Supporting information

Methane Monooxygenase Mimic Asymmetric Oxidation:
 Self-Assembling $\boldsymbol{\mu}$-Hydroxo, Carboxylate-Bridged
 Diiron(III) Catalyzed Enantioselective Dehydrogenation

Honghao Guan, ${ }^{\dagger}$ Chen-Ho Tung, ${ }^{\dagger}$ Lei Liu* ${ }^{*} \dagger$
${ }^{\dagger}$ School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

*Correspondence to: leiliu@sdu.edu.cn

Table of contents

Table of contents S2
General information S3
General procedures S4
Optimization of reaction conditions S9
Analytical data for products S10
Mechanism studies S32
X-ray crystallographic data S45
References S51
NMR spectra. S53
HPLC spectra S92

General Information

Proton (${ }^{1} \mathrm{H}$ NMR) and carbon (${ }^{13} \mathrm{C}$ NMR) nuclear magnetic resonance spectra were recorded at 500 MHz or 400 MHz and 126 MHz or 101 MHz , respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a reference value, for ${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}=7.26 \mathrm{ppm}$; for ${ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3}=77.23 \mathrm{ppm}$. Analytical TLC was performed on precoated silica gel GF254 plates. Column chromatography was carried out on silica gel (200-300 mesh). Optical rotations were measured using a 2.5 mL cell with a 10 cm path length on Hanon P850 Automatic Polarimeter and concentrations (c) were reported in $\mathrm{g} \times(100 \mathrm{~mL})^{-1}$. HRMS were measured on the Q-TOF 6510 instruments. UV-vis spectra were carried on Agilent Cary 8454 UV-Visible spectrophotometer. Resonance Raman spectroscopy was measured on LabRAM HR Evolution in-situ UV laser confocal Raman Spectrometer. Enantiomeric excesses were determined by HPLC using a Daicel Chiralpak and Chiralcel column with hexane $/ i-\mathrm{PrOH}$ as the eluent on Dionex instrument. All the solvents were freshly distilled prior to use according to the standard procedures. ${ }^{[1]}$

General Procedures

General procedure A: Dehydrogenative kinetic resolution of racemic substrates catalyzed by pre-synthesised diiron complexes

To a solution of racemic substrate ($0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, dimeric iron complex C1-C8 ($0.005 \mathrm{mmol}, 5 \mathrm{mmol} \%$) was added at $-40{ }^{\circ} \mathrm{C}$. Then 30% aqueous hydrogen peroxide ($0.1 \mathrm{mmol}, 10 \mu \mathrm{~L}, 1.0$ equiv) was added and the reaction was then stirred at same tempreture for 24 h . Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with water (10 mL), dried over MgSO_{4}, filtered and concentrated. The residue was purified by silica gel chromatography using ethyl acetate/petroleum ether as eluent to give the desired product.

General procedure B: Dehydrogenative kinetic resolution of racemic substrates catalyzed by self-assembled diiron complex

To a solution of racemic substrate ($0.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}), \mathbf{C}_{\text {mono }} \mathbf{8}$ ($0.005 \mathrm{mmol}, 3.7 \mathrm{mg}, 5 \mathrm{mmol} \%$) and sodium 6-methoxy-2-naphthoate (0.01 mmol , $2.2 \mathrm{mg}, 10 \mathrm{mmol} \%$) was added at $-40^{\circ} \mathrm{C}$. Then 30% aqueous hydrogen peroxide (0.1 $\mathrm{mmol}, 10 \mu \mathrm{~L}, 1.0$ equiv) was added as 4 portions in 2-hours intervals. The reaction was then stirred at same tempreture for $1-32 \mathrm{~h}$. Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, washed with water (10 mL), dried over MgSO_{4}, filtered and concentrated. The residue was purified by silica gel chromatography using ethyl acetate/petroleum ether as eluent to give the desired product.

Synthesis of substrates

Substrates $\mathbf{1 m}, \mathbf{5 b}, \mathbf{5 d}, \mathbf{5 e}, \mathbf{5 f}, \mathbf{5 g}, \mathbf{8}$ and $\mathbf{1 1}$ were known compounds and prepared following the established procedures. ${ }^{[2-9]}$

General procedure C: Synthesis of racemic Substrates $\mathbf{1 a - 1 1}, \mathbf{3 a - 3 j}, \mathbf{5 a}, \mathbf{5 c}$, and 10:

Scheme S1. Preparation of substrates.

A mixture of arylhydrazine $\mathbf{S 2}$ or its HCl salt (5.5 mmol) and $\mathbf{S 1}(5 \mathrm{mmol})$ in AcOH $(10 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for $1-6 \mathrm{~h}$. The reaction was monitored by TLC. Upon completion, the reaction mixture was cooled with cold water and diluted with 1,2-dichloroethane (10 mL) followed by treatment with $\mathrm{NaCNBH}_{3}(7.5 \mathrm{mmol}, 1.5$ equiv) in portions with cooling in cold water and was then stirred for 1 h at room temperature. The reaction was quenched with water, extracted with EtOAc and washed with sat. NaHCO_{3}. The organic layer was dried over MgSO_{4}, filtered, and concentrated. The residue was purified by chromatography with EtOAc/petroleum ether to provide the products.

Synthesis of monomeric Fe (salan) and Fe (salen) complexes

Fe(salan) complex $\mathbf{C}_{\text {mono }} \mathbf{3}$ were prepared following established procedures. ${ }^{[10]}$

Scheme S2. Preparation of monomeric Fe (salan) complexes.

General procedure D: Synthesis of monomeric Fe(salan) complex $\mathrm{C}_{\text {mono }} \mathbf{1}, \mathrm{C}_{\text {mono }} \mathbf{2}$, $\mathrm{C}_{\text {mono }} 4-\mathrm{C}_{\text {mono }} 8$:
FeCl_{3} ($0.42 \mathrm{mmol}, 1.05$ equiv) was added to a solution of $\mathrm{H}_{2} \mathrm{~L}(0.4 \mathrm{mmol}, 1.0$ equiv) in ethanol $(10 \mathrm{~mL})$ giving a purplish solution which was refluxed for 4 h . Then the reaction mixture was evaporated in vacuo. The residue was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=19: 1\right)$ to give the corresponding complex respectively.

Synthesis of carboxylate-bridged (μ-hydroxo) diiron(III) complexes C1-C10:

Scheme S3. Preparation of diiron(III) complexes.

General procedure E: Synthesis of diiron(III) complexes C1-C9:
Monomer complex $\mathbf{C}_{\text {mono }} \mathbf{1 -} \mathbf{C}_{\text {mono }} \mathbf{8} \quad(0.05 \mathrm{mmol}, 1.0$ equiv) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - EtOH -acetone- $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL} / 3 \mathrm{~mL} / 3 \mathrm{~mL} / 1$ drop) solution and additive sodium aryl carboxylate (20 equiv) was added. The mixure was maintained open-flask at room temperature for several days until the solid dimmeric iron complexes precipitated. UV-vis absorption spectra and ESI-MS was conducted to characterize these complexes. UV-vis absorption spectra used $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent and the concentration is $10^{-5} \mathrm{~mol} / \mathrm{L}$.

Complex C1:

Reddish purple solid; ESI-MS $m / z[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}$calculated for $\mathrm{C}_{47} \mathrm{H}_{53} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 881.27, found 881.25; m/z [M - H] calculated for $\mathrm{C}_{47} \mathrm{H}_{53} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 897.26, found 897.25.

UV-vis absorption features at 276, 311 and 498 nm and the corresponding monomer UV-vis absorption features at 275, 316 and 529 nm .

Complex C2:

Reddish purple solid; ESI-MS $m / z[\mathrm{M} \mathrm{-} \mathrm{OH}]^{+}$calculated for $\mathrm{C}_{63} \mathrm{H}_{57} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1077.30, found 1077.30; $m / z[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{63} \mathrm{H}_{57} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1093.29, found 1093.32. UV-vis absorption features at 280,310 and 491 nm and the corresponding monomer UV-vis absorption features at 316 and 504 nm .

Complex C3:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{95} \mathrm{H}_{121} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1525.80, found 1525.76; $m / z[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{95} \mathrm{H}_{121} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1541.79, found 1541.80. UV-vis absorption features at 279,329 and 543 nm and the corresponding monomer UV-vis absorption features at 281,333 and 541 nm .

Complex C4:

Reddish purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{63} \mathrm{H}_{53} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1213.14, found 1213.24; m/z [M - H] calculated for $\mathrm{C}_{63} \mathrm{H}_{53} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1229.14, found 1229.17. UV-vis absorption features at 284 and 493 nm and the corresponding monomer UV-vis absorption features at 284, 317 and 525 nm .

Complex C5:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{87} \mathrm{H}_{73} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1381.42, found 1381.37; $m / z[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{87} \mathrm{H}_{73} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1397.42, found 1397.41. UV-vis absorption features at 301 and 520 nm and the corresponding monomer UV-vis absorption features at 302 and 527 nm .

Complex C6:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{91} \mathrm{H}_{81} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{10}$: 1501.46, found 1501.43; m/z [M - H] calculated for $\mathrm{C}_{91} \mathrm{H}_{81} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{11}$: 1517.46, found 1517.48. UV-vis absorption features at 301 and 518 nm and the corresponding monomer UV-vis absorption features at 300 and 541 nm .

Complex C7:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{87} \mathrm{H}_{69} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1453.38, found 1453.49; $m / z[\mathrm{M}-\mathrm{H}]$ calculated for $\mathrm{C}_{87} \mathrm{H}_{69} \mathrm{~F}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}: 1469.38$, found 1469.38. UV-vis absorption features at 296 and 502 nm and the corresponding monomer UV-vis absorption features at 295 and 506 nm .

Complex C8:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{87} \mathrm{H}_{65} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$: 1525.35 , found 1525.40; m/z [M - H] calculated for $\mathrm{C}_{87} \mathrm{H}_{65} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1541.34, found 1541.34. UV-vis absorption features at 295 and 498 nm and the corresponding monomer UV-vis absorption features at 294 and 512 nm .

Complex C9:

Purple solid; ESI-MS $m / z[\mathrm{M}-\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{92} \mathrm{H}_{69} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1605.37, found 1605.37; $m / z[\mathrm{M}-\mathrm{H}]^{-}$calculated for $\mathrm{C}_{92} \mathrm{H}_{69} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$: 1621.37, found 1621.33. UV-vis absorption features at 302 and 521 nm .

