Supplementary Information for

Synthesis and Reactivity of Cobalt-Dinitrogen Complexes Bearing Anionic PCP-type Pincer Ligands toward Catalytic Silylamine Formation from Dinitrogen

Shogo Kuriyama, \dagger Shenglan Wei, \dagger Hiromasa Tanaka, \ddagger Asuka Konomi, § Kazunari Yoshizawa, §* and Yoshiaki Nishibayashi \dagger^{*}
\dagger Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
\$School of Liberal Arts and Sciences, Daido University, Minami-ku, Nagoya 457-8530
§Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819- 0395

Contents

General Methods. 2
Preparation of Ligands and Cobalt Complexes. 3
Reduction of Complex 3a with K. 9
Catalytic Silylamine Formation from Dinitrogen. 10
Catalytic Silylamine Formation with Larger Amounts of KC_{8} and Me3SiCl.. 13
Further addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ and KCs in Catalytic Silylamine Formation. 15
X-ray Crystallography. 16
Computational Details. 28
NMR and IR Spectra. 31
References. 47

General Methods.

${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz), ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz), and ${ }^{19}$ F NMR (376 Hz) spectra were recorded on a JEOL ECS-400 spectrometer or a JEOL ECZ-400S spectrometer in suitable solvent, and spectra were referenced to residual solvent $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ or external standard $\left({ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: \mathrm{H}_{3} \mathrm{PO}_{4} ;{ }^{19} \mathrm{~F}\right.$: $\left.\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}\right)$. IR spectra were recorded on a JASCO FT/IR 4100 Fourier Transform infrared spectrometer or a Shimadzu IRSpirit spectrometer. UV-vis absorption spectra were recorded on a Shimadzu UV-1850. Gas chromatography (GC) analyses for the quantification of $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{3}$ and byproducts were carried out on a Shimadzu GC-2014 instrument equipped with a flame-ionization detector using CBP 10 fused silica capillary column ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Gas chromatography-mass spectroscopy ($\mathrm{GC}-\mathrm{MS}$) was performed on a Shimadzu GCMS-QP2010 PLUS instrument. Mass spectra were measured on a JEOL JMS-700 mass spectrometer. Magnetic susceptibility was measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ using the Evans method. ${ }^{\text {S1 }}$ Elemental analyses were performed at Microanalytical Center of The University of Tokyo.

All manipulations were carried out under an atmosphere of nitrogen or argon by using standard Schlenk techniques or glovebox techniques unless otherwise stated. Solvents were dried by general methods and degassed before use. $\mathrm{Me}_{3} \mathrm{SiCl}$ was distilled prior to use. 2-Bromo-1,3-bis(dibromomethyl)-5-methoxybenzene, ${ }^{\text {S2 }}$ 2-bromo-1,3-bis(bromomethyl)-5-tert-butylbenzne, ${ }^{\text {S3 }} \quad 4$-(3,5-bis(trifluoromethyl)phenyl)-2,6dimethylbromobenzene, ${ }^{\text {S4 }}$ di-tert-butylphosphine, ${ }^{\text {S5 }}$ and $\mathrm{KC}_{8}{ }^{\mathrm{S6} 6}$ were prepared according to the literature methods. All the other reagents were commercially available.

Preparation of Ligands and Cobalt Complexes.

Preparation of 2-bromo-1,3-bis(bromomethyl)-5-(3,5bis(trifluoromethyl)phenyl)benzene (4).

A mixture of 4-(3,5-bis(trifluoromethyl)phenyl)-2,6-dimethylbromobenzene (596 $\mathrm{mg}, 1.50 \mathrm{mmol}$), N -bromosuccinimide ($643 \mathrm{mg}, 3.61 \mathrm{mmol}$), and benzoyl peroxide $(15.0 \mathrm{mg}, 0.062 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was stirred at reflux temperature for 3 h . After solvent was removed in vacuo, the residue was purified by SiO_{2} column chromatography (hexane) to afford $\mathbf{4}$ as a white solid ($758 \mathrm{mg}, 1.37 \mathrm{mmol}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.99(\mathrm{~s}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta 141.1,139.9,138.4,132.4(\mathrm{q}, J=33.6 \mathrm{~Hz}), 130.9,129.9,127.3(\mathrm{~d}, J=13.4$ $\mathrm{Hz}), 123.3(\mathrm{q}, J=269.0 \mathrm{~Hz}), 122.0-121.9(\mathrm{~m}), 33.4 .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-62.7(\mathrm{~s})$. HRMS(FAB) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{Br}_{3} \mathrm{P}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 553.8140$. Found 553.8139.

Preparation of ${ }^{\mathrm{R}} \mathrm{PCP}-\mathrm{Br}$.

A typical experimental procedure for the synthesis of ${ }^{\mathrm{H}} \mathrm{PCP}-\mathrm{Br}$ is described below. A mixture of 2-bromo-1,3-bis(bromomethyl)benzene ($2.61 \mathrm{~g}, 7.61 \mathrm{mmol}$) and ${ }^{t} \mathrm{Bu} \mathrm{u}_{2} \mathrm{PH}$ $(2.94 \mathrm{~g}, 20.1 \mathrm{mmol})$ in acetone (55 mL) was stirred at reflux temperature for 2 h . After cooling to room temperature, the solvent was removed in vacuo, then the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($8 \mathrm{~mL}, 3$ times). After the addition of $\mathrm{NaOAc}(5.0 \mathrm{~g}), \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, and water $(15 \mathrm{~mL})$ to the white residue, the product was extracted by $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL}, 3$ times). After the combined extracts were dried over anhydrous MgSO_{4}, the mixture was filtered, and the filtrate was evaporated to dryness to afford $\mathrm{PCP}-\mathrm{Br}$ as a white solid ($2.83 \mathrm{~g}, 5.98 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 4 \mathrm{H}), 1.10(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 141.9(\mathrm{~d}, J$ $=13.4 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 128.5,126.5,32.0(\mathrm{~d}, J=23.9 \mathrm{~Hz}), 29.8(\mathrm{~d}, J=14.3$
$\mathrm{Hz}), 29.7(\mathrm{~d}, J=24.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 34.1(\mathrm{~s})$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{BrP}_{2}$: C, 60.88; H, 9.15. Found: C, 60.87, H, 9.03.

