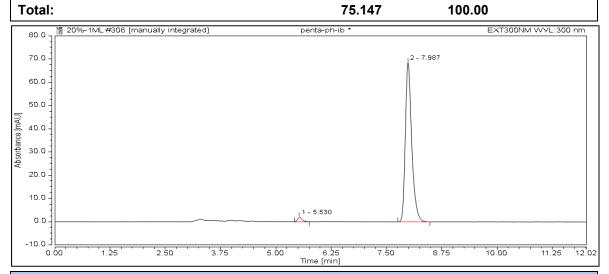



Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.370	438.707	49.86	n.a.			
2		11.767	441.161	50.14	n.a.			
Total:			879.868	100.00				

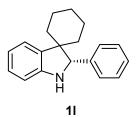


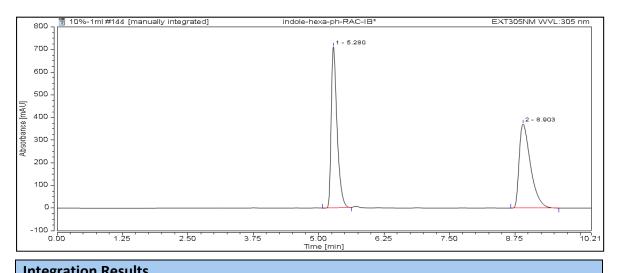


Integration Results							
NIa				Relative			
INO.	No. Peak Name	Retention Time	Area	Area	Amount		
		min	mAU*min	%	n.a.		
1		4.610	187.923	49.80	n.a.		
2		10.070	189.424	50.20	n.a.		
Total:			377.347	100.00			

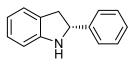


Integ	Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		4.717	4.620	9.69	n.a.			
2		10.520	43.077	90.31	n.a.			
Total	:		47.698	100.00				

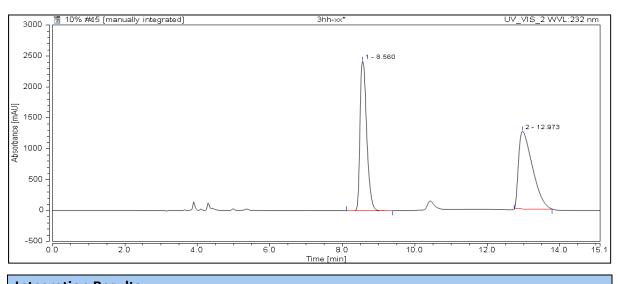


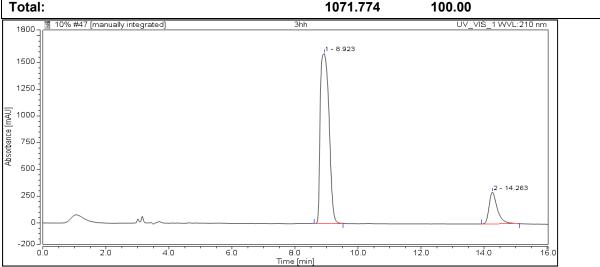


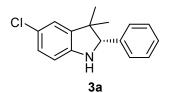
Integrat	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		5.507	37.474	49.87	n.a.				
2		7.923	37.673	50.13	n.a.				
			-						

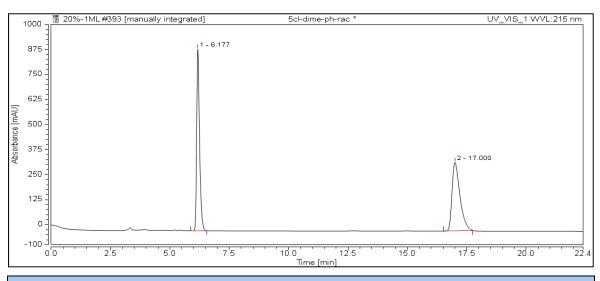


Integra	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		5.530	0.232	1.98	n.a.				
2		7.987	11.482	98.02	n.a.				
Total:			11.714	100.00					

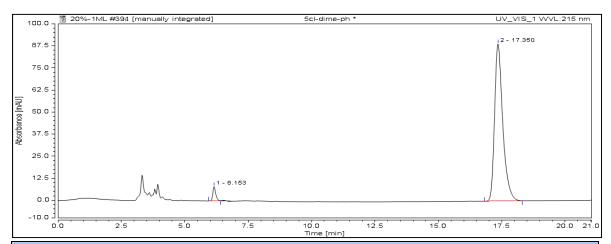



Integra	ation Results				
No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		5.280	92.296	49.66	n.a.
2		8.903	93.543	50.34	n.a.
Total:			185.839	100.00	
35.0 - 🖥	10%-1ml #145 [manually integrated] indole	e-hexa-ph-IB*	EXT305	5NM WVL:305 nm
30.0			2 - 8.070		
25.0 -					
(n 20.0					
soupau autor					
₩ 10.0					
5.0		1 5 3 1 3			
0.0				<u></u>	
-5.0 1	2.0 4.0	6.0	8.0 10	.0 12.0	14.0 15.0
			ne [min]		
	ation Results		A	Deleting Anna	A
No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		5.913	0.122	2.37	n.a.
2		8.070	5.018	97.63	n.a.
Total:			5.140	100.00	