Optimization of reaction conditions

Table S1. Solvent, additive and reaction temprature optimization of dehydrogenative kinetic resolution reaction ${ }^{a}$

entry	additive	Solvent	conv. (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{c}$	s^{d}
1	PhCOONa	1,2-Dichloroethane	50	57	6.3
2	PhCOONa	Chloroform	55	22	1.7
3	PhCOONa	THF	45	0	n.d.
4	PhCOONa	Methanol	51	9	1.3
5	PhCOONa	Ethyl acetate	51	23	1.9
6	PhCOONa	Toluene	47	17	1.7
7	PhCOONa	Acetone	53	15	1.5
8	PhCOONa	Acetonitrile	47	13	1.5
9	PhCOONa	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	49	71	14
10^{e}	PhCOONa	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	55	41	2.9
11^{f}	PhCOONa	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40	45	8.0
12	1-Naphthol	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	53	9	1.3

${ }^{a}$ Reaction condition: to rac- $1 \mathbf{a}(0.1 \mathrm{mmol})$, monoiron $\mathbf{C}_{\text {mono }} 8(5 \mathrm{~mol} \%)$ and additive ($10 \mathrm{~mol} \%$) in solvent $(1.0 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ was added 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{mmol})$ as four portions in 2 h intervals for 6 h , and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$, unless otherwise noted. ${ }^{b}$ Conversion was calculated from the isolated yield of recovered (S)-1a. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ Selectivity (s) values were calculated through the equation s $=\ln [(1-\mathrm{C})(1-\mathrm{ee})] / \ln [(1-\mathrm{C})(1+\mathrm{ee})]$, where C is the conversion. ${ }^{\mathrm{e}}$ Reaction temperature was $-20^{\circ} \mathrm{C} .{ }^{f}$ Reaction temperature was $-60^{\circ} \mathrm{C}$.

Analytical data for products

(S)-3,3-Dimethyl-2-phenylindoline (1a)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford 1a (11.2 $\mathrm{mg}, 50 \%$ yield). Yellow solid, m.p. $55-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47$ (dd, $J=5.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,139.9,138.4,128.3,127.7,127.7,127.6,122.7,119.5,109.7$, 74.7, 45.6, 26.7, 24.7. HPLC: the ee value was determined by HPLC analysis $($ Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 296 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $9.723 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.240 \mathrm{~min}$, ee $=94.10 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+173.35(\mathrm{c}=0.31$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}: 224.1434$, found 224.1428. The absolute configuration was assigned as S by comparing the optical rotation and HPLC analysis with reported data. ${ }^{[11]}$

(S)-2-(4-Methoxyphenyl)-3,3-dimethylindoline (1b)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 b}$ (12.5 $\mathrm{mg}, 49 \%$ yield) and 2b. Yellow solid, m.p. $75-76{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{td}, J=7.4,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,149.0,138.3,131.7,128.5,127.4,122.5,119.2$, $113.5,109.4,74.1,55.3,45.3,26.4,24.5$. HPLC: the ee value was determined by

HPLC analysis (Chiralcel IB, i - $\mathrm{PrOH} /$ Hexane $=20 / 80$, $1.0 \mathrm{~mL} / \mathrm{min}$, 215 nm), retention time: $\mathrm{t}_{\text {major }}=7.863 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.160 \mathrm{~min}$, ee $=97.96 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+126.4(\mathrm{c}$ $=0.23$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}: 254.1539$, found 254.1551.

(S)-2-(3,4-Dimethoxyphenyl)-3,3-dimethylindoline (1c)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{1 c}$ (13.6 $\mathrm{mg}, 48 \%$ yield). White solid, m.p. $98-99^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~m}$, $3 \mathrm{H}), 6.96$ (dd, $J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,148.6,138.4,132.5,127.6,122.7$, $119.7,119.4,110.9,110.8,109.5,74.5,56.1,45.5,26.5,24.7$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0$ $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=13.733 \mathrm{~min}, \mathrm{t}_{\text {minor }}=7.470 \mathrm{~min}$, ee $=96.04 \%$; $[\alpha]_{\mathrm{D}}{ }^{20}=+174.2(\mathrm{c}=0.23$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$: 284.1645 , found 284.1633 .

(S)-3,3-Dimethyl-2-(p-tolyl)indoline (1d)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford 1d (12.1 $\mathrm{mg}, 51 \%$ yield). Yellow solid, m.p. $66-67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (126 MHz, CDCl_{3}) $\delta 149.4,138.4,137.3,136.9,129.0,127.6,127.6,122.7$, $119.2,109.5,74.6,45.5,26.7,24.7,21.3$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 296 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=10.580 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.897 \mathrm{~min}$, ee $=90.96 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+86.44(\mathrm{c}$ $=0.31$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}: 238.1590$ found 238.1595.

(S)-3,3-Dimethyl-2-(m-tolyl)indoline (1e)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 e}$ (11.7 $\mathrm{mg}, 49 \%$ yield). Pale yellow solid, m.p. $57-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.24$ (brs, 1H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 149.3,139.9,138.5,137.9,128.4,128.3,128.2,127.6$, $124.7,122.7,119.2,109.4,74.7,45.5,26.8,24.7,21.7$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}$, 243 nm), retention time: $\mathrm{t}_{\text {major }}=7.320 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.840 \mathrm{~min}$, ee $=95.52 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+$ 100.7 ($\mathrm{c}=0.33, \mathrm{CHCl}_{3}$). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}$: 238.1590, found 239.1597.

(S)-2-([1,1'-Biphenyl]-4-yl)-3,3-dimethylindoline (1f)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 f}$ (14.4 $\mathrm{mg}, 48 \%$ yield). Yellow solid, m.p. $87-89{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-$
$7.59(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.14-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H})$, $1.48(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.3, 141.0, 140.6, 139.1, 138.3, 129.0, 128.1, 127.6, 127.4, 127.2, 127.0, 122.7, 119.4, 109.6, 74.5, 45.7, 26.7, 24.8. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 248 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=9.803 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=6.130 \mathrm{~min}$, ee $=96.76 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+176.2(\mathrm{c}=0.11$, THF $)$. HRMS $(\mathrm{EI}) m / z[\mathrm{M}$ $+\mathrm{H}^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}$: 300.1747, found 300.1742.

(S)-3,3-Dimethyl-2-(naphthalen-2-yl)indoline (1g)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 g}$ (13.2 $\mathrm{mg}, 48 \%$ yield). White solid, m.p. $87-89{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (s, $1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.08$ $(\mathrm{m}, 2 \mathrm{H}), 6.84(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, 3 H), $0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,138.3,137.7,133.4,133.3$, $128.1,127.9,127.8,127.7,126.3,126.3,126.0,125.9,122.7,119.3,109.5,74.8,45.8$, 27.0, 24.9. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=12.497 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=5.613 \mathrm{~min}$, ee $=93.78 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+143.6\left(\mathrm{c}=0.29, \mathrm{CHCl}_{3}\right)$. HRMS (EI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}$: 274.1590, found 274.1597.

(S)-2-(4-Chlorophenyl)-3,3-dimethylindoline (1h)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 h}$ (13.4 $\mathrm{mg}, 52 \%$ yield). Pale yellow solid, m.p. $93-94{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.46-7.40 (m, 2H), 7.39-7.29 (m, 2H), 7.15-7.05 (m, 2H), 6.82 (td, $J=7.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (brs, 1H), $1.44(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.2,138.6,138.0,133.3,128.9,128.4,127.7,122.7$, 119.4, 109.5, 74.0, 45.5, 26.6, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=12.657 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.570 \mathrm{~min}, \mathrm{ee}=84.22 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+175.4(\mathrm{c}=0.33, \mathrm{THF})$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}$: 258.1044, found 258.1037.

(S)-2-(4-Bromophenyl)-3,3-dimethylindoline (1i)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 i}$ (15.7 $\mathrm{mg}, 52 \%$ yield). Yellow solid, m.p. $76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.9,139.0,138.1,131.4,129.3,127.7,122.7,121.5,119.6,109.7,74.1$, 45.6, 26.6, 24.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=11.957 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=5.393 \mathrm{~min}$, ee $=85.10 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+91.6(\mathrm{c}=0.31$, THF $)$. HRMS (EI) $m / z[\mathrm{M}$ $+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}: 302.0539$, found 302.0543.

(S)-3,3-Diethyl-2-phenylindoline (1 \mathbf{j})

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 j}$ (13.1 $\mathrm{mg}, 52 \%$ yield). Pale yellow solid, m.p. $36-39{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89$ (s, 1H), 4.09 (brs, 1H), 2.03 (dq, $J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dq}, J=14.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{dq}, J=14.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4,140.4,133.7,128.1,127.7,127.3,127.3$, $124.7,118.3,109.2,70.2,52.5,27.4,26.3,9.4,8.2$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}$, 270 nm), retention time: $\mathrm{t}_{\text {major }}=16.910 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.547 \mathrm{~min}$, ee $=80.62 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+53.2(\mathrm{c}=0.16$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}: 252.1747$, found 252.1753 .

(S)-2'-Phenylspiro[cyclopentane-1,3'-indoline] (1k)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 k}$ (11.8 $\mathrm{mg}, 47 \%$ yield). Yellow solid, m.p. $49-51{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{dt}$, $J=3.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.7,141.2,138.3,128.4,127.84,127.82,127.5,123.0,119.4,109.2,73.9$, 57.5, 39.9, 35.1, 24.8, 24.8. HPLC: the ee value was determined by HPLC analysis $($ Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 300 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $7.987 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.530 \mathrm{~min}, \mathrm{ee}=96.04 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+13.5(\mathrm{c}=0.27$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}: 250.1590$, found 250.1587 .

(S)-2'-Phenylspiro[cyclohexane-1,3'-indoline (11)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 1}$ (12.7 $\mathrm{mg}, 48 \%$ yield). White solid, m.p. $76-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25$ (m, 6H), $7.10(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71$ (dd, $J=11.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1$, $141.3,137.5,128.3,128.1,127.8,127.7,124.5,118.8,109.1,73.2,49.4,37.6,32.0$, 26.0, 23.2, 22.4. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\operatorname{PrOH} /$ Hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 305 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=8.070 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=5.913 \mathrm{~min}$, ee $=95.26 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=-54.7(\mathrm{c}=0.34$, THF $)$. HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}$: 264.1747, found 264.1738.