Isolated yields and analytical data of ${ }^{\mathrm{MeO}} \mathrm{PCP}-\mathrm{Br},{ }^{{ }^{\mathrm{BBu}} \mathrm{PCP}-\mathrm{Br}}$ and ${ }^{\mathrm{ArF}} \mathrm{PCP}-\mathrm{Br}$ are summarized below.

$\mathrm{MeO}_{\mathrm{PCP}}-\mathrm{Br}$
${ }^{\mathrm{MeO}} \mathrm{PCP}-\mathrm{Br}: 80 \%$ yield. A white solid. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.42$ (s, 3 H), 3.14 (d, $J=2.8 \mathrm{~Hz}, 4 \mathrm{H}$), 1.11 (d, $J=10.8 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $158.5,142.8(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 119.3,115.9(\mathrm{~d}, J=20.1 \mathrm{~Hz}), 54.8,32.0(\mathrm{~d}, J=23.9 \mathrm{~Hz})$, $29.8(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=24.0 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 34.0(\mathrm{~s})$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{BrOP}_{2}$: C, 59.64 ; H, 9.01. Found: C, $59.33, \mathrm{H}, 8.84$.

${ }^{t B u} P C P-B r$
${ }^{\text {tBupCP}}{ }^{2} \mathrm{Br}$: 89% yield. A colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.89$ (s, 2H), 3.18 (d, $J=2.8$ $\mathrm{Hz}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 149.0,141.0$ (d, $J=11.5 \mathrm{~Hz}$), $127.5(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 125.6,34.7,32.0(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 31.3,29.9$ (d, $J=13.4 \mathrm{~Hz}$), $29.9(\mathrm{~d}, J=26.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 33.3$ (s). HRMS(FAB) Calcd. for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{BrP}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 529.2728. Found 529.2711.

${ }^{\text {ArF }}$ PCP-Br
$\mathrm{Ar}^{\mathrm{F}}-\mathrm{PCP}-\mathrm{Br}\left(\mathrm{Ar}^{\mathrm{F}}=3,5-\operatorname{bis}(\right.$ trifluoromethyl $)$ phenyl): 89% yield. A white solid. ${ }^{1} \mathrm{H}$ NMR (C6D ${ }_{6}$): $\delta 7.95-7.94(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.10(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 143.3(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 143.1,136.4,132.4(\mathrm{q}, J=$
$32.9 \mathrm{~Hz}), 129.4,128.7(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 127.2,123.8(\mathrm{q}, J=271.2 \mathrm{~Hz}), 121.2,32.1(\mathrm{~d}$, $J=24.0 \mathrm{~Hz}), 29.8(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=26.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 36.1$ (s). ${ }^{19} \mathrm{~F}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta-62.5$ (s). HRMS(FAB) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{BrF}_{6} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 684.2084$. Found 684.2050.

Preparation of 2a-2d.

A typical experimental procedure for the synthesis of 2a is described below. A solution of ${ }^{H}$ PCP-Br $(237 \mathrm{mg}, 0.501 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added ${ }^{n} \operatorname{BuLi}(1.55 \mathrm{M}$ in hexane, $325 \mu \mathrm{~L}, 0.504 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , a suspension of $\mathrm{CoBr}_{2}(109 \mathrm{mg}, 0.498 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added to the mixture. After the reaction mixture was stirred at room temperature for 4 h , the solvent was removed in vacuo. After the addition of hexane $(10 \mathrm{~mL})$ to the brown residue, the suspension was filtered through Celite, and the filter cake was washed with hexane (3 $\mathrm{mL}, 4$ times). The combined filtrate was dried in vacuo. The obtained yellow solid was washed with a small amount of cold pentane and dried in vacuo to afford $\mathbf{2 a}$ as a yellow solid ($227 \mathrm{mg}, 0.426 \mathrm{mmol}, 86 \%$). Single crystals of 2a suitable for X-ray crystallography were obtained as yellow crystals from hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 52.3,11.2,-20.5,-20.9$. Magnetic susceptibility (Evans' Method): $\mu_{\text {eff }}=$ 2.4(1) $\mu \mathrm{B}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{BrP}_{2} \mathrm{Co}: \mathrm{C}, 54.14 ; \mathrm{H}, 8.14$. Found: С, 54.08; H, 7.94.

Isolated yields and analytical data of $\mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{2 d}$ are summarized below.

2b
2b: 64% yield. Yellow crystals. Single crystals of $\mathbf{2 b}$ suitable for X-ray crystallography were obtained as yellow crystals from hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 65.1,12.4$, $-0.6,-15.9$. Magnetic susceptibility (Evans' Method): $\mu_{\text {eff }}=2.5(1) \mu \mathrm{B}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298

2c
2c: 51% yield. Yellow crystals. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 11.8,-4.4,-19.4$. Magnetic susceptibility (Evans' Method): $\mu_{\text {eff }}=2.4(1) \mu \mathrm{B}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K . Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{BrP}_{2} \mathrm{Co}: \mathrm{C}, 57.15 ; \mathrm{H}, 8.74$. Found: C, 57.38; H, 8.51.