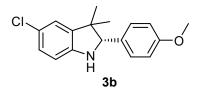

1m

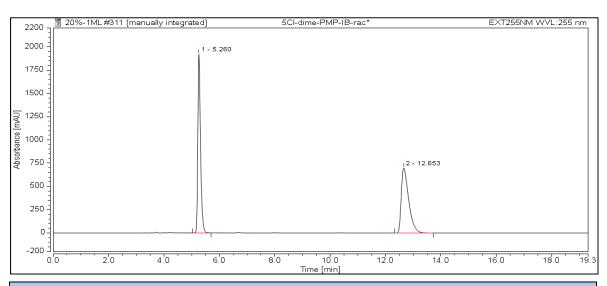


Integrat	Integration Results							
No. Peak Name				Relative				
	Retention Time	Area	Area	Amount				
		min	mAU*min	%	n.a.			
1		8.560	515.362	48.08	n.a.			
2		12.973	556.413	51.92	n.a.			
Tatal			4074 774	400.00				

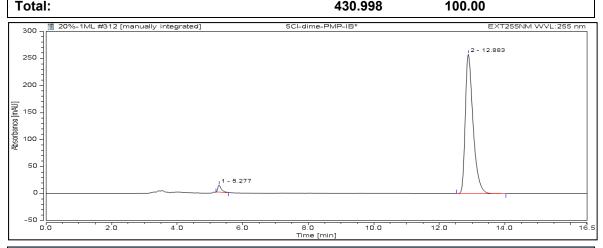


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		8.923	508.146	84.96	n.a.			
2		14.263	89.926	15.04	n.a.			
Total:			598.071	100.00				

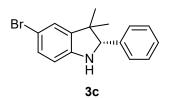


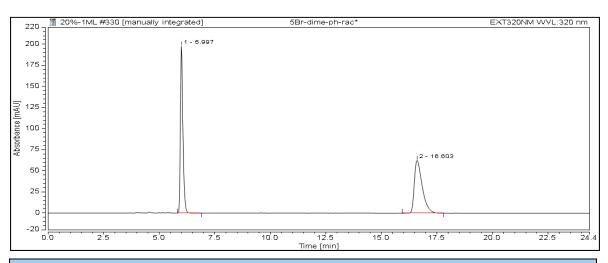


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		6.177	127.293	49.15	n.a.	
2		17.000	131.679	50.85	n.a.	
Total:			258.972	100.00		

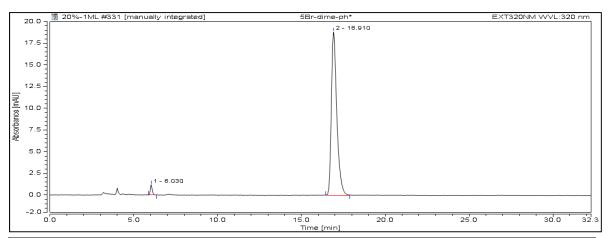


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		6.153	1.117	3.24	n.a.	
2		17.350	33.379	96.76	n.a.	
Total:			34.496	100.00		

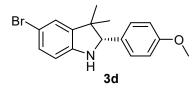


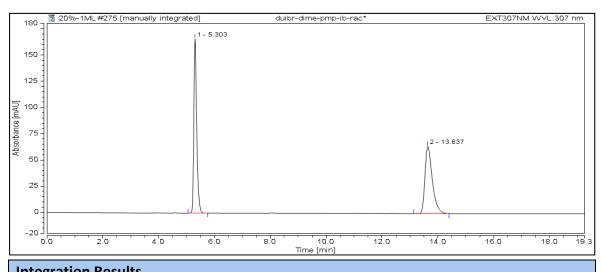


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		5.260	215.373	49.97	n.a.	
2		12.653	215.625	50.03	n.a.	
Total			130 008	100.00		

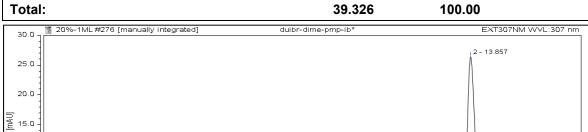


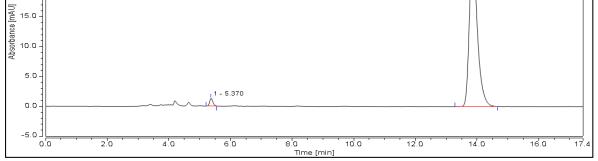
Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		5.277	1.687	2.32	n.a.	
2		12.883	71.146	97.68	n.a.	
Total:			72.833	100.00		

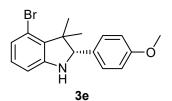


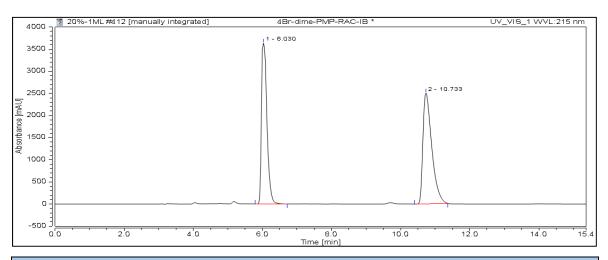


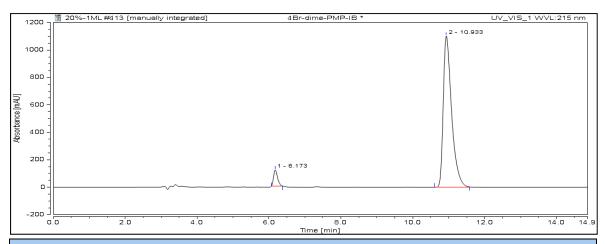
Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		5.997	25.644	49.91	n.a.	
2		16.603	25.734	50.09	n.a.	
Total:			51.378	100.00		



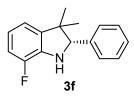

Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		6.030	0.155	2.14	n.a.	
2		16.910	7.072	97.86	n.a.	
Total:			7.226	100.00		

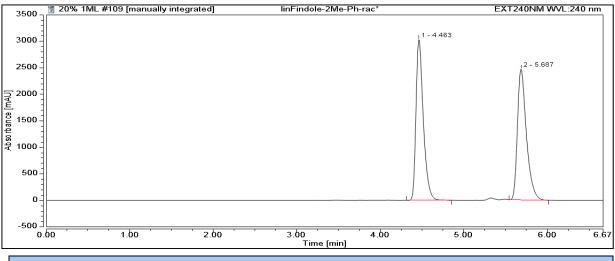



Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		5.303	19.804	50.36	n.a.		
2		13.637	19.522	49.64	n.a.		