(R)-2-Phenylindoline (1m)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{1 m}$ (10.4 $\mathrm{mg}, 53 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{dd}, J=5.4,3.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dt}, J=5.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=12.5,7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.69(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (dd, $J=15.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (dd, $J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 150.9,144.6,128.8,128.4,127.8,127.7,126.5,125.4,124.8,119.2,109.3$, 63.7, 39.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=8.923 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=14.263 \mathrm{~min}$, ee $=69.92 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+31.6(\mathrm{c}=0.18$, THF). HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}$ $+\mathrm{H}^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}$: 196.1121, found 196.1115 .

(S)-5-Chloro-3,3-dimethyl-2-phenylindoline (3a)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford 3a (12.4 $\mathrm{mg}, 48 \%$ yield). Yellow solid, m.p. $81-83{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.9,140.3,139.5,128.4,127.9,127.6,127.3,123.8,123.1,110.2$, 75.0, 45.9, 26.7, 24.6. HPLC: the ee value was determined by HPLC analysis $($ Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $17.350 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.153 \mathrm{~min}$, ee $=93.52 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+113.8(\mathrm{c}=0.42$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}$: 258.1044, found 258.1051.

(S)-5-Chloro-2-(4-methoxyphenyl)-3,3-dimethylindoline (3b)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{3 b}$ (13.8 $\mathrm{mg}, 48 \%$ yield). White solid, m.p. $106-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.83(\mathrm{~m}$, $2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 159.4,148.0,140.4,131.5,128.6,127.2,123.7,123.1$, 113.7, 110.2, $74.5,55.5,45.8,26.6,24.5$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80$, $1.0 \mathrm{~mL} / \mathrm{min}, 255 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=12.883 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.277 \mathrm{~min}$, ee $=95.36 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+71.62(\mathrm{c}$ $=0.21$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}$: 288.1150, found 288.1152.

(S)-5-Bromo-3,3-dimethyl-2-phenylindoline (3c)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{3 c}$ (14.2 $\mathrm{mg}, 47 \%$ yield). Yellow solid, m.p. 77-79 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,140.7,139.5,130.2,128.4,127.9,127.5,125.9$, 110.8, 74.9, 45.9, 26.7, 24.6. HPLC: the ee value was determined by HPLC analysis $($ Chiralcel IB, i-PrOH/Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 320 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $16.910 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.030 \mathrm{~min}$, ee $=95.72 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+116.7(\mathrm{c}=0.29$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrN}: 302.0539$, found 302.0533.

(S)-5-Bromo-2-(4-methoxyphenyl)-3,3-dimethylindoline (3d)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford 3d (15.6 $\mathrm{mg}, 47 \%$ yield). Yellow solid, m.p. $102-103{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}$, $2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 159.4,148.5,140.8,131.5,130.1,128.6,125.9,113.8$, 110.7, $74.5,55.5,45.7,26.7,24.5$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 307 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=13.857 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.370 \mathrm{~min}$, ee $=96.00 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+80.72(\mathrm{c}=0.15$, CHCl_{3}). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNO}: 332.0645$, found 332.0634 .

(S)-4-Bromo-2-(4-methoxyphenyl)-3,3-dimethylindoline(3e)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{3 e}$ (16.3 $\mathrm{mg}, 49 \%$ yield). Yellow solid, m.p. $95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.62(\mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.83$ $(\mathrm{s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,151.6,134.7$, 131.0, 129.2, 129.1, 123.9, 119.6, 113.7, 108.4, 74.0, 55.5, 47.8, 25.7, 21.7. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80$, $1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=10.933 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.173 \mathrm{~min}$, ee $=$ $90.04 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+83.1\left(\mathrm{c}=0.17\right.$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNO}: 332.0645$, found 332.0641 .

(S)-7-Fluoro-3,3-dimethyl-2-phenylindoline (3f)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{3 f}$ (12.6 $\mathrm{mg}, 52 \%$ yield). Brown solid, m.p. $38-39^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45$ (m, 2H), 7.41-7.29 (m, 3H), 6.92-6.81 (m, 2H), 6.75-6.70 (m, 1H), 4.65 (s, 1H), 1.44 $(\mathrm{s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1(\mathrm{~d}, J=240.3 \mathrm{~Hz}), 141.9(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}), 139.4,128.4,127.9,127.6,119.7(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 118.2(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, $114.2(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 75.3,46.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 26.6,24.6$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}$, 240 nm), retention time: $\mathrm{t}_{\text {major }}=5.840 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.547 \mathrm{~min}$, ee $=74.36 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+$ 12.6 (c = 0.12, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FN}$: 242.1340, found 242.1331.

(S)-3,3-Dimethyl-2-phenyl-5-(trifluoromethoxy)indoline (3g)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{3 g}$ (15.4 $\mathrm{mg}, 50 \%$ yield). Yellow solid, m.p. $67-69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-$ 7.42 (m, 2H), 7.41-7.30 (m, 3H), 6.93 (dd, $J=15.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65$ (d, $J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.1$, 142.3, 139.8, 139.5, 128.4, 128.0, 127.6, 121.0 (q, $J=255.1 \mathrm{~Hz}$), 120.6, 116.6, 109.2, 75.1, 45.8, 26.6, 24.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 304 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $15.567 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.167 \mathrm{~min}, \mathrm{ee}=86.68 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+56.43(\mathrm{c}=0.33$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}: 308.1257$, found 308.1262.

(S)-5-(Benzyloxy)-3,3-dimethyl-2-phenylindoline (3h)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{3 h}$ (17.2 $\mathrm{mg}, 52 \%$ yield). Yellow solid, m.p. $93-95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{dd}, J=14.9,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}$, 3 H), $0.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,149.4,138.4,137.3,132.3$, $128.8,128.7,128.2,127.7,127.5,122.7,119.2,114.6,109.4,72.2,70.2,45.4,26.6$, 24.6. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=20.373 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=6.627 \mathrm{~min}$, ee $=81.08 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+166.6(\mathrm{c}=0.41$, THF $)$. HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}$ $+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1852$, found 330.1871.

(S)-2-(4-Methoxyphenyl)-3,3,5-trimethylindoline (3i)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{3 i}$ (13.1 $\mathrm{mg}, 49 \%$ yield). Pale yellow solid, m.p. $61-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,147.0$, 138.7, 132.2, 128.7, 128.5, 127.8, 123.5, 113.6, 109.3, 74.5, 55.5, 45.4, 26.5, 24.6, 21.2. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=9.197 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=5.367 \mathrm{~min}$, ee $=92.34 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=++113.4(\mathrm{c}=0.17$, THF). HRMS (EI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}: 268.1696$, found 268.1704.

(S)-3,3-Dimethyl-2-phenyl-2,3-dihydro-1H-benzo[g]indole (3j)

It was prepared following the general procedure B and purified by silica gel flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether (1:1) as eluent to afford $\mathbf{3 j}$ (13.7 mg , 50% yield). Yellow solid, m.p. $84-85{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.7, 131.2, 130.0, 129.7, 129.1, 128.3, $128.3,127.9,126.4,121.8,113.1,75.4,47.4,27.6,23.2$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}$, 248 nm), retention time: $\mathrm{t}_{\text {major }}=9.923 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.053 \mathrm{~min}, \mathrm{ee}=80.50 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+$
176.2 ($\mathrm{c}=0.31$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}:$ 274.1590, found 274.1586.

(2S,3S)-3-Ethyl-3-methyl-2-phenylindoline (5a)
It was prepared following the general procedure B and purified by silica gel flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether (1:1) as eluent to afford $\mathbf{5 a}(11.4 \mathrm{mg}$, 48% yield). Pale yellow solid, m.p. $63-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{dt}, J=25.6,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.24(\mathrm{dd}, J=16.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{brs}, 1 \mathrm{H}), 1.60-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $149.9,139.5,136.2,128.2,127.8,127.6,127.5,124.3,118.6,109.6,76.0,48.4,28.0$, 22.6, 8.4. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 301 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=12.993 \mathrm{~min}$, $\mathrm{t}_{\text {minor }}=6.150 \mathrm{~min}$, ee $=93.04 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+34.6(\mathrm{c}=0.13$, THF $)$. HRMS (EI) $\mathrm{m} / \mathrm{z}[\mathrm{M}$ $+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}: 238.1590$, found 238.1597. The absolute configuration was assigned as S by comparing the optical rotation and HPLC analysis with reported data ${ }^{[5]}$. The diastereomer was determined by comparing with reported data. ${ }^{[5]}$

(R)-3-Ethyl-3-methyl-2-phenyl-3H-indole (6a)

It was prepared following the general procedure B and purified by silica gel flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether ($1: 1$) as eluent to afford $\mathbf{6 a}$ (10.6 mg , 45% yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39$ (m, 3H), 7.29 (ddd, $J=7.7,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.23-7.18 (m, $2 \mathrm{H}), 2.20(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, $0.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.5,145.7,130.8,128.9$,
$128.3,128.0,126.0,121.2,120.9,59.6,59.0,32.2,24.5,8.9$. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} /$ Hexane $=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}$, 331 nm), retention time: $\mathrm{t}_{\text {major }}=4.163 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.743 \mathrm{~min}$, ee $=81.32 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=$ +12.2 ($\mathrm{c}=0.12$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}: 236.1434$, found 236.1439.