2d: 50\% yield. Yellow crystals. Single crystals of 2d suitable for X-ray crystallography were obtained as yellow crystals from hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): ~ \delta 44.5,10.1$, 5.1, 2.7, -18.8. Magnetic susceptibility (Evans' Method): $\mu_{\text {eff }}=2.3(1) \mu \mathrm{B}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{BrF}_{6} \mathrm{P}_{2} \mathrm{Co}$: C, 51.63; H, 6.09. Found: C, 51.57; H, 5.75.

Preparation of 3a-3d.

A typical experimental procedure for the synthesis of $\mathbf{3 a}$ is described below. To a 20 mL Schlenk flask containing 2a ($104 \mathrm{mg}, 0.195 \mathrm{mmol}$) and $\mathrm{KC}_{8}(28.9 \mathrm{mg}, 0.214$ $\mathrm{mmol})$ was added THF (4 mL) under $\mathrm{N}_{2}(1 \mathrm{~atm})$. After stirring at room temperature for 18 h under N_{2} (1 atm), the solvent was removed in vacuo. After the addition of hexane $(5 \mathrm{~mL})$ to the purple residue, the suspension was filtered through Celite, and the filter cake was washed with hexane ($2 \mathrm{~mL}, 4$ times). The combined filtrate was dried in vacuo. The obtained purple solid was washed with a small amount of cold pentane and dried in vacuo to afford 3a as a purple solid ($67.6 \mathrm{mg}, 0.141 \mathrm{mmol}, 72 \%$). Single crystals of 3a suitable for X-ray crystallography were obtained as purple crystals from hexane at $-30{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.01(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.35(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 91.6$ (br s). IR (KBr, v_{NN}) $2007 \mathrm{~cm}^{-1}$, IR (THF, v_{NN}) $2009 \mathrm{~cm}^{-1}$, IR (neat, ATR, v_{NN}) $2002 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Co}: \mathrm{C}, 59.99$; H, $9.02 ; \mathrm{N}, 5.83$. Found: C, $59.84 ; \mathrm{H}, 9.05 ; \mathrm{N}, 5.02$. The slightly low content of nitrogen is considered to be due to the labile property of the coordinated dinitrogen in 3a.

Isolated yields and analytical data of $\mathbf{3 b}, \mathbf{3 c}$ and $\mathbf{3 d}$ are summarized below.

3b
3b: $\mathbf{4 5 \%}$ yield. Purple crystals. Single crystals of $\mathbf{3 b}$ suitable for X-ray crystallography were obtained as purple crystals from hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.70(\mathrm{~s}, 2 \mathrm{H})$, $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{t}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 93.3$ (br s). IR (KBr, v_{NN}) $2006 \mathrm{~cm}^{-1}$, IR (THF, $\left.v_{\mathrm{NN}}\right) 2005 \mathrm{~cm}^{-1}$, IR (neat, ATR, v_{NN}) $2003 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{OP}_{2} \mathrm{Co}: \mathrm{C}, 58.82 ; \mathrm{H}, 8.88 ; \mathrm{N}, 5.49$. Found: C, $58.87 ; \mathrm{H}, 8.96 ; \mathrm{N}, 2.95$. The slightly low content of nitrogen is considered to be due to the labile property of the coordinated dinitrogen in $\mathbf{3 b}$.

3c
3c: 41% yield. Purple crystals. Single crystals of $\mathbf{3 c}$ suitable for X-ray crystallography were obtained as purple crystals from hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.10(\mathrm{~s}, 2 \mathrm{H})$, $3.25(\mathrm{t}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: $\delta 92.2(\mathrm{br} \mathrm{s})$. IR $\left(\mathrm{KBr}, v_{\mathrm{NN}}\right) 2004 \mathrm{~cm}^{-1}$, IR (THF, $\left.v_{\mathrm{NN}}\right) 2006 \mathrm{~cm}^{-1}$, IR (neat, ATR, v_{NN}) $2001 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Co}: ~ \mathrm{C}, 62.67$; H, 9.58; N, 5.22. Found: C, 62.92; H, 9.48; N, 5.03.

3d
3d: 41% yield. Purple crystals. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}$, $2 \mathrm{H}), 3.11(\mathrm{t}, J=3.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 93.3$ (s). ${ }^{19}$ F NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-62.5(\mathrm{~s})$. IR (KBr, $\left.v_{\mathrm{NN}}\right) 2009 \mathrm{~cm}^{-1}$, IR (THF, $\left.v_{\mathrm{NN}}\right) 2014 \mathrm{~cm}^{-1}$, IR (neat, ATR, v_{NN}) $2005 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{~F}_{6} \mathrm{P}_{2} \mathrm{Co}: \mathrm{C}, 55.49 ; \mathrm{H}, 6.55$; N, 4.04. Found: C, $55.51 ; \mathrm{H}, 6.42$; N, 3.27. The slightly low content of nitrogen is considered to be due to the labile property of the coordinated dinitrogen in 3d.

Reduction of Complex 3a with K.

A mixture of $\mathbf{3 a}(4.8 \mathrm{mg}, 10.0 \mu \mathrm{~mol})$ and potassium ($3.9 \mathrm{mg}, 100 \mu \mathrm{~mol}$) in THF (2 mL) was stirred at room temperature for 30 min under $\mathrm{N}_{2}(1 \mathrm{~atm})$. After the solvent was removed in vacuo, the dark green residue was analyzed by IR. The IR spectrum in KBr shows two absorptions at $2007 \mathrm{~cm}^{-1}$ and $1914 \mathrm{~cm}^{-1}$. The former is derived from 3a, while the latter can be assigned as $\left[\mathrm{Co}\left(\mathrm{N}_{2}\right)\left({ }^{\mathrm{H} P C P}\right)\right] \mathrm{K}$. During the operation of isolation of the desired complex, the decomposition of complex was observed.

Catalytic Silylamine Formation from Dinitrogen.