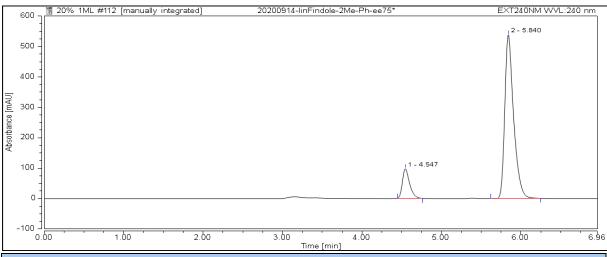


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		5.370	0.161	2.00	n.a.	
2		13.857	7.899	98.00	n.a.	
Total:			8.060	100.00		

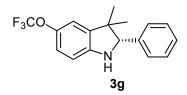


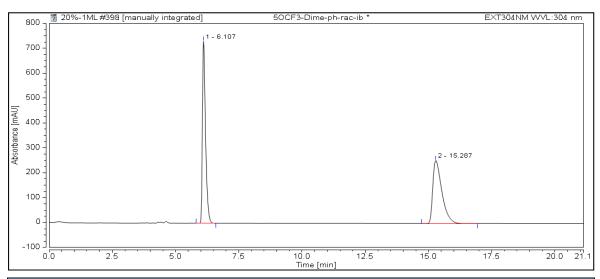


Integrati	Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		6.030	667.885	47.37	n.a.			
2		10.733	742.144	52.63	n.a.			
Total:			1410.029	100.00				

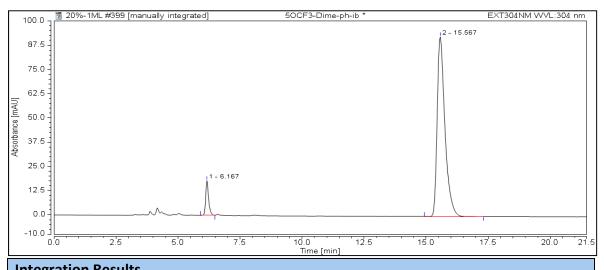


Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		6.173	15.485	4.98	n.a.		
2		10.933	295.613	95.02	n.a.		
Total:			311.098	100.00			

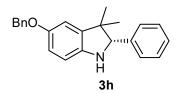


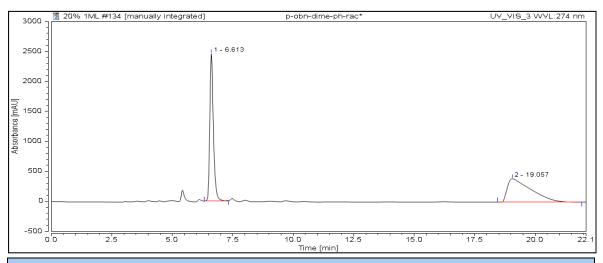


Integra	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		4.463	308.375	50.09	n.a.				
2		5.687	307.212	49.91	n.a.				
Total:			615.587	100.00					

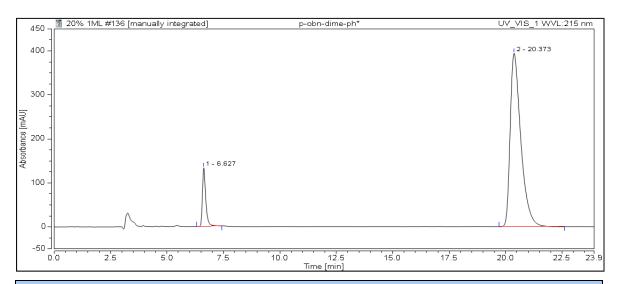


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		4.547	10.152	12.82	n.a.			
2		5.840	69.038	87.18	n.a.			
Total:			79.190	100.00				

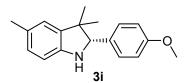


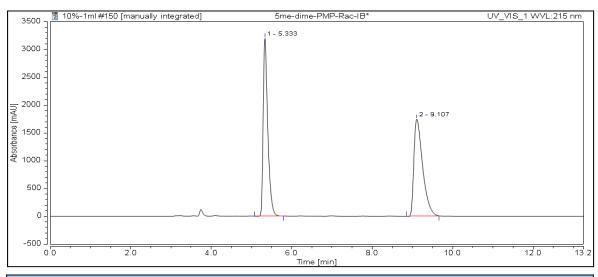


Integrati	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		6.107	104.778	49.94	n.a.				
2		15.287	105.010	50.06	n.a.				
Total:			209.787	100.00					

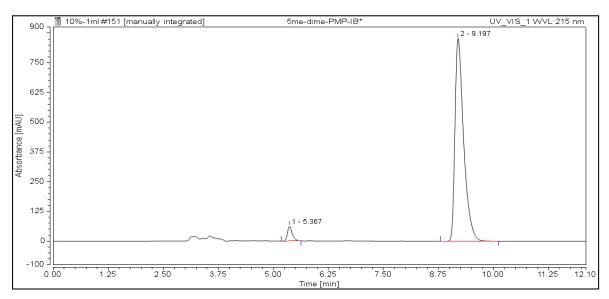


Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		6.167	2.404	6.66	n.a.		
2		15.567	33.714	93.34	n.a.		
Total:			36.117	100.00			