(2S,3R)-3-Ethyl-3-methyl-2-phenylindoline (5b)
It was prepared following the general procedure B and purified by silica gel flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether (1:1) as eluent to afford $\mathbf{5 b}$ (10.9 mg , 46% yield). Yellow solid, m.p. 37-39 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.26(\mathrm{~m}$, $5 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.1,141.3,135.9,128.3,127.6,127.5$, $123.5,118.9,109.0,70.3,49.7,32.4,23.7,9.6$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 272 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=9.067 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.070 \mathrm{~min}$, ee $=81.22 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+87.6(\mathrm{c}=$ 0.26, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}$: 238.1590, found 238.1597. The diastereomer was determined by comparing with reported data. ${ }^{[5]}$

(S)-3-Ethyl-3-methyl-2-phenyl-3H-indole (6b)

It was prepared following the general procedure B and purified by silica gel flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether (1:1) as eluent to afford $\mathbf{6 b}(11.1 \mathrm{mg}$, 47% yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J$
$=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{ddd}, J=7.7,6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}$, $2 \mathrm{H}), 2.20(\mathrm{dq}, J=14.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, $0.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.5,145.7$, 130.8, 128.9, $128.3,128.0,126.0,121.2,120.9,59.6,59.0,32.2,24.5,8.9$. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} / \mathrm{Hexane}=10 / 90,1.0 \mathrm{~mL} / \mathrm{min}$, 331 nm), retention time: $\mathrm{t}_{\text {major }}=5.773 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.173 \mathrm{~min}$, ee $=82.22 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $-33.0\left(\mathrm{c}=0.20\right.$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}: 236.1434$, found 236.1445.

(2S,3S)-3-Benzyl-3-methyl-2-phenylindoline (5c)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford 5c (13.5 $\mathrm{mg}, 45 \%$ yield). White solid, m.p. $84-85{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.07(\mathrm{~m}$, $4 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.56(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (brs, $1 \mathrm{H}), 2.72(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,139.0,138.1,134.9,131.5,128.4,128.1,127.9,127.7,127.3$, $126.0,125.8,118.2,109.6,76.5,49.0,41.4,22.5$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=15.097 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.897 \mathrm{~min}$, ee $=81.16 \%$; HRMS (EI) m / z $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}: 300.1747$, found 300.1756. The diastereomer was determined by comparing with reported synthetic method. ${ }^{[5]}$

(R)-3-Benzyl-3-methyl-2-phenyl-3H-indole (6c)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:8) as eluent to afford $\mathbf{6 c}$ (13.7 $\mathrm{mg}, 46 \%$ yield). White solid, m.p. $80-82^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13$ (dd, $J=6.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (dd, $J=8.1,4.7 \mathrm{~Hz}, 4 \mathrm{H}$), $7.30-7.21$ (m, 1H), 7.19-7.15 (m, 2H), 6.97-6.90 (m, 1H), 6.85 (dd, $J=10.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ $(\mathrm{q}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.5,145.0,136.1$, $130.9,129.5,128.9,128.7,128.1,127.7,126.7,125.7,122.3,121.0,56.0,44.7,24.2$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} / \mathrm{Hexane}$ $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=3.680 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.010 \mathrm{~min}$, ee $=87.84 \%$; HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}$: 298.1590, found 298.1584.

(4aS,9aS)-4a-Methyl-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5d)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{5 d}$ (8.8 $\mathrm{mg}, 47 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.77$ $(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.58$ $(\mathrm{m}, 4 \mathrm{H}), 1.45(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 149.6, 139.6, 127.1, 121.7, 119.0, 110.3, 66.1, 42.9, 35.2, 27.7, 23.8, 21.7, 21.3. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, $i-\mathrm{PrOH} /$ Hexane $=3 / 97,1.0$ $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=5.473 \mathrm{~min}, \mathrm{t}_{\text {minor }}=4.823 \mathrm{~min}$, ee $=88.32 \%$; $[\alpha]_{\mathrm{D}}{ }^{20}=-26.4(\mathrm{c}=0.35$, THF $)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}$: 188.1434, found 188.1427. The absolute configuration was assigned as S by comparing the optical rotation with reported data. ${ }^{[7]}$ The diastereomer was determined by comparing with reported data. ${ }^{[7]}$

(R)-4a-Methyl-2,3,4,4a-tetrahydro-1H-carbazole (6d)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford 6e (8.4 $\mathrm{mg}, 45 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{td}, J=$ $13.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (ddd, $J=25.8,13.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.85-1.68 (m, 2H), 1.42 (dt, $J=13.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.6,154.2,147.0,127.7,125.1,121.6,120.3,54.0,38.9,29.9,29.2,21.6,20.0$. HPLC: the ee value was determined by HPLC analysis (Chiralcel OJ, $i-\mathrm{PrOH} / \mathrm{Hexane}$ $=1 / 99,1.0 \mathrm{~mL} / \mathrm{min}, 253 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {minor }}=8.303 \mathrm{~min}, \mathrm{t}_{\text {major }}=10.370 \mathrm{~min}$, ee $=80.86 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+34.2\left(\mathrm{c}=0.7\right.$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}$: 186.1277, found 186.1261. The absolute configuration was assigned as R by comparing the optical rotation and HPLC analysis with reported data. ${ }^{[7]}$

(4aR,9aS)-4a-Benzyl-2,3,4,4a,9,9a-hexahydro-1H-carbazole (5e)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{5 e}$ (12.1 $\mathrm{mg}, 46 \%$ yield). Pale brown solid. m.p. $68-69{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=7.3$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (ddd, $J=10.6,5.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (dd, $J=40.1,13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 3 \mathrm{H})$, $1.40-1.18(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,138.5,135.0,131.1,127.7$, 127.4, 126.2, 123.7, 118.6, 110.8, 63.4, 48.6, 45.0, 32.0, 29.8, 22.1, 22.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} /$ Hexane $=1 / 99$, $1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=8.877 \mathrm{~min}, \mathrm{t}_{\text {minor }}=9.953 \mathrm{~min}$, ee $=$
82.84\%; $[\alpha]_{\mathrm{D}}{ }^{20}=-56.4(\mathrm{c}=0.5, \mathrm{THF})$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}: 264.1747$, found 264.1742.

(S)-4a-Benzyl-2,3,4,4a-tetrahydro-1H-carbazole (6e)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{6 e}$ (12.6 $\mathrm{mg}, 48 \%$ yield). Brown oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (dd, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=7.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10-7.05 (m, 4H), 6.77 (dd, $J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{td}$, $J=13.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=11.7,5.0,2.9 \mathrm{~Hz}$, 1 H), 2.03 (dt, $J=13.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.17$ (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.0,154.6,144.3,136.2,129.6,128.0$, $127.8,126.8,124.6,122.9,120.2,58.9,39.3,37.3,30.8,29.4,21.6$. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} /$ Hexane $=3 / 97,1.0$ $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {minor }}=17.190 \mathrm{~min}, \mathrm{t}_{\text {major }}=13.483 \mathrm{~min}$, ee $=$ $85.26 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+43.2\left(\mathrm{c}=0.35\right.$, THF). HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}: 262.1590$, found 262.1576 .

(2R,3R)-3-Methyl-2-phenylindoline (5f)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{5 f}$ (10.7 $\mathrm{mg}, 51 \%$ yield). Yellow solid. m.p. $41-43{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-$ 7.52 (m, 2H), 7.45-7.33 (m, 3H), 7.18-7.08 (m, 2H), $6.84(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.72 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.15$ (m, 1H), 1.41 (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,143.5,133.3,128.7,127.8,127.8$,
127.2, 123.4, 119.0, 109.1, 73.0, 46.6, 17.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} /$ Hexane $=20 / 80,1.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=10.643 \mathrm{~min}, \mathrm{t}_{\text {minor }}=7.530 \mathrm{~min}$, ee $=85.32 \% ; \mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}$: 210.1277, found 210.1285. The diastereomer was determined by comparing with reported data. ${ }^{[5]}$

2-(4-Methoxyphenyl)-3,3-dimethyl-3H-indole (2b)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford $\mathbf{2 b}$ (12.3 $\mathrm{mg}, 49 \%$ yield). Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.73$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.5$ 161.5, 153.3, 147.5, 130.1, 127.7, 125.8, 125.4, 120.8, 120.4, 114.0, 55.3, 53.1, 25.0. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}: 252.1383$, found 252.1395.

(R)-5-Methoxy-3,3-dimethyl-2-(pyridin-3-yl)indoline (8)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:9) as eluent to afford 8 (12.5 $\mathrm{mg}, 49 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.90(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, 3 H), $0.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.2, 147.0, 138.7, 132.2, 128.7, $128.5,127.8,123.5,113.6,109.3,74.5,55.5,45.4,26.5,24.6,21.2$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IB, i-PrOH/Hexane $=20 / 80$, 1.0 $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=24.073 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.037 \mathrm{~min}$, ee $=$
$89.52 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+11.62\left(\mathrm{c}=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{HRMS}(\mathrm{EI}) m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}: 255.1492$, found 255.1497 .

(S)-1'-Methyl-2-phenylspiro[indoline-3,4'-piperidine] (10)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford $\mathbf{1 0}$ (14.0 $\mathrm{mg}, 50 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.11$ $(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ $(\mathrm{s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.35$ (d, $J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.48-1.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.4,140.9,135.8,128.5,128.1$, $128.0,124.4,118.8,108.9,72.5,52.7,52.4,46.8,46.4,36.8,31.2$. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, i - $\mathrm{PrOH} /$ Hexane $=20 / 80,1.0$ $\mathrm{mL} / \mathrm{min}, 215 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=14.353 \mathrm{~min}, \mathrm{t}_{\text {minor }}=10.413 \mathrm{~min}$, ee $=$ 82.14\%; HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}$: 279.1856, found 279.1859.