A typical experimental procedure for catalytic reduction of dinitrogen to silylamine using 3a is described below. In a 50 mL Schlenk flask were placed 3a (2.4 $\mathrm{mg}, 5.0 \mu \mathrm{~mol}), \mathrm{KC}_{8}(406 \mathrm{mg}, 3.00 \mathrm{mmol})$. After the addition of $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{Me}_{3} \mathrm{SiCl}(380 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$ to the Schlenk, the mixture was stirred at room temperature for 40 h under $\mathrm{N}_{2}(1 \mathrm{~atm})$. After dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$) was added to the mixture, the mixture was stirred at room temperature for 1 h . Aqueous solution of $\mathrm{KOH}(30 \mathrm{wt} \%, 5 \mathrm{~mL}$) was added to the reaction mixture, and the mixture was distilled into another dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$). The amount of ammonia was determined by the indophenol method. ${ }^{57}$

Separately, the amount of silylamine and byproducts were determined by GC analysis. A typical experimental procedure is described as below. In a 50 mL Schlenk flask were placed 3a($2.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$), $\mathrm{KC}_{8}(406 \mathrm{mg}, 3.00 \mathrm{mmol})$, and cyclododecane (30.0 mg 0.179 mmol) as an internal standard for GC analysis. After the addition of $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{Me}_{3} \mathrm{SiCl}(380 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$ to the Schlenk, the mixture was stirred at room temperature for 40 h under $\mathrm{N}_{2}(1 \mathrm{~atm})$. An aliquot of the mixture was filtered, and the filtrate was subjected to GC analysis and GC-MS analysis.

The investigations of the optimized reaction conditions were shown in Tables S1S3. Time profiles of reactions using $\mathbf{3 a}$ and $\mathbf{1}$ are shown in Figures S1-S2.

Table S1. Effect of reductant.

entry	reductant	NH_{3} (equiv./Co)
1	Na	16
2	KC_{8}	41

Table S2. Effect of solvent.

entry	solvent	NH_{3} (equiv./Co)
1	THF	41
2	hexane	23
3	$\mathrm{Et}_{2} \mathrm{O}$	44 ± 3^{a}

${ }^{a}$ Average of 4 runs.

Table S3. Effect of temperature.

[^0]

Figure S1. Time profile of the reaction using 3a as a catalyst.

Figure $\mathbf{S 2}$. Time profile of the reaction using $\mathbf{1}$ as a catalyst.
Catalytic Silylamine Formation with Larger Amounts of KC_{8} and $\mathrm{Me}_{3} \mathrm{SiCl}$.
A typical experimental procedure for catalytic reduction of dinitrogen to silylamine
using 3a is described below. In a 50 mL Schlenk flask were placed $\mathrm{KC}_{8}(406 \mathrm{mg}, 3.00$ $\mathrm{mmol}) . \mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL}), \mathrm{Me}_{3} \mathrm{SiCl}(380 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$, and a solution of $\mathbf{3 a}(1.0 \mathrm{mM}$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 500 \mu \mathrm{~L}, 0.50 \mu \mathrm{~mol}\right)$ were added, and the mixture was stirred at room temperature for 40 h under $\mathrm{N}_{2}(1 \mathrm{~atm})$. After dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$) was added to the mixture, the mixture was stirred at room temperature for 1 h . Aqueous solution of KOH ($30 \mathrm{wt} \%, 5 \mathrm{~mL}$) was added to the reaction mixture, and the mixture was distilled into another dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$). The amount of ammonia was determined by the indophenol method. ${ }^{57}$ The investigation of the effect of the amounts of KC_{8} and $\mathrm{Me}_{3} \mathrm{SiCl}$ was shown in Table S4. Screening of catalysts is shown in Table S5.

Table S4. Effect of amounts of KC_{8} and $\mathrm{Me}_{3} \mathrm{SiCl}$.

$\begin{aligned} & \mathrm{N}_{2}+ \\ & 1 \mathrm{~atm} \end{aligned}$	$+6$ Co	$\xrightarrow[\substack{\mathrm{Et}_{2} \mathrm{O} \\ \mathrm{rt}, \text { time }}]{\text { cat. } 3 \mathbf{a}} 2 \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{3}$		$\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} 2 \mathrm{NH}_{4}^{+}$
entry	X	time (h)	$\begin{gathered} \mathrm{NH}_{3} \\ \text { (equiv./Co) } \end{gathered}$	
1	600	40	$44 \pm 3^{\text {a }}$	
2	1800	40	166	
3	6000	40	$316 \pm 37^{\text {b }}$	
4	6000	96	$351 \pm 42^{\text {c }}$	

${ }^{\text {a }}$ Average of 4 runs.
${ }^{b}$ Average of 5 runs.
${ }^{c}$ Average of 3 runs.

Table S5. Catalytic reaction of dinitrogen into silylamine using $\mathbf{1}$ and 3a-3d.

entry	cat.	NH_{3} (equiv/Co)
1	3a	351 ± 42^{a}
2	3b	332 ± 23^{a}
3	3c	371 ± 2^{b}
4	3d	106 ± 4^{b}
5	$\mathbf{1}$	353 ± 41^{a}

${ }^{a}$ Average of 3 runs.
${ }^{b}$ Average of 2 runs.

Further addition of $\mathrm{Me}_{3} \mathrm{SiCl}_{1}$ and KC_{8} in Catalytic Silylamine Formation.