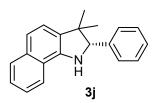


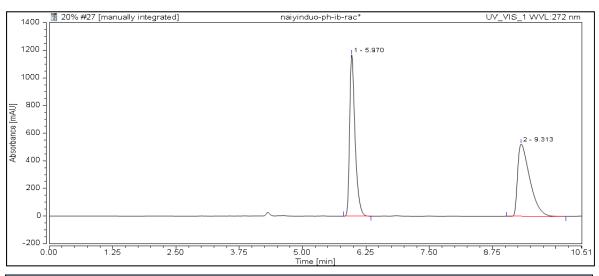


Integrati	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		6.613	420.573	48.88	n.a.				
2		19.057	439.878	51.12	n.a.				
Total:			860.450	100.00					

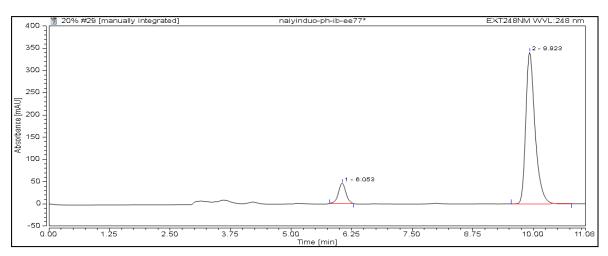


Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		6.627	22.490	9.46	n.a.		
2		20.373	215.156	90.54	n.a.		
Total:			237.646	100.00			

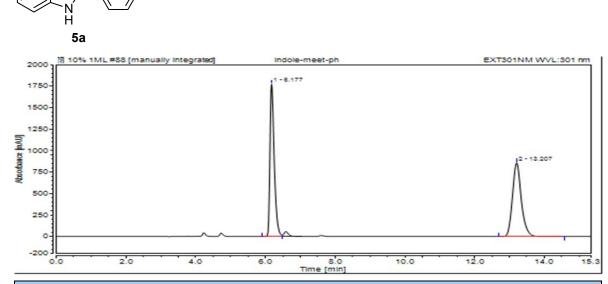


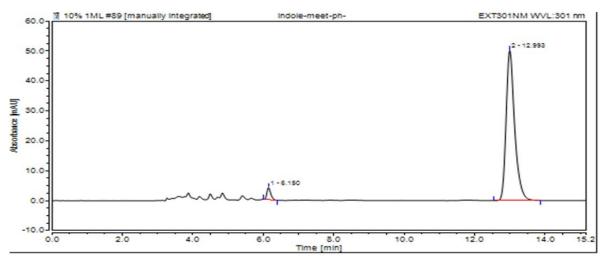


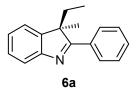
Integrati	Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.333	422.748	49.02	n.a.			
2		9.107	439.615	50.98	n.a.			
Total:			862.362	100.00				

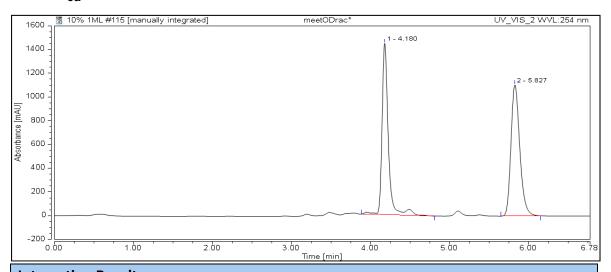


Integrati	Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.367	7.762	3.83	n.a.			
2		9.197	195.119	96.17	n.a.			
Total:			202.881	100.00				

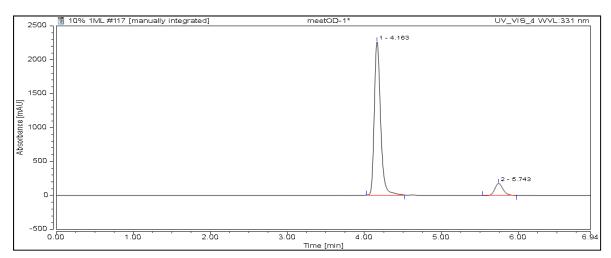



Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.970	144.679	49.95	n.a.			
2		9.313	144.977	50.05	n.a.			
Total:			289.656	100.00				

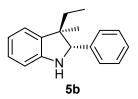

Integrati	Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount				
		min	mAU*min	%	n.a.				
1		6.053	8.167	9.75	n.a.				
2		9.923	75.621	90.25	n.a.				
Total:			83.787	100.00					

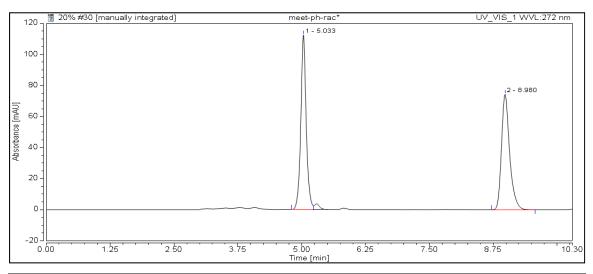


Integrati	Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		6.177	249.239	49.77	n.a.		
2		13.207	251.567	50.23	n.a.		
Total:			500.806	100.00			