Tert-butyl

(4aS,9aR)-1,3,4,4a,9,9a-hexahydro-2H-pyrido[3,4-b]indole-2-carboxylate (5g)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (1:1) as eluent to afford $\mathbf{5 g}$ (12.9 $\mathrm{mg}, 46 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ (dd, $J=16.5,8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.73(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.27(\mathrm{~m}$, $5 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$
$155.8,150.8,131.2,127.9,123.8,118.9,109.8,79.6,57.6,43.7,41.4,39.4,28.6,26.3$. HPLC: the ee value was determined by HPLC analysis (Chiralcel IA, $i-\mathrm{PrOH} /$ Hexane $=1 / 99,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=53.723 \mathrm{~min}, \mathrm{t}_{\text {minor }}=73.427 \mathrm{~min}$, ee $=73.04 \%$; HRMS (EI) $m / z[M+H]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: 275.1754, found 275.1747. The diastereomer and absolute configuration was adetermined by comparing with reported data. ${ }^{[9]}$

(4bR,9bS)-9b-Methyl-4b,5,9b,10-tetrahydroindeno[1,2-b]indole (11)
It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford 11 (10.9 $\mathrm{mg}, 49 \%$ yield). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23-7.13$ (m, 4H), $7.00(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{brs}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,144.5,142.8,137.6$, 128.2, 128.0, 127.3, 125.1, 124.2, 123.3, 119.6, 110.6, 74.7, 53.8, 47.0, 27.0. HPLC: the ee value was determined by HPLC analysis (Chiralcel OD, $i-\mathrm{PrOH} / \mathrm{Hexane}=$ $10 / 90,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), retention time: $\mathrm{t}_{\text {major }}=8.497 \mathrm{~min}, \mathrm{t}_{\text {minor }}=7.223 \mathrm{~min}$, ee $=89.48 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=-1.6\left(\mathrm{c}=0.08, \mathrm{CHCl}_{3}\right)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}: 222.1277$, found 222.1269. The diastereomer was determined by comparing with reported data. ${ }^{[8]}$

(R)-9b-Methyl-9b,10-dihydroindeno[1,2-b]indole (12)

It was prepared following the general procedure B and purified by silica gel flash chromatography using ethyl acetate/petroleum ether (2:1) as eluent to afford 12 (10.1 $\mathrm{mg}, 46 \%$ yield). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.12(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.4,153.6,144.3,131.2,128.4,128.1,127.2,125.3,124.0,123.2$, 121.6, 64.0, 39.0, 26.9. HPLC: the ee value was determined by HPLC analysis $($ Chiralcel OJ, $i-\mathrm{PrOH} /$ Hexane $=5 / 95,1.0 \mathrm{~mL} / \mathrm{min}, 311 \mathrm{~nm})$, retention time: $\mathrm{t}_{\text {major }}=$ $28.283 \mathrm{~min}, \mathrm{t}_{\text {minor }}=24.640 \mathrm{~min}$, ee $=85.70 \% ;[\alpha]_{\mathrm{D}}{ }^{20}=+17.6\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$. HRMS (EI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}$: 220.1121, found 220.1127.

Mechanism studies

Kinetic isotope effect experiment

Scheme S4. Preparation of [D]-1a

[D]-1a was prepared through the reduction of $\mathbf{2 a}$ by NaBD_{4}. In a 100 mL round bottom flask, 2a was dissolved in $\mathrm{MeOH}(0.2 \mathrm{M})$ and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaBD}_{4}$ (1.2 equiv) was added and the reaction mixture was allowed to warm to room temperatue and stirred 5 h . The reaction mixture was concentrated by rotary evaporation under reduced pressure partitioned between DCM and water (20 mL each). The organic layer was removed and the aqueous layer extracted with DCM (2 x 20 mL). The combined organic layers were dried with MgSO_{4}, filtered, concentrated and purified by flash column chromatography, furnishing [D]-1a containing 6% of non-deuterated 1a. The analytical data was as follows: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.54-7.46 (m, 2H), 7.43-7.33 (m, 3H), 7.16-7.09 (m, 2H), $6.84(\mathrm{td}, J=7.4,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,140.1,138.2,128.3,127.7,127.6,127.6,122.7,119.2,109.4,74.2(\mathrm{t}, J=21.2$ Hz), 45.4, 26.7, 24.7.

The kinetic isotope effect experiment was conducted at 0.05 mmol scale following the general procedure using a mixture of $\mathbf{H - 1 a}$ and $\mathbf{D - 1 a}$ ($11.2 \mathrm{mg}, 44 \% \mathrm{D}$). It was stirred at $-40^{\circ} \mathrm{C}$ for 1 h and purified by silica gel flash chromatography ($7 \mathrm{mg}, 62.5 \%$ yield). The ratio of H-1a and D-1a was determined by ${ }^{1} \mathrm{H}$ NMR which shows 54% of the remaining product was $\mathbf{D - 1 a}$. The KIE was calculated as follows:

$$
\mathrm{KIE}=\frac{K_{H}}{K_{D}}=\frac{\frac{\mathrm{C}_{H 0}-\mathrm{C}_{H t}}{t}}{\frac{\mathrm{C}_{D O}-\mathrm{C}_{D t}}{t}}=\frac{\mathrm{C}_{H 0}-\mathrm{C}_{H t}}{\mathrm{C}_{D O}-\mathrm{C}_{D t}}=\frac{\frac{\mathrm{m}_{H O}-\mathrm{m}_{H t}}{V}}{\frac{\mathrm{~m}_{D 0}-\mathrm{m}_{D t}}{V}}=\frac{\mathrm{m}_{H 0}-\mathrm{m}_{H t}}{m_{D O}-\mathrm{m}_{D t}}=\frac{11.2^{*} 0.56-7^{*} 0.46}{11.2^{*} 0.44-7^{*} 0.54}=2.7
$$

$\stackrel{\sim}{\text { ल }}$

Correlation of the enantiomeric excess of $\mathrm{C}_{\text {mono }} 8$ and 1 a with sodium

 6-methoxy-2-naphthoate additiveThe $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathbf{C}_{\text {mono }} \mathbf{8}$ and ent- $\mathbf{C}_{\text {mono }} \mathbf{8}(0.005 \mathrm{M}$, respectively) were prepared and mixed to regulate each (0% ee, 20% ee, 40% ee, 60% ee, 80% ee and 100% ee, 0.005 M , respectively) complex solution in an appropriate manner. To the solutions at $-40{ }^{\circ} \mathrm{C}$, 1a ($0.1 \mathrm{mmol}, 22.3 \mathrm{mg}$) and sodium 6-methoxy-2-naphthoate ($0.01 \mathrm{mmol}, 2.2 \mathrm{mg}, 10 \mathrm{mmol} \%$) was added. Then 30% aqueous hydrogen peroxide ($0.1 \mathrm{mmol}, 10 \mu \mathrm{~L}$) were added as 4 portions in 2-hours intervals. After stirring for 8 h at this temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at 50% conversion of $\mathbf{1 a}$, washed with water (10 mL), dried over MgSO_{4}, filtered and concentrated. The residue was purified by silica gel flash chromatography using EtOAc/petroleum ether (10:90) as eluent. The ee values of $\mathbf{1 a}$ were determined by HPLC analysis on chiral phase column (Chiralpak IB-H, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0$ $\mathrm{mL} / \mathrm{min}, 296 \mathrm{~nm}$). A negative nonlinear effect was observed.

Figure S1. Plot of the ee of recovered $\mathbf{1 a}$ versus the ee of $\mathbf{C}_{\text {mono }} \mathbf{8}$ at 50% conversion. The dotted line symbolizes the linear correlation.

Correlation of the enantiomeric excess of $\mathrm{C}_{\text {mono }} 8$ and 1 a without sodium 6-methoxy-2-naphthoate additive

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathbf{C}_{\text {mono }} \mathbf{8}$ and ent- $\mathbf{C}_{\text {mono }} \mathbf{8}(0.005 \mathrm{M}$, respectively) were prepared and mixed to regulate each $(0 \%$ ee, 20% ee, 40% ee, 60% ee, 80% ee and 100% ee, 0.005 M , respectively) complex solution in an appropriate manner. To the solutions at $-40^{\circ} \mathrm{C}$, $\mathbf{1 a}(0.1 \mathrm{mmol}, 22.3 \mathrm{mg})$ was added. Then 30% aqueous hydrogen peroxide ($0.1 \mathrm{mmol}, 10 \mu \mathrm{~L}$) were added as 4 portions in 2-hours intervals. After stirring for 8 h at this temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) at 50% conversion of $\mathbf{1 a}$, washed with water (10 mL), dried over MgSO_{4}, filtered and concentrated. The residue was purified by silica gel flash chromatography using EtOAc/petroleum ether (10:90) as eluent. The ee values of $\mathbf{1 a}$ were determined by HPLC analysis on chiral phase column (Chiralpak IB-H, $i-\mathrm{PrOH} / \mathrm{Hexane}=20 / 80,1.0$ $\mathrm{mL} / \mathrm{min}, 296 \mathrm{~nm}$). An approximate linear effect was observed.

Figure S2. Plot of the ee of recovered 1a versus the ee of $\mathbf{C}_{\text {mono }} \mathbf{8}$ at 50% conversion without additive. The dotted line symbolizes the linear correlation.

Hammett polt for the competitive dehydrogenation experiments of substrates with a series of p-substituents (X) on α-aryl groups

To a solution of a mixture two different p-substituted $\mathbf{1}$ (1a and $\mathbf{1 b} ; \mathbf{1 a}$ and $\mathbf{1 d}$; $\mathbf{1 a}$ and $\mathbf{1 f}$; $\mathbf{1 a}$ and $\mathbf{1 i}$; $\mathbf{1 a}$ and $\mathbf{1 n}$; 0.1 mmol each) in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL}), \mathbf{C}_{\text {mono }} \mathbf{8}(0.005 \mathrm{mmol}$, $3.7 \mathrm{mg}, 5 \mathrm{mmol} \%$) and sodium 6-methoxy-2-naphthoate ($0.01 \mathrm{mmol}, 2.2 \mathrm{mg}, 10$ $\mathrm{mmol} \%$) was added at $-40^{\circ} \mathrm{C}$. Then 30% aqueous hydrogen peroxide $(0.1 \mathrm{mmol}, 10$ $\mu \mathrm{L}, 1.0 \mathrm{eq})$ was added as 4 portions in 4-hours intervals and the reaction was quenched with water $(10 \mathrm{~mL})$ at $15-35 \%$ conversion and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The solvent was removed and the residue was purified by silica gel chromatography to give the desired product. The results were summarized as follows:

$1 f$
$1 i$
1n

entry	p-substituted X	$\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)^{a}$	σ^{b}	σ^{+b}
1	OCH_{3}	0.385	-0.27	-0.78
2	CH_{3}	0.057	-0.14	-0.31
3	Ph	-0.042	0.05	-0.18
4	Br	-0.332	0.26	0.15
5	CF_{3}	-0.943	0.53	

${ }^{a}$ Average of three experiments at $15-35 \%$ conversion.
${ }^{b}$ Data from: Anslyn, E. V.; Dougherty, D. A. (2006). Modern Physical Organic Chemistry, University science books

Figure S3. Hammett Plot of $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ vs. σ for the competition experiments.