In a 50 mL Schlenk flask were placed 3a ($2.4 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$), $\mathrm{KC}_{8}(406 \mathrm{mg}, 3.00$ $\mathrm{mmol})$, and cyclododecane (30.0 mg 0.179 mmol) as an internal standard for GC analysis. After the addition of $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$ and $\mathrm{Me}_{3} \mathrm{SiCl}(380 \mu \mathrm{~L}, 3.00 \mathrm{mmol})$ to the Schlenk, the mixture was stirred at room temperature for 40 h under N_{2} (1 atm). An aliquot of the mixture was filtered, and the filtrate was subjected to GC analysis to give 43 equiv of $\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{3}$ based on the cobalt atom. After a further addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ ($380 \mu \mathrm{~L}, 3.00 \mathrm{mmol}$) and suspension of $\mathrm{KC}_{8}(406 \mathrm{mg}, 3.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{~mL})$, the resulted suspension was stirred at room temperature under $\mathrm{N}_{2}(1 \mathrm{~atm})$ for another 40 h . After dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$) was added to the mixture, the mixture was stirred at room temperature for 1 h . Aqueous solution of $\mathrm{KOH}(30 \mathrm{wt} \%, 5 \mathrm{~mL})$ was added to the reaction mixture, and the mixture was distilled into another dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution ($0.5 \mathrm{M}, 10 \mathrm{~mL}$). The amount of ammonia was determined by the indophenol method. ${ }^{57}$ In total, 44 equiv of NH_{3} was obtained based on the cobalt atom (Figure S3).

Figure S3. Further addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ and KC_{8} in catalytic silylamine formation

X-ray Crystallography.

Crystallographic data of 2a, 2b, 2d, and 3a-3d are summarized in Tables S6-S9. ORTEP drawings of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 d}$, and $\mathbf{3 a - 3 d}$ are shown in Figures S4-S10. Diffraction data for 2a, 2b, 2d, and 3a-3d were collected for the 2θ range of 4° to 60° at $-180^{\circ} \mathrm{C}$ on a Rigaku XtaLAB Synergy imaging plate area detector with multi-layer mirror monochromated $\mathrm{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation with VariMax optics. Intensity data were corrected for Lorentz and polarization effects and for empirical absorptions (CrysAlisPro ${ }^{\text {S8 }}$), while structure solutions and refinements were carried out by using CrystalStructure package. ${ }^{59}$ The positions of non-hydrogen atoms were determined by direct methods (SHELXS version 2013/1 ${ }^{\text {S10 }}$ for 2b, 3a, and 3b; SHELXT version $2014 / 5^{\text {S11 }}$ for 2a, 2d, 3c, and 3d) and subsequent Fourier syntheses (SHELXL ${ }^{\text {S12 }}$ version 2016/6) and were refined on $F_{o}{ }^{2}$ using all unique reflections by full-matrix leastsquares with anisotropic thermal parameters. All the hydrogen atoms were placed at the calculated positions with fixed isotropic parameters.

In addition, a unit cell of $\mathbf{2 a}$ contains solvent accessible voids of $738 \AA^{3}$. The difference Fourier maps have suggested that the voids of the crystal were occupied by hexane molecules, which could not be located appropriately because of heavy disorders. Thus, the electron density associated with the solvent molecules was removed by the SQUEEZE routine of PLATONS ${ }^{513}$ for crystal data of 2a. Crystals of 2a are efflorescent, loosing hexanes when dried in vacuo. Crystal of 3a contains an inverted structure as a disorder, which was solved as merohedral twins.

Table S6. X-ray crystallographic data for 2a, and 2b.

Compound	2a	2b
chemical formula	$\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{BrCoP}_{2}$	$\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{BrCoOP}{ }_{2}$
CCDC number	2097316	2122587
formula weight	532.39	562.41
dimensions of crystals, mm^{3}	$0.552 \times 0.162 \times 0.070$	$0.466 \times 0.350 \times 0.347$
crystal color, habit	yellow, block	orange, block
crystal system	hexagonal	monoclinic
space group	P6122 (\#178)	$P 2_{1} / \mathrm{n}$ (\#14)
a, \AA	16.3648(5)	15.4207(3)
b, \AA	16.3648(5)	11.4009(2)
c, \AA	19.3030(8)	31.0696(6)
α, deg	90	90
β, deg	90	92.0009(19)
$\gamma, \operatorname{deg}$	120	90
V, \AA^{3}	4476.9	5459.01(18)
Z	8	8
$\rho_{\text {calcd }}$, g. cm^{-3}	1.580	1.369
$F(000)$	2232.00	2360.00
μ, cm^{-1}	27.098	22.289
trans. factors range	0.287-1.000	0.167-0.461
no. reflections measured	41385	45917
no. unique reflections	$4139\left(R_{\text {int }}=0.0721\right)$	$13394\left(R_{\text {int }}=0.0891\right)$
no. parameters refined	135	567
$R 1(I>2 \sigma(I))^{a}$	0.0353	0.0633
$w R 2$ (all data) ${ }^{\text {b }}$	0.0877	0.1457
GOF^{c}	1.037	1.000
flack parameter	-0.018(5)	
max diff peak/hole, e \AA^{-3}	+0.79/-0.27	+1.45/-1.21
$\begin{aligned} & { }^{a} R 1=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| F_{\mathrm{o}} \mid .{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}, w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(q P)^{2}+r P\right], \\ & \mathrm{P}=\left(\operatorname{Max}\left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right) / 3[q=0.0556(\mathbf{2 a}), 0(\mathbf{2 b}) ; r=0(\mathbf{2 a}), 36.9(\mathbf{2 b})] \cdot{ }^{c} \mathrm{GOF}= \\ & {\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{params}}\right)\right]^{1 / 2} .} \end{aligned}$		

Table S7. X-ray crystallographic data for 2d and 3a.