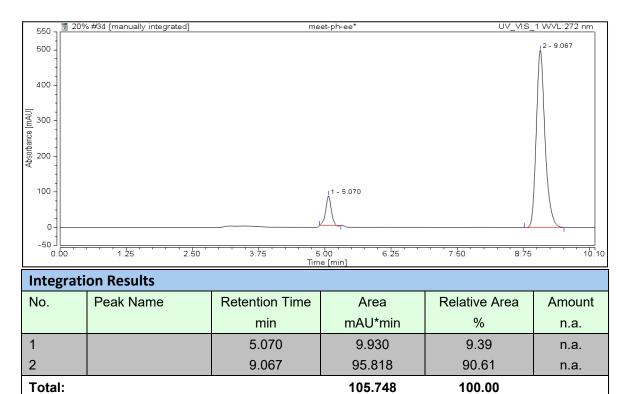


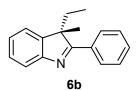
Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		6.150	0.507	3.48	n.a.		
2		12.993	14.065	96.52	n.a.		
Total:			14.572	100.00			

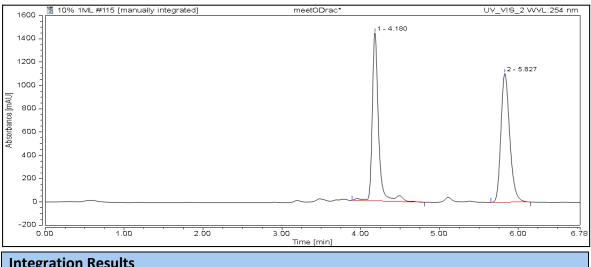


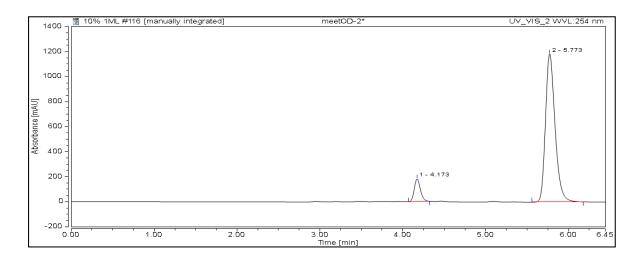


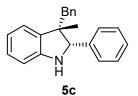
Integration Results					
No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		4.180	133.769	48.33	n.a.
2		5.827	143.001	51.67	n.a.
Total:			276.770	100.00	

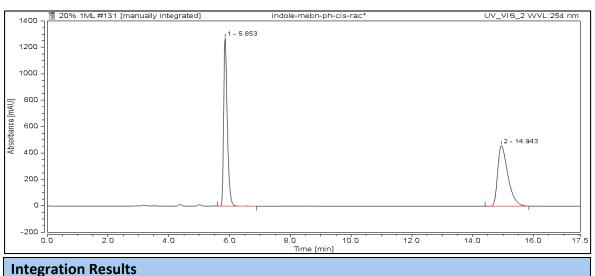



Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		4.163	213.500	90.66	n.a.		
2		5.743	22.007	9.34	n.a.		
Total:			235.507	100.00			

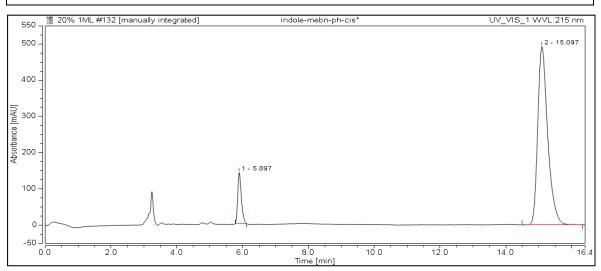



Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		5.033	13.741	50.03	n.a.		
2		8.980	13.727	49.97	n.a.		
Total:			27.469	100.00			

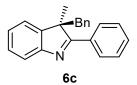


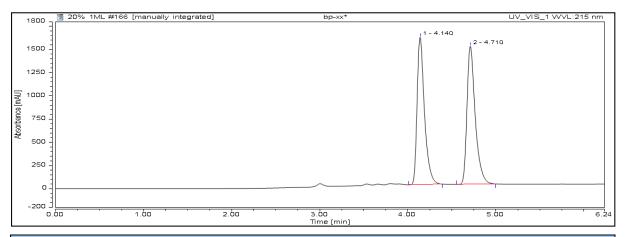


Integrati	ion Results				
No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		4.180	133.769	48.33	n.a.
2		5.827	143.001	51.67	n.a.
Total:			276.770	100.00	

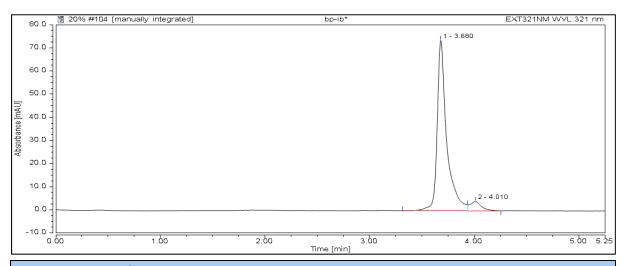


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		4.173	15.443	8.89	n.a.			
2		5.773	158.253	91.11	n.a.			
Total:			173.697	100.00				