Figure S4. Hammett Plot of $\log \left(k_{\mathrm{X}} / k_{\mathrm{H}}\right)$ vs. σ^{+}for the competition experiments

Control experiments

The oxidation reactivity of stoichiometric C 8 without $\mathrm{H}_{2} \mathrm{O}_{2}$

Scheme S5. Control experiment using stoichiometric C8 without $\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$

To a solution of rac-1a ($0.05 \mathrm{mmol}, 11.2 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathbf{C 8}(0.05$ $\mathrm{mmol}, 77 \mathrm{mg}$) at $-40^{\circ} \mathrm{C}$. The mixture was vigorously stirred for 12 h . No reaction occurred.

Resonance Raman spectroscopy

Resonance Raman spectra were measured with glass capillary tubes containing the complexes, maintained at room temperature, using a LabRAM HR Evolution raman spectrometer(HORIBA Scientific). An Helium-neon gas laser at 633 nm was utilized as an excitation source. The laser power at the sample was about 5 mW and the acquisition time was 15 s.

Figure S5. Raman spectrum of $\mathrm{H}_{2} \mathrm{O}_{2}$

Figure S6. Raman spectrum of C8 without $\mathrm{H}_{2} \mathrm{O}_{2}$

Figure S7. Raman spectrum of $\mathbf{C 8}$ combining with 10 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}$

ESI-MS analysis

ESI-MS analysis was conducted to confirm the structure of $\mathbf{C 9}$ and 13. The isotope distribution patterns were calculated by EnviPat Web 2.4 site to compare the pattern and profile of the m / z peak(s) to the found ones. For complex C9, ESI-MS $m / z[\mathrm{M}-$ $\mathrm{OH}]^{+}$calculated for $\mathrm{C}_{92} \mathrm{H}_{69} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$: 1605.37, found 1605.37; m/z $[\mathrm{M}-\mathrm{H}]^{-}$ calculated for $\mathrm{C}_{92} \mathrm{H}_{69} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$: 1621.37, found 1621.33. For complex 13, ESI-MS $m / z[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{87} \mathrm{H}_{69} \mathrm{~F}_{8} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{8}$: 1561.37, found 1561.36; The isotope distribution patterns of $\mathbf{C 9}$ and $\mathbf{1 3}$ are identical to the calculated ones.

ESI-MS [M-H] for C9

Simulation of ESI-MS $[\mathrm{M}-\mathrm{OH}]^{+}$for $\mathbf{C 9}$

ESI-MS $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathbf{1 3}$

Simulation of ESI-MS $[\mathrm{M}+\mathrm{H}]^{+}$for $\mathbf{1 3}$

Influence of various additives on selectivity

Table S2. The effect of different aryl carboxylic acid derivatives ${ }^{\text {a }}$

entry	acid derivative	conv. $(\%)^{b}$	ee $(\%)^{c}$	s^{d}
1	AS1	49	71	14
2	AS2	52	61	8.3
3	AS3	53	83	17
4	AS4	51	82	21
5	AS5	52	67	8.3
6	AS6	50	65	9.1
7	AS7	47	49	5.5
8	AS8	50	87	41
10	AS9	51	94	70
11	AS10	52	85	22
12	AS11	50	94	115
13	AS12	50	70	12
14	AS13	53	95	43

${ }^{a}$ Reaction condition: to rac-1a (0.1 mmol), monoiron $\mathbf{C}_{\text {mono }} 8(5 \mathrm{~mol} \%)$ and carboxylic acid derivative ($10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ was added 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{mmol})$ as four portions in 2 h intervals for 6 h , and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$, unless otherwise noted. ${ }^{b}$ Conversion was calculated from the isolated yield of recovered (S)-1a. ${ }^{c}$ Determined by HPLC analysis on a chiral stationary phase. ${ }^{d}$ Selectivity (s) values were calculated through the equation $s=\ln [(1-\mathrm{C})(1-\mathrm{ee})] / \ln [(1-\mathrm{C})(1+\mathrm{ee})]$.

The effect of aryl carboxylic acid derivatives on the selectivity are systematically examined (Table S2). We found that the selectivity was highly dependent on the nature and the position of the substituents on the aryl ring of the additive. In general, aryl carboxylic acids bearing an electron-withdrawing group show inferior selectivity to those with electron-donating ones (e.g. entries $1-4$; entries $8-11$, Table S2). The observation suggested that the chelating properties of carboxylic acid moiety are essential to selectivity. The selectivity was also sensitive to the position of the substituents on the arene ring of the additive. While no obvious trend on the substituent pattern was concluded, the obvious variation on the selectivity implied that the substituent pattern on the arene ring might influence the chiral environment around the diiron through modulating the 2-benzoate-bridge.

X-ray crystallographic data

Single crystals of C2 and C8 were prepared as follows:
$\mathbf{C}_{\text {mono }} \mathbf{2}$ or $\mathbf{C}_{\text {mono }} \mathbf{8}$ ($0.05 \mathrm{mmol}, 1.0$ equiv) were dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOH-acetone- $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL} / 3 \mathrm{~mL} / 3 \mathrm{~mL} / 1$ drop $)$ solution and sodium benzoate (20 equiv) was added. The mixure was maintained open-flask at room temperature for several days until the crystal formed.

Figure S8. Molecular structure of complex C2 (CCDC 2127388)

Figure S9. Molecular structure of complex C8 (CCDC 2127389)

Compound	200828c
Formula	$\mathrm{C}_{180} \mathrm{H}_{148} \mathrm{Cl}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{4} \mathrm{~N}_{8} \mathrm{O}_{16}$
$\mathrm{D}_{\text {calc. }} . / \mathrm{g} \mathrm{cm}^{-3}$	1.392
μ / mm^{-1}	4.193
Formula Weight	3348.26
Colour	clear light black
Shape	block
Size/mm ${ }^{3}$	$0.03 \times 0.02 \times 0.01$
T/K	173.00(10)
Crystal System	orthorhombic
Flack Parameter	-0.009(2)
Hooft Parameter	-0.0065(17)
Space Group	$\mathrm{P} 2{ }_{1} 2_{1} 21$
a/Å	15.2213(3)
b/Å	21.4654(5)
c/Å	24.4451(4)
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
V / \AA^{3}	7987.0(3)
Z	2
Z^{\prime}	0.5
Wavelength/?	1.54184
Radiation type	$\mathrm{Cu} \mathrm{K} \alpha$
$\Theta_{\min } /{ }^{\circ}$	2.740
$\Theta_{\max } /{ }^{\circ}$	67.079
Measured Refl.	27176
Independent Refl.	13233
Reflections with $\mathrm{I}>2$ (I)	11427
$\mathrm{R}_{\text {int }}$	0.0407
Parameters	1029
Restraints	0
Largest Peak	0.433
Deepest Hole	-0.819
GooF	1.041
wR_{2} (all data)	0.1538
wR_{2}	0.1454
R_{1} (all data)	0.0667
R_{1}	0.0555

Selected key features in the crystal structures

X-ray diffraction studies revealed that complex $\mathbf{C 2}$ and $\mathbf{C 8}$ were dinuclear complexes mimiking the structure of the μ-hydroxo, carboxylate bridged non-heme diiron(III) core in the active site of MMO. A comparsion of the molecular structures of complexes C2, C8 and MMO based on their X-ray crystallographic data was shown here.

The Fe-Fe distances in MMO, C2, and C8 are $3.1 \AA, 3.54 \AA$, and $3.74 \AA$, respectively. C8 containing a bulkier salan basal ligand exhibits a longer $\mathrm{Fe}-\mathrm{Fe}$ bond than $\mathbf{C 2}$, suggesting that varying the substituent on the basal salan ligand leads to an obvious change of the $\mathrm{Fe}-\mathrm{Fe}$ bond length. Based on the selectivity difference of complex $\mathbf{C 2}$ and C8, we persumed that the $\mathrm{Fe}-\mathrm{Fe}$ bond distance in chiral diiron(III) dimer complexes might be crucial to the enantioselectivity.

C2

C8

Figure S10. Stick figure of the X-ray crystal structure of C2 and C8

Table S3. Selected bond distances (\AA) of C2 and C8:

C2 Bond distances		C8 Bond distances	
Atom-Atom	Bond distance (\AA)	Atom-Atom	Bond distance (\AA)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	3.54	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	3.74
$\mathrm{Fe}(1)-\mathrm{O}(5)$	1.91	$\mathrm{Fe}(1)-\mathrm{O}(2)$	1.93
$\mathrm{Fe}(1)-\mathrm{O}(7)$	1.96	$\mathrm{Fe}(1)-\mathrm{O}(5)$	1.91
$\mathrm{Fe}(1)-\mathrm{O}(6)$	2.12	$\mathrm{Fe}(1)-\mathrm{O}(3)$	1.99
$\mathrm{Fe}(1)-\mathrm{O}(9)$	1.89	$\mathrm{Fe}(1)-\mathrm{O}(1)$	1.91
$\mathrm{Fe}(1)-\mathrm{N}(1)$	2.15	$\mathrm{Fe}(1)-\mathrm{N}(17)$	2.18
$\mathrm{Fe}(1)-\mathrm{N}(2)$	2.21	$\mathrm{Fe}(1)-\mathrm{N}(15)$	2.20
$\mathrm{Fe}(2)-\mathrm{O}(3)$	1.94	$\mathrm{Fe}(2)-\mathrm{O}(4)$	1.90
$\mathrm{Fe}(2)-\mathrm{O}(6)$	1.95	$\mathrm{Fe}(2)-\mathrm{O}(3)$	1.98
$\mathrm{Fe}(2)-\mathrm{O}(8)$	1.89	$\mathrm{Fe}(2)-\mathrm{O}(7)$	1.94
$\mathrm{Fe}(2)-\mathrm{O}(4)$	2.07	$\mathrm{Fe}(2)-\mathrm{O}(9)$	2.06
$\mathrm{Fe}(2)-\mathrm{N}(3)$	2.16	$\mathrm{Fe}(2)$-N(11)	2.20
$\mathrm{Fe}(2)-\mathrm{N}(4)$	2.18	$\mathrm{Fe}(2) \mathrm{-N}(16)$	2.20

Table S4. Some key interatomic distances (\AA) in $\mathbf{s M M O}_{\text {ox }}$ according to known literature ${ }^{[12]}$.