compound	2d	3a
chemical formula	$\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{BrCoF}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{CoP}_{2}$
CCDC number	2122588	2097317
formula weight	744.48	480.50
dimensions of crystals, mm^{3}	$0.202 \times 0.117 \times 0.076$	$0.400 \times 0.300 \times 0.100$
crystal color, habit	yellow, block	purple, block
crystal system	monoclinic	monoclinic
space group	$P 2_{1} / \mathrm{c}$ (\#14)	$P 2_{1} / \mathrm{c}$ (\#14)
$a, ~ \AA{ }^{\text {a }}$	7.7639(5)	45.7720(5)
b, \AA	14.4515(8)	14.95170(13)
$c, ~ \AA$	29.5341(17)	$15.22530(14)$
α, deg	90	90
β, deg	96.567(5)	91.4774(9)
$\gamma, \operatorname{deg}$	90	90
V, \AA^{3}	3292.0(3)	10416.26(17)
Z	4	16
$\rho_{\text {calcd }}$ g. $\cdot \mathrm{cm}^{-3}$	1.502	1.226
$F(000)$	1532.00	4128.00
μ, cm^{-1}	18.914	7.947
trans. factors range	0.746-0.866	0.620-0.924
no. reflections measured	28358	272797
no. unique reflections	$8345\left(R_{\text {int }}=0.1481\right)$	28620 ($R_{\text {int }}=0.0008$)
no. parameters refined	391	1094
$R 1(I>2 \sigma(I))^{a}$	0.0854	0.0891
$w R 2$ (all data) ${ }^{b}$	0.1766	0.2153
$\mathrm{GOF}^{\text {c }}$	1.015	1.075
max diff peak/hole, e \AA^{-3}	+0.96/-0.84	+2.13/-1.47
$\begin{aligned} & \overline{{ }^{a} R 1=\Sigma\| \| F_{0}\left\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| F_{\mathrm{o}} \mid .}{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}, w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(q P)^{2}+r P\right], \\ & \mathrm{P}=\left(\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3[q=0.0674(\mathbf{2 d}), 0(\mathbf{3 a}) ; r=3.1383(\mathbf{2 d}), 160(\mathbf{3 a})] .{ }^{c} \mathrm{GOF} \\ & =\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\text {params }}\right)\right]^{1 / 2} . \end{aligned}$		

Table S8. X-ray crystallographic data for 3a and 3c.

compound	3b	3c	
chemical formula	$\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{CoOP}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{CoP}_{2}$	
CCDC number	2122589	2122590	
formula weight	510.52	536.61	
dimensions of crystals, mm^{3}	$0.514 \times 0.086 \times 0.054$	$0.507 \times 0.379 \times 0.260$	
crystal color, habit	purple, needle	purple, block	
crystal system	monoclinic	monoclinic	
space group	$P 2_{1 / \mathrm{n}}(\# 14)$	$P 2_{1} / \mathrm{n}$ (\#14)	
$a, ~ \AA{ }^{\text {a }}$	15.2809(5)	15.1643(6)	
b, \AA	11.3641(3)	11.6686(4)	
c, \AA	31.2253(9)	17.1444(6)	
α, deg	90	90	
β, deg	91.929(3)	102.770(4)	
$\gamma, \operatorname{deg}$	90	90	
V, \AA^{3}	5419.3(3)	2958.60(19)	
Z	8	4	
$\rho_{\text {calcd }}$, $\mathrm{g} \cdot \mathrm{cm}^{-3}$	1.251	1.205	
$F(000)$	2192.00	1160.00	
μ, cm^{-1}	7.704	7.064	
trans. factors range	0.124-1.000	0.126-0.832	
no. reflections measured	49088	21907	
no. unique reflections	$14708\left(R_{\text {int }}=0.0956\right)$	$7856\left(R_{\text {int }}=0.1124\right)$	
no. parameters refined	585	313	
$R 1(I>2 \sigma(I))^{a}$	0.0680	0.0775	
$w R 2$ (all data) ${ }^{b}$	0.1743	0.2098	
$\mathrm{GOF}^{\text {c }}$	1.001	1.009	
max diff peak/hole, e \AA^{-3}	+1.48/-1.01	+1.39/-0.65	
$\begin{aligned} & \overline{{ }^{a}} R 1=\Sigma \\|\left\|F_{\mathrm{o}}-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| F_{\mathrm{o}} \mid \cdot{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}, w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(q P)^{2}+r P\right], \\ & \mathrm{P}=\left(\operatorname{Max}\left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3[q=0.0845(\mathbf{3 b}), 0.1024(\mathbf{3 c}) ; r=0(\mathbf{3 b}), 3.0906(\mathbf{3 c})] .{ }^{c} \mathrm{GOF} \\ & =\left[\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{params}}\right)\right]^{1 / 2} . \end{aligned}$			

Table S9. X-ray crystallographic data for 3d.

compound	3d
chemical formula	$\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{CoF}_{6} \mathrm{P}_{2}$
CCDC number	2122591
formula weight	692.59
dimensions of crystals, mm^{3}	$0.182 \times 0.134 \times 0.105$
crystal color, habit	purple, block
crystal system	monoclinic
space group	$P 2_{1} / \mathrm{c}$ (\#14)
a, \AA	7.7722(3)
b, \AA	14.4666(6)
$c, ~ \AA$	29.5984(13)
α, deg	90
β, deg	96.166(4)
γ, deg	90
V, \AA^{3}	3308.7(2)
Z	4
$\rho_{\text {calcd, }} \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.390
$F(000)$	1448.00
μ, cm^{-1}	6.740
trans. factors range	0.845-0.932
no. reflections measured	23553
no. unique reflections	$8300\left(R_{\text {int }}=0.0366\right)$
no. parameters refined	400
$R 1(I>2 \sigma(I))^{a}$	0.0475
$w R 2$ (all data) ${ }^{b}$	0.1188
$\mathrm{GOF}^{\text {c }}$	1.015
max diff peak/hole, e \AA^{-3}	+1.10/-0.94
$\begin{aligned} & \overline{{ }^{a} R 1} R 1=\Sigma\| \| F_{\mathrm{o}}-\left\|F_{\mathrm{c}}\right\| / \Sigma\left\|F_{\mathrm{o}}\right\| \cdot{ }^{b} w R 2=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}, w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(q P)^{2}+\right. \\ & r P], \mathrm{P}=\left(\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right) / 3[q=0.0476 ; r=5.3030] .{ }^{c} \mathrm{GOF}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} /\left(N_{\mathrm{o}}-\right.\right. \\ & \left.\left.N_{\text {params }}\right)\right]^{1 / 2} . \end{aligned}$	