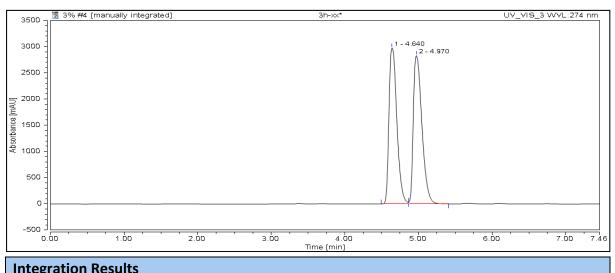




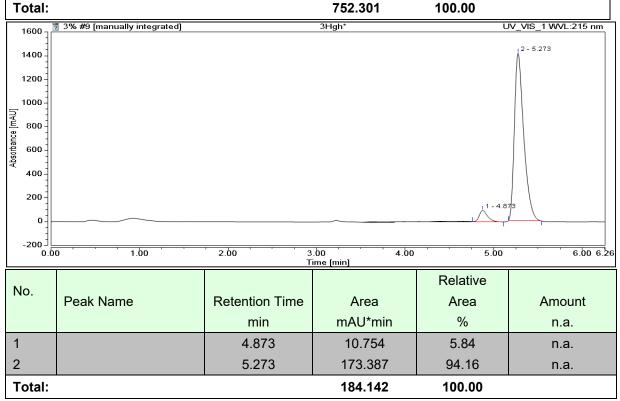
No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		5.853	174.208	49.47	n.a.
2		14.943	177.937	50.53	n.a.
Total:			352.145	100.00	

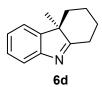


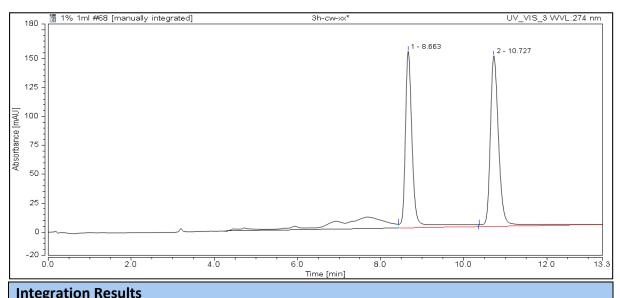
Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		5.897	17.960	9.42	n.a.			
2		15.097	172.760	90.58	n.a.			
Total:			190.720	100.00				

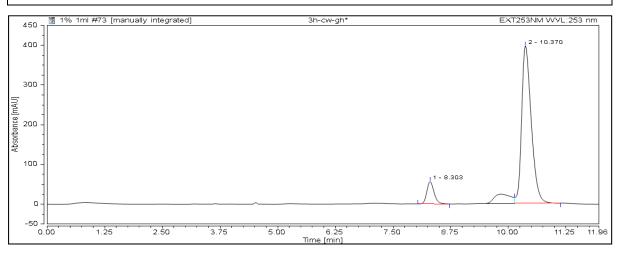


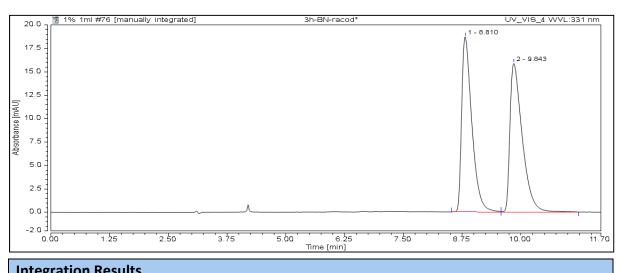
Integration Results								
Ne				Relative				
NO.	No. Peak Name	Retention Time	Area	Area	Amount			
		min	mAU*min	%	n.a.			
1		4.140	153.921	48.78	n.a.			
2		4.710	161.627	51.22	n.a.			
Total:			315.548	100.00				



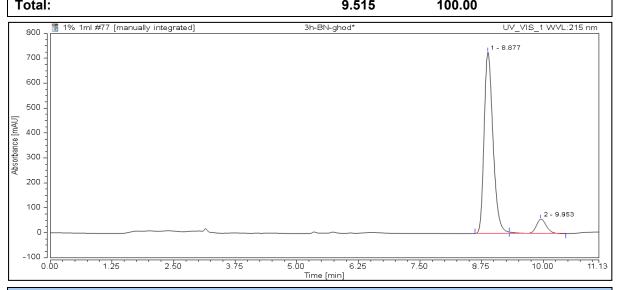

Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		3.680	7.772	93.92	n.a.		
2		4.010	0.503	6.08	n.a.		
Total:			8.275	100.00			



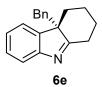

No. Peak Name				Relative			
	Peak Name	Retention Time	Area	Area	Amount		
		min	mAU*min	%	n.a.		
1		4.640	369.246	49.08	n.a.		
2		4.970	383.055	50.92	n.a.		
Tatal			750.004	400.00			

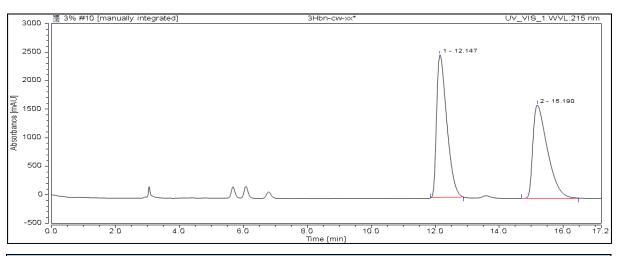


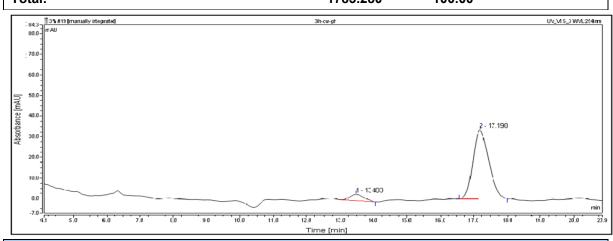
Integration Results						
No.				Relative		
Peak	Peak Name	Peak Name Retention Time	Area	Area	Amount	
		min	mAU*min	%	n.a.	
1		8.663	30.716	46.80	n.a.	
2		10.727	34.922	53.20	n.a.	
Total:			65.639	100.00		