Atom	Atom	Distance (\AA)
Fe 1	Fe 2	3.1
Fe 1	Glu 114 O	1.9
Fe 1	His 147 N	2.1
Fe 1	Glu 144 O	2.1
Fe 1	$\mu \mathrm{OH} \mathrm{O}$	1.7
Fe 1	$\mathrm{OH}_{2} \mathrm{O}$	2.3
Fe 1	$\mu \mathrm{OH}_{2} \mathrm{O}$	2.3
Fe 2	$\mathrm{Glu}_{209} \mathrm{O}$	1.9
Fe 2	His 246 N	2.2
Fe 2	Glu 243 O	2.0
Fe 2	Glu 144 O	2.5
Fe 2	$\mu \mathrm{OH} \mathrm{O}$	2.0
Fe 2	OH 2 O	2.5

References

1. Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 7th ed.; Butterworth-Heinemann: Oxford, U.K., 2013.
2. Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chiral phosphoric acid-catalyzed oxidative kinetic resolution of indolines based on transfer hydrogenation to imines. J. Am. Chem. Soc. 2013, 135, 11740.
3. McComas, C. C.; Gilbert, E. J.; Van Vranken, D. L. Stereochemistry of 3-alkylindole dimerization: acyclic $\delta_{1}, \delta_{1}{ }^{`}$-tryptophan dimers. J. Org. Chem. 1997, 62, 8600.
4. Lin, A.; Yang, J.; Hashim, M. N-Indolyltriethylborate: a useful reagent for synthesis of C3-quaternary indolenines. Org. Lett. 2013, 15, 1950.
5. Wang, G.; Lu, R.; He, C.; Liu, L. Kinetic resolution of indolines by asymmetric hydroxylamine formation. Nat. Commun. 2021, 12, 2512.
6. Saccoccia, F.; Brindisi, M.; Gimmelli, R.; Relitti N.; Guidi, A.; Saraswati, P.; Cavella, C.; Brogi, S.; Chemi, G.;. Butini, S.; Papoff, G.; Senger, J.; Herp, D.; Jung, M.; Campiani, G.; Gemma, S.; Ruberti, G. Screening and phenotypical characterization of schistosoma mansoni histone deacetylase 8 (SmHDAC8) inhibitors as multistage antischistosomal agents. ACS Infect. Dis. 2020, 6, 100.
7. Yang, Z.; Chen, F.; He, Y.; Yang, N.; Fan, Q.-H. Highly enantioselective synthesis of indolines: asymmetric hydrogenation at ambient temperature and pressure with cationic ruthenium diamine catalysts. Angew. Chem. Int. Ed. 2016, 55, 13863.
8. Brown, D. W.; Graupner, P. R.; Sainsbury, M.; Shertzer, H. G. New antioxidants incorporating indole and indoline chromophores. Tetrahedron, 1991, 47, 4383.
9. Murray, J. I.; Flodén, N. J.; Bauer, A.; Fessner, N. D.; Dunklemann, D. L.; Bob-Egbe, O.; Rzepa, H. S.; Bürgi, T.; Richardson, J.; Spivey, A. C. Kinetic resolution of 2-substituted indolines by N-Sulfonylation using an atropisomeric 4-DMAP-N-oxide organocatalyst. Angew. Chem., Int. Ed. 2017, 56, 5760.
10. Lee, Y. E.; Cao, T.; Torruellas, C.; Kozlowski, M. C. Selective oxidative homoand cross-coupling of phenols with aerobic catalysts. J. Am. Chem. Soc. 2014, 136,
11.
12. Lackner, A. D.; Samant, A. V.; Toste, F. D. Single-operation deracemization of 3H-indolines and tetrahydroquinolines enabled by phase separation. J. Am. Chem. Soc. 2013, 135, 14090.
13. Rosenzweig, A. C.; Nordlund, P.; Takahara, P. M.; Frederick, C. A.; Lippard, S. J. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Chemistry \& Biology. 1995, 2: 409.

NMR spectra

$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{\bullet} \\ & \stackrel{\sigma}{\overleftarrow{~}} \end{aligned}$			$\stackrel{N}{N}$	$\stackrel{\text { N }}{\substack { \text { ¢ } \\ \begin{subarray}{c}{0{ \text { ¢ } \\ \begin{subarray} { c } { 0 } } \\{\text { ¢ }}\end{subarray}}$

1a

N
N
N
i

1b

[^0]

1 e

[^1]

[^2]

$\begin{array}{cc}\underset{\sim}{\top} & \underset{N}{N} \\ \underset{\sim}{N} & i\end{array}$

\mathbf{i}

NimiN Nin Nin

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppa})\end{array}$

-159.4162
-148.4961
-140.8157
-131.4858
-130.1422
-128.6065
-125.9366

-113.7518
-110.7073

∞
0
\sim
\sim
\sim
$\begin{array}{cc}\stackrel{\infty}{N} & 00 \\ \stackrel{0}{\mathrm{~N}} & \stackrel{0}{\stackrel{ }{\circ}} \\ \stackrel{1}{1} & 0\end{array}$

\/\mp@code{NNNOSNNO}
\/\mp@code{NNNOSNNO}

[^3]

			$\begin{aligned} & \text { \% } \\ & \stackrel{\circ}{5} \\ & \stackrel{y}{4} \end{aligned}$	\%	

[^4]

[^5]

2b

[^6]

10

$\begin{aligned} & \text { Z } \\ & \stackrel{0}{0} \\ & \stackrel{\sim}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	 ป	¢ $\stackrel{\text { ¢ }}{ }$ ¢	-(\%)	N ¢ ¢

HPLC

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.183	34.677	49.92	n.a.
2	9.597	34.794	50.08	n.a.	
Total:	$\mathbf{6 9 . 4 7 1}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.240	0.186	2.95	n.a.
2	9.723	6.117	97.05	n.a.	
Total:	6.303	100.00			

1b

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1	5.163	141.140	50.06	n.a.		
2	7.840	140.817	49.94	n.a.		
Total:	$\mathbf{y y y y y}$					

Integration Results					
No.	Peak Name	Retention Time \min	Area mAU	Relative Area $\%$	Amount n.a.
1		5.160	3.587	1.02	n.a.
2	7.863	349.349	98.98	n.a.	
Total:	$\mathbf{3 5 2 . 9 3 6}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		7.390	94.399	49.42	n.a.
2	13.510	96.622	50.58	n.a.	
Total:		191.021	$\mathbf{1 0 0 . 0 0}$		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		7.470	0.530	1.98	n.a.
2	13.733	26.216	98.02	n.a.	
$\mathbf{~ T o t a l : ~}$					

1d

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.890	129.476	49.82	n.a.
2	10.477	130.438	50.18	n.a.	
Total:	$\mathbf{2 5 9 . 9 1 4}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.897	1.989	4.52	n.a.
2	10.580	41.975	95.48	n.a.	
Total:	43.964	100.00			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.837	222.599	49.76	n.a.
2	7.307	224.783	50.24	n.a.	
$\mathbf{~ T o t a l : ~}$					

Integration Results						
No.	Peak Name	Retention Time min	Area $m A U^{*} \min$	Relative Area $\%$	Amount n.a.	
1		4.840	1.455	2.24	n.a.	
2	7.320	63.639	97.76	n.a.		
Total:	65.095	$\mathbf{1 0 0 . 0 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.033	101.840	49.53	n.a.
2	9.703	103.791	50.47	n.a.	
Total:	$\mathbf{2 0 5 . 6 3 1}$				

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1		6.130	0.386	1.62	n.a.	
2	9.803	23.483	98.38	n.a.		
Total:	$\mathbf{2 3 . 8 6 9}$					

1 g

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.627	202.858	49.03	n.a.
2	12.523	210.875	50.97	n.a.	
Total:	$\mathbf{4 1 3 . 7 3 2}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.613	1.756	3.11	n.a.
2	12.497	54.637	96.89	n.a.	
Total:		56.393	100.00		

1h

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.450	238.753	48.89	n.a.
2	12.120	249.638	51.11	n.a.	
Total:		488.391	100.00		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.570	13.925	7.89	n.a.
2	12.657	162.511	92.11	n.a.	
Total:		$\mathbf{1 7 6 . 4 3 6}$	$\mathbf{1 0 0 . 0 0}$		

$1 i$

Integration Results					
No.	Peak Name	Retention Time min	Area $m A U * m i n$	Relative Area $\%$	Amount n.a.
1		5.370	438.707	49.86	n.a.
2	11.767	441.161	50.14	n.a.	
Total:	879.868	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.393	13.856	7.45	n.a.
2	11.957	172.233	92.55	n.a.	
Total:		$\mathbf{1 8 6 . 0 8 9}$	$\mathbf{1 0 0 . 0 0}$		

1j

Integration Results					
No.	Peak Name	Retention Time	Area	Relative Area mAU*min	Amount
		4.610	187.923	49.80	n.a.
1	10.070	189.424	50.20	n.a.	
2		$\mathbf{3 7 7 . 3 4 7}$	n.a.		
Total:					

Integration Results

No.	Peak Name	Retention Time \min	Area $m A U^{*} m i n$	Relative Area $\%$	Amount n.a.
1		4.717	4.620	9.69	n.a.
2	10.520	43.077	90.31	n.a.	
Total:	$\mathbf{4 7 . 6 9 8}$				

1k

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.507	37.474	49.87	n.a.
2	7.923	37.673	50.13	n.a.	
Total:	$\mathbf{7 5 . 1 4 7}$				

Integration Results					
No.	Peak Name	Retention Time min	Area $m A U *$ min	Relative Area $\%$	Amount n.a.
1		5.530	0.232	1.98	n.a.
2	7.987	11.482	98.02	n.a.	
Total:	$\mathbf{1 1 . 7 1 4}$				

11

Integration Results

No.	Peak Name	Retention Time \min	Area $m A U^{*} \mathrm{~min}$	Relative Area $\%$	Amount n.a.
1		5.913	0.122	2.37	n.a.
2	8.070	5.018	97.63	n.a.	
Total:		$\mathbf{5 . 1 4 0}$			

1 m

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.177	127.293	49.15	n.a.
2	17.000	131.679	50.85	n.a.	
Total:	$\mathbf{2 5 8 . 9 7 2}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.153	1.117	3.24	n.a.
2	17.350	33.379	96.76	n.a.	
Total:		$\mathbf{3 4 . 4 9 6}$	$\mathbf{1 0 0 . 0 0}$		