Figure S4. Molecular structure of 2a. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (\AA) and angles (deg): $\operatorname{Co}(1)-\mathrm{P}(1)$ 2.2408(7), $\mathrm{Co}(1)-\mathrm{C}(1)$ 1.957(3), $\mathrm{Co}(1)-$ $\operatorname{Br}(1) 2.4107(6) ; \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}\left(1^{*}\right)$ 166.78(4), $\mathrm{Br}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 180.00(5).

Figure S5. Molecular structure of one of the two crystallographically independent molecules 2b. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (A) and angles (deg): $\mathrm{Co}(1)-\mathrm{P}(1) \quad 2.2376(13), \mathrm{Co}(1)-\mathrm{P}(2)$ 2.2436(13), $\mathrm{Co}(1)-\mathrm{C}(1) 1.964(5), \mathrm{Co}(1)-\mathrm{Br}(1)$ 2.3952(8); $\mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2) 165.54(5), \operatorname{Br}(1)-\mathrm{Co}(1)-\mathrm{C}(1) 175.96(13) ; \mathrm{Co}(2)-\mathrm{P}(3)$ 2.2285(12), $\mathrm{Co}(2)-\mathrm{P}(4) 2.2344(13), \mathrm{Co}(2)-\mathrm{C}(26) 1.957(5), \mathrm{Co}(2)-\mathrm{Br}(2) 2.3967(8)$; $\mathrm{P}(3)-\mathrm{Co}(2)-\mathrm{P}(4) 168.61(5), \mathrm{Br}(2)-\mathrm{Co}(2)-\mathrm{C}(26)$ 179.14(13).

Figure S6. Molecular structure of 2d. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (\AA) and angles (deg): $\mathrm{Co}(1)-\mathrm{P}(1) 2.2446(18), \mathrm{Co}(1)-\mathrm{P}(2) 2.2369(18), \mathrm{Co}(1)-$ $\mathrm{C}(1) 1.957(6), \mathrm{Co}(1)-\mathrm{Br}(1) 2.4022(10) ; \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2) 165.43(7), \mathrm{Br}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 173.51(18).

Figure S7. Molecular structure of one of the four crystallographically independent molecules 3a. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (\AA) and angles (deg): $\mathrm{Co}(1)-\mathrm{P}(1) 2.1863(17), \mathrm{Co}(1)-\mathrm{P}(2) 2.1817(17), \mathrm{Co}(1)-\mathrm{C}(1) 1.959(6), \mathrm{Co}(1)-\mathrm{N}(1)$ $1.753(6), \mathrm{N}(1)-\mathrm{N}(2) 1.115(9) ; \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$ 167.36(7), $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 174.1(3), $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{N}(2) 175.6(6) ; \mathrm{Co}(2)-\mathrm{P}(3) \quad 2.1897(17), \mathrm{Co}(2)-\mathrm{P}(4)$ 2.1928(19), Co(2)$\mathrm{C}(25) 1.955(6), \mathrm{Co}(2)-\mathrm{N}(3) 1.760(5), \mathrm{N}(3)-\mathrm{N}(4) 1.125(8) ; \mathrm{P}(3)-\mathrm{Co}(2)-\mathrm{P}(4) 166.57(7)$, $\mathrm{N}(3)-\mathrm{Co}(2)-\mathrm{C}(25) \quad 177.3(2), \mathrm{Co}(2)-\mathrm{N}(3)-\mathrm{N}(4) 178.8(6) ; \mathrm{Co}(3)-\mathrm{P}(5)$ 2.1823(19), $\mathrm{Co}(3)-\mathrm{P}(6) \quad 2.186(2), \quad \mathrm{Co}(3)-\mathrm{C}(49) \quad 1.966(6), \quad \mathrm{Co}(3)-\mathrm{N}(5) \quad 1.759(6), \mathrm{N}(5)-\mathrm{N}(6)$ 1.138 (9); $\mathrm{P}(5)-\mathrm{Co}(3)-\mathrm{P}(6) 168.36(8), \mathrm{N}(5)-\mathrm{Co}(3)-\mathrm{C}(49)$ 178.6(3), $\mathrm{Co}(3)-\mathrm{N}(5)-\mathrm{N}(6)$ 179.2(6); $\operatorname{Co}(4)-\mathrm{P}(7)$ 2.1793(17), $\mathrm{Co}(4)-\mathrm{P}(8) 2.1876(18), \mathrm{Co}(4)-\mathrm{C}(73) 1.954(6)$, $\mathrm{Co}(4)-\mathrm{N}(7) 1.752(6), \mathrm{N}(7)-\mathrm{N}(8) 1.128(9) ; \mathrm{P}(7)-\mathrm{Co}(4)-\mathrm{P}(8) 167.82(7), \mathrm{N}(7)-\mathrm{Co}(4)-$ $\mathrm{C}(73) 173.2(3), \mathrm{Co}(4)-\mathrm{N}(7)-\mathrm{N}(8) 175.5(6)$.