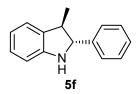


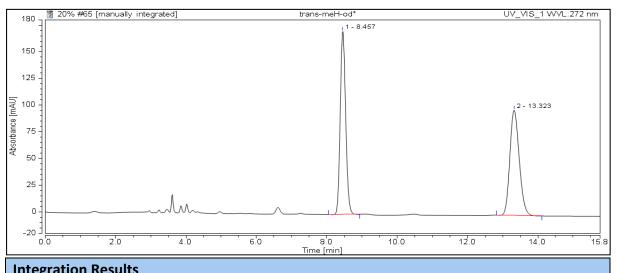
Integration Results							
No. Peak Name				Relative			
	Retention Time	Area	Area	Amount			
		min	mAU*min	%	n.a.		
1		8.303	10.126	9.57	n.a.		
2		10.370	95.682	90.43	n.a.		
Total:			105.809	100.00			



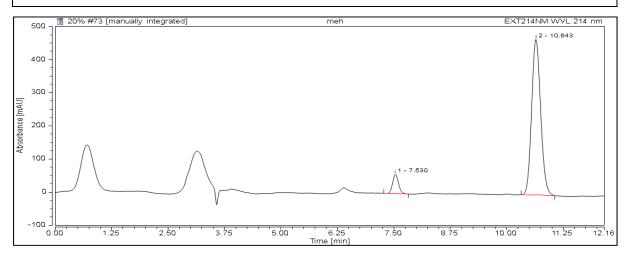

integration Results						
No. Peak Name				Relative		
	Peak Name	Retention Time	Area	Area	Amount	
		min	mAU*min	%	n.a.	
1		8.810	4.707	49.47	n.a.	
2		9.843	4.808	50.53	n.a.	
Total			9 515	100.00		


Integrati	Integration Results							
No.				Relative				
NO.	Peak Name	Retention Time	Area	Area	Amount			
		min	mAU*min	%	n.a.			
1		8.877	152.120	91.42	n.a.			
2		9.953	14.270	8.58	n.a.			
Total:			166.390	100.00				

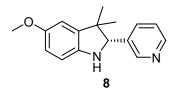

Г

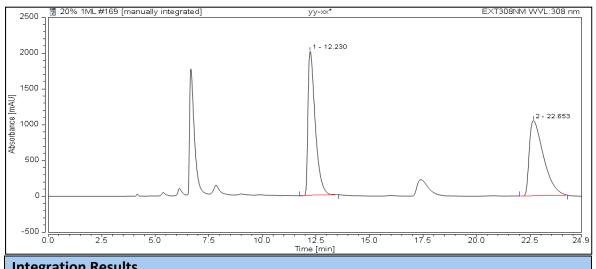


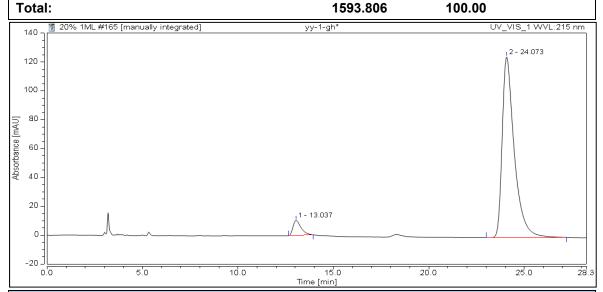
Integration Results							
No.				Relative			
P	Peak Name	Retention Time	Area	Area	Amount		
		min	mAU*min	%	n.a.		
1		12.147	924.048	51.82	n.a.		
2		15.190	859.231	48.18	n.a.		
Total:			1783.280	100.00			



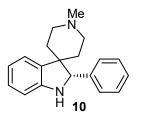
Integration Results							
No				Relative			
NO.	No. Peak Name	Retention Time	Area	Area	Amount		
		min	mAU*min	%	n.a.		
1		13.483	1.4577	7.37	n.a.		
2		17.190	18.3214	92.63	n.a.		
Total:			19.7791	100.00			

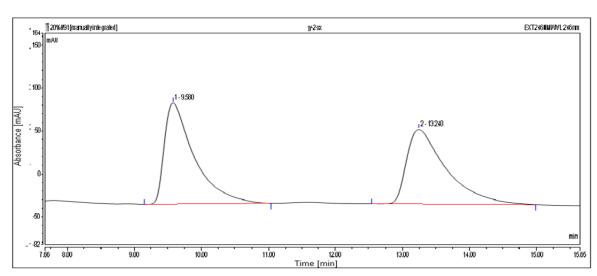



integration results						
No. Pea				Relative		
	Peak Name	Retention Time	Area	Area	Amount	
		min	mAU*min	%	n.a.	
1		8.457	30.600	50.19	n.a.	
2		13.323	30.364	49.81	n.a.	
Total:			60.964	100.00		

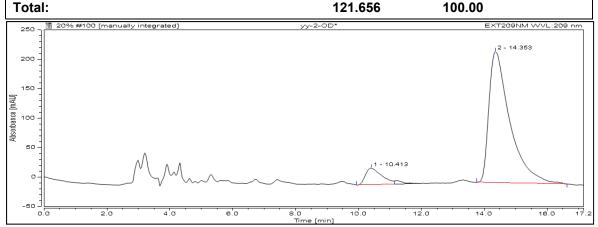

Integration Results							
No.				Relative			
INU.	Peak Name	Retention Time	Area	Area	Amount		
		min	mAU*min	%	n.a.		
1		7.530	8.651	7.34	n.a.		
2		10.643	109.164	92.66	n.a.		
Total:			117.815	100.00			