 3b

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1	5.260	215.373	49.97	n.a.	
2	12.653	215.625	50.03	n.a.	
Total:	430.998	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.277	1.687	2.32	n.a.
2	12.883	71.146	97.68	n.a.	
Total:	72.833	100.00			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.997	25.644	49.91	n.a.
2	16.603	25.734	50.09	n.a.	
Total:	51.378	100.00			

Integration Results					
No.	Peak Name	Retention Time min	Area $m A U * m i n ~$	Relative Area $\%$	Amount n.a.
1		6.030	0.155	2.14	n.a.
2	16.910	7.072	97.86	n.a.	
Total:	$\mathbf{7 . 2 2 6}$	100.00			

Integration Results					
No.	Peak Name	Retention Time min	Area $\mathrm{mAU*}$ min	Relative Area $\%$	Amount n.a.
1		5.303	19.804	50.36	n.a.
2	13.637	19.522	49.64	n.a.	
Total:		$\mathbf{3 9 . 3 2 6}$	$\mathbf{1 0 0 . 0 0}$		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.370	0.161	2.00	n.a.
2	13.857	7.899	98.00	n.a.	
Total:	$\mathbf{8 . 0 6 0}$				

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1		6.030	667.885	47.37	n.a.	
2	10.733	742.144	52.63	n.a.		
Total:	$\mathbf{1 4 1 0 . 0 2 9}$	$\mathbf{1 0 0 . 0 0}$				

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1		6.173	15.485	4.98	n.a.	
2	10.933	295.613	95.02	n.a.		
Total:		$\mathbf{3 1 1 . 0 9 8}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results						
No.	Peak Name	Retention Time min	Area mAU	Relative Area $\%$	Amount n.a.	
1		4.463	308.375	50.09	n.a.	
2		5.687	307.212	49.91	n.a.	
Total:	$\mathbf{6 1 5 . 5 8 7}$	$\mathbf{1 0 0 . 0 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.547	10.152	12.82	n.a.
2	5.840	69.038	87.18	n.a.	
Total:	$\mathbf{7 9 . 1 9 0}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.107	104.778	49.94	n.a.
2	15.287	105.010	50.06	n.a.	
Total:	$\mathbf{2 0 9 . 7 8 7}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.167	2.404	6.66	n.a.
2	15.567	33.714	93.34	n.a.	
Total:	$\mathbf{3 6 . 1 1 7}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.613	420.573	48.88	n.a.
2	19.057	439.878	51.12	n.a.	
Total:	$\mathbf{8 6 0 . 4 5 0}$				

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1		6.627	22.490	9.46	n.a.	
2	20.373	215.156	90.54	n.a.		
Total:	$\mathbf{2 3 7 . 6 4 6}$	$\mathbf{1 0 0 . 0 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.333	422.748	49.02	n.a.
2	9.107	439.615	50.98	n.a.	
Total:	$\mathbf{8 6 2 . 3 6 2}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.367	7.762	3.83	n.a.
2	9.197	195.119	96.17	n.a.	
Total:	$\mathbf{2 0 2 . 8 8 1}$				

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1	5.970	144.679	49.95	n.a.		
2	9.313	144.977	50.05	n.a.		
Total:	$\mathbf{2 8 9 . 6 5 6}$	$\mathbf{1 0 0 . 0 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.053	8.167	9.75	n.a.
2	9.923	75.621	90.25	n.a.	
Total:	83.787				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.177	249.239	49.77	n.a.
2	13.207	251.567	50.23	n.a.	
Total:	$\mathbf{5 0 0 . 8 0 6}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		6.150	0.507	3.48	n.a.
2	12.993	14.065	96.52	n.a.	
Total:		14.572	100.00		

6a

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.180	133.769	48.33	n.a.
2	5.827	143.001	51.67	n.a.	
Total:	$\mathbf{2 7 6 . 7 7 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.163	213.500	90.66	n.a.
2	5.743	22.007	9.34	n.a.	
Total:		$\mathbf{2 3 5 . 5 0 7}$	$\mathbf{1 0 0 . 0 0}$		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.033	13.741	50.03	n.a.
2	8.980	13.727	49.97	n.a.	
Total:	$\mathbf{2 7 . 4 6 9}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.070	9.930	9.39	n.a.
2	9.067	95.818	90.61	n.a.	
Total:		105.748	100.00		

6b

Integration Results						
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.	
1	4.180	133.769	48.33	n.a.		
2	5.827	143.001	51.67	n.a.		
Total:	$\mathbf{2 7 6 . 7 7 0}$	$\mathbf{1 0 0 . 0 0}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		4.173	15.443	8.89	n.a.
2	5.773	158.253	91.11	n.a.	
Total:		173.697			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		5.853	174.208	49.47	n.a.
2	14.943	177.937	50.53	n.a.	
Total:	$\mathbf{3 5 2 . 1 4 5}$	$\mathbf{1 0 0 . 0 0}$			

\(\left.$$
\begin{array}{|l|c|c|c|c|c|}\hline \text { Integration Results } \\
\hline \text { No. } & \text { Peak Name } & \begin{array}{c}\text { Retention Time } \\
\text { min }\end{array} & \begin{array}{c}\text { Area } \\
\text { mAU*min }\end{array} & \text { Relative Area } \\
\%\end{array}
$$ \begin{array}{c}Amount

n.a.\end{array}\right]\)| n.a. |
| :--- |
| 1 |

6c

Integration Results					
No.	Peak Name	Retention Time	Area	Relative Area min	Amount
		4.140	153.921	48.78	n.a.
1	4.710	161.627	51.22	n.a.	
2		315.548	n.a.		
Total:					

Integration Results					
No.	Peak Name	Retention Time min	Area $m A U * m i n$	Relative Area $\%$	Amount n.a.
1	3.680	7.772	93.92	n.a.	
2	4.010	0.503	6.08	n.a.	
Total:	$\mathbf{8 . 2 7 5}$				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative $\%$	Amount
		4.640	369.246	49.08	n.a.
1	4.970	383.055	50.92	n.a.	
2		$\mathbf{7 5 2 . 3 0 1}$	$\mathbf{1 0 0 . 0 0}$		
Total:					

6d

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Area $\%$	Amount
		8.303	10.126	9.57	n.a.
1		10.370	95.682	90.43	n.a.
2		$\mathbf{1 0 5 . 8 0 9}$	n.a.		
Total:					

Integration Results							
No.	Peak Name	$\begin{array}{c}\text { Retention Time } \\ \text { min }\end{array}$	$\begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array}$	$\begin{array}{c}\text { Relative } \\ \text { Area } \\ \%\end{array}$	Amount		
		8.810	4.707				
n.a.						$]$	49.47
:---							
1							

Integration Results					
No.	Peak Name	Retention Time	Area	Relative	
		min	mAU*min	$\%$	Amount
		8.877	152.120	91.42	n.a.
1	9.953	14.270	8.58	n.a.	
2		166.390	n.a.		
Total:					

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative $\%$	Amount
		12.147	924.048	51.82	n.a.
1		15.190	859.231	48.18	n.a.
2		$\mathbf{1 7 8 3 . 2 8 0}$	n.a.		
Total:					

Integration Results					
No.	Peak Name	Retention Time	Area	Relative Area $m i n$	Amount
		13.483	1.4577	7.37	n.a.
1	17.190	18.3214	92.63	n.a.	
2		19.7791	100.00		
Total:					

Integration Results					
No.	Peak Name	Retention Time			
		Area mAU*min	Area $\%$	Amount	
		8.457	30.600	50.19	n.a.
1	13.323	30.364	49.81	n.a.	
2		$\mathbf{6 0 . 9 6 4}$	$\mathbf{1 0 0 . 0 0}$		
Total:					

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area \%	Amount n.a.
$\begin{array}{\|l} 1 \\ 2 \end{array}$		$\begin{gathered} 7.530 \\ 10.643 \end{gathered}$	$\begin{gathered} \hline 8.651 \\ 109.164 \end{gathered}$	$\begin{gathered} 7.34 \\ 92.66 \end{gathered}$	n.a. n.a.
Total:			117.815	100.00	

Integration Results					
No.	Peak Name	Retention Time min	Area $m A *^{*} m i n$	Relative Area $\%$	Amount n.a.
1		12.230	787.497	49.41	n.a.
2	22.653	806.309	50.59	n.a.	
Total:	$\mathbf{1 5 9 3 . 8 0 6}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		13.037	5.074	5.24	n.a.
2	24.073	91.823	94.76	n.a.	
Total:		96.897	100.00		

Integration Results

No.	Peak Name	Retention Time \min	Area $m A U^{*} \min$	Relative Area $\%$	Amount n.a.
1		9.580	61.578	50.62	n.a.
2	13.240	60.078	49.38	n.a.	
Total:		$\mathbf{1 2 1 . 6 5 6}$	$\mathbf{1 0 0 . 0 0}$		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		10.413	16.871	8.93	n.a.
2	14.353	172.116	91.07	n.a.	
Total:		188.987	100.00		

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1	6.750	306.254	49.44	n.a.	
2	7.873	313.208	50.56	n.a.	
Total:	$\mathbf{6 1 9 . 4 6 2}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results						
No.	Peak Name	Retention Time min	Area $m A U^{*} \min$	Relative Area $\%$	Amount n.a.	
1		7.223	0.822	5.26	n.a.	
2	8.497	14.805	94.74	n.a.		
Total:	15.627	100.00				

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		23.153	997.821	48.97	n.a.
2	27.240	1039.921	51.03	n.a.	
Total:	$\mathbf{2 0 3 7 . 7 4 2}$	$\mathbf{1 0 0 . 0 0}$			

Integration Results					
No.	Peak Name	Retention Time min	Area mAU*min	Relative Area $\%$	Amount n.a.
1		24.640	9.589	7.15	n.a.
2	28.283	124.486	92.85	n.a.	
Total:		134.074	100.00		

[^0]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 \\ & & 100\end{array}$

[^1]:

[^2]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^3]:

[^4]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 9\end{array}$

[^5]:

[^6]: $\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & (\mathrm{ppaa})\end{array}$