Figure S8. Molecular structure of one of the two crystallographically independent molecules 3b. Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (A) and angles (deg): $\mathrm{Co}(1)-\mathrm{P}(1) \quad 2.1866(10), \mathrm{Co}(1)-\mathrm{P}(2) 2.1878(9), \mathrm{Co}(1)-\mathrm{C}(1) 1.961(3), \mathrm{Co}(1)-\mathrm{N}(1)$ $1.755(3) ; \quad \mathrm{N}(1)-\mathrm{N}(2) \quad 1.106(5) ; \quad \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2) \quad 167.97(4), \quad \mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 178.57(14), $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ 179.3(3); $\mathrm{Co}(2)-\mathrm{P}(3) 2.1941$ (10), $\mathrm{Co}(2)-\mathrm{P}(4) 2.1995(9)$, $\mathrm{Co}(2)-\mathrm{C}(26) 1.950(3), \mathrm{Co}(2)-\mathrm{N}(3) 1.756(3) ; \mathrm{N}(3)-\mathrm{N}(4) 1.112(5) ; \mathrm{P}(3)-\mathrm{Co}(2)-\mathrm{P}(4)$ 164.03(4), $\mathrm{N}(3)-\mathrm{Co}(2)-\mathrm{C}(26)$ 173.74(14), $\mathrm{Co}(2)-\mathrm{N}(3)-\mathrm{N}(4) 177.3(3)$.

Figure S9. Molecular structure of 3c. Thermal ellipsoids are shown at the 50\% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (\AA) and angles (deg): $\operatorname{Co}(1)-\mathrm{P}(1) 2.1808(10), \mathrm{Co}(1)-\mathrm{P}(2) 2.1792(10), \mathrm{Co}(1)-$ $\mathrm{C}(1) 1.958(4), \mathrm{Co}(1)-\mathrm{N}(1) 1.751(4) ; \mathrm{N}(1)-\mathrm{N}(2) 1.130(5) ; \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$ 168.21(5), $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 177.73(15), $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{N}(2) 178.2(3)$.

Figure S10. Molecular structure of 3d. Thermal ellipsoids are shown at the 50\% probability level. Hydrogen atoms are omitted for clarity. Selected interatomic distances (\AA) and angles (deg): $\operatorname{Co}(1)-\mathrm{P}(1)$ 2.2015(8), $\operatorname{Co}(1)-\mathrm{P}(2)$ 2.1952(8), $\mathrm{Co}(1)-$ $\mathrm{C}(1) 1.960(2), \mathrm{Co}(1)-\mathrm{N}(1) 1.767(2), \mathrm{N}(1)-\mathrm{N}(2) 1.089(3) ; \mathrm{P}(1)-\mathrm{Co}(1)-\mathrm{P}(2)$ 164.24(3), $\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{C}(1)$ 174.27(10), $\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ 177.0(2).

Computational Details.

Density-functional-theory (DFT) calculations were performed with the Gaussian 09 program (Rev. E01). ${ }^{\text {S14 }}$ All geometry optimizations were carried out with the B3LYP functional with the Grimme's dispersion correction (B3LYP-D3). ${ }^{\text {S15-19 }}$ We employed the SDD (Stuttgart/Dresden pseudopotentials) basis set ${ }^{\text {S20,21 }}$ for Co and the $6-31 \mathrm{G}(\mathrm{d})$ basis set ${ }^{522-25}$ for the other atoms, respectively. Solvation effects of THF $(\varepsilon=7.4257)$ were taken into account by using the polarizable continuum model $(\mathrm{PCM})^{\mathrm{S} 26}$ for all calculations. Optimized structures were confirmed to have no imaginary frequencies by vibrational analysis. Figure S11 presents optimized structures of 3a and its silylated complexes I-III, $\left[\mathrm{Co}\left(\mathrm{NN}\left(\mathrm{SiMe}_{3}\right)_{x}\right)\left({ }^{\mathrm{H}} \mathrm{PCP}\right)\right](x=1-3)$. Figure S 12 presents optimized structures of 1. To discuss the energetics, single-point energy calculations were performed for all optimized structures at the B3LYP-D3/def2-TZVP ${ }^{\text {S27,28 }}$ level of theory. Free energy changes at $298 \mathrm{~K}\left(\Delta G_{298}\right)$ for the silylation are calculated based on reaction $\left[\mathrm{Co}\left(\mathrm{NN}\left(\mathrm{SiMe}_{3}\right)_{x-1}\right)\left({ }^{\mathrm{H} P C P}\right)\right]+\bullet \mathrm{SiMe}_{3} \rightarrow\left[\mathrm{Co}\left(\mathrm{NN}\left(\mathrm{SiMe}_{3}\right)_{x}\right)\left({ }^{\mathrm{H} P C P}\right)\right](x=1-3)$, where • SiMe_{3} represents a trimethylsilyl radical. Detailed data on SCF energies, thermal energy corrections at 298 K , SCF energies in THF are summarized in Table S10.

3a
closed-shell singlet

II ($x=2$)
closed-shell singlet

III $(x=3)$
doublet

Figure S11. Optimized structure and selected geometric parameters of $\left[\mathrm{Co}\left(\mathrm{N}_{2}\right)\left({ }^{H} \mathrm{PCP}\right)\right]$ 3a and its silylated complexes $\left[\mathrm{Co}\left(\mathrm{NN}\left(\mathrm{SiMe}_{3}\right)_{x}\right)\left({ }^{\mathrm{H} P C P}\right)\right](x=1-3)$. Bond distances are presented in \AA. Hydrogen atoms are omitted for clarity. The Mulliken spin densities assigned to the Co center and two N atoms are given in italics. The Mayer bond orders are presented in parenthesis.

Figure S12. Optimized structure and selected geometric parameters of $\left[\mathrm{Co}\left(\mathrm{N}_{2}\right)(\mathrm{PNP})\right]$

1. Bond distances are presented in \AA. Hydrogen