S125

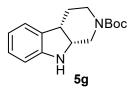


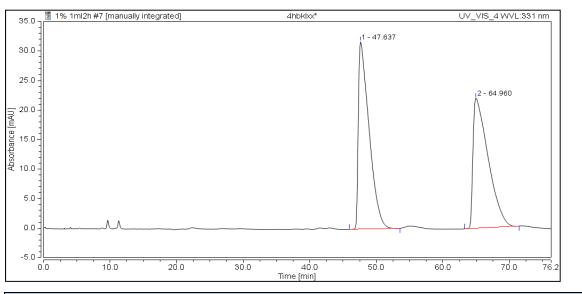


megrat	integration results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		12.230	787.497	49.41	n.a.			
2		22.653	806.309	50.59	n.a.			
			4500.000	400.00				

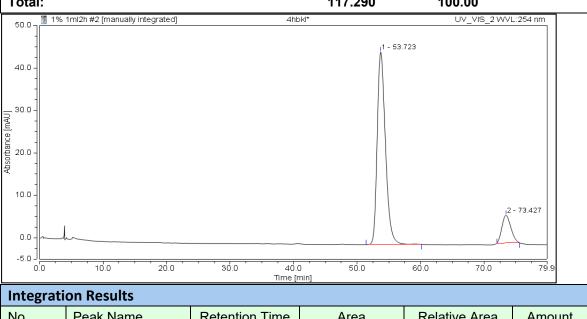


Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		13.037	5.074	5.24	n.a.		
2		24.073	91.823	94.76	n.a.		
Total:			96.897	100.00			

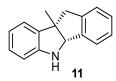


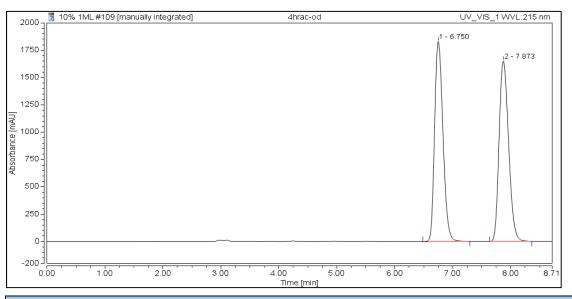


Integration Results							
No.	Peak Name	Retention Time	Area	Relative Area	Amount		
		min	mAU*min	%	n.a.		
1		9.580	61.578	50.62	n.a.		
2		13.240	60.078	49.38	n.a.		
Total			101 656	100.00			

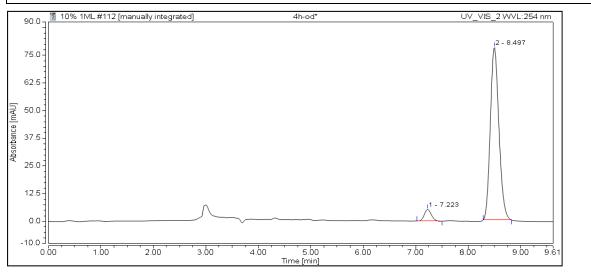


Integration Results								
No.	Peak Name	Retention Time	Area	Relative Area	Amount			
		min	mAU*min	%	n.a.			
1		10.413	16.871	8.93	n.a.			
2		14.353	172.116	91.07	n.a.			
Total:			188.987	100.00				

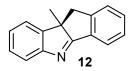


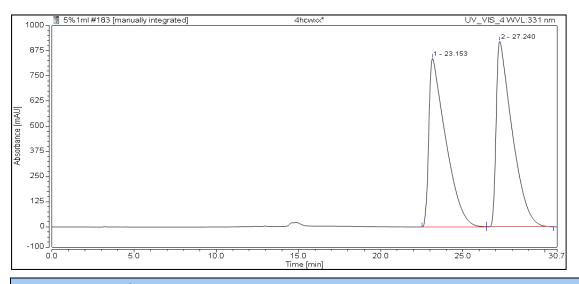


Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		47.637	59.414	50.66	n.a.	
2		64.960	57.876	49.34	n.a.	
Total:			117.290	100.00		

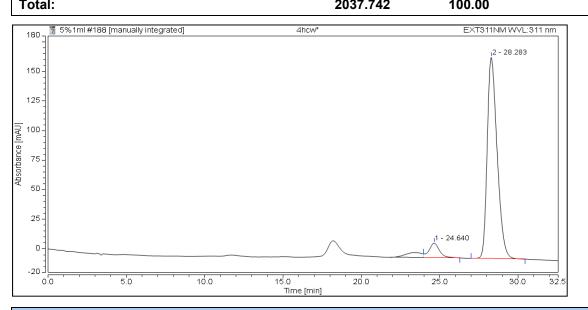


No.	Peak Name	Retention Time	Area	Relative Area	Amount
		min	mAU*min	%	n.a.
1		53.723	68.183	86.52	n.a.
2		73.427	10.620	13.48	n.a.
Total:			78.803	100.00	





Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		6.750	306.254	49.44	n.a.	
2		7.873	313.208	50.56	n.a.	
Total:			619.462	100.00		



Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		7.223	0.822	5.26	n.a.	
2		8.497	14.805	94.74	n.a.	
Total:			15.627	100.00		

Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		23.153	997.821	48.97	n.a.	
2		27.240	1039.921	51.03	n.a.	
Total			2037 742	100 00		

Integration Results						
No.	Peak Name	Retention Time	Area	Relative Area	Amount	
		min	mAU*min	%	n.a.	
1		24.640	9.589	7.15	n.a.	
2		28.283	124.486	92.85	n.a.	
Total:			134.074	100.00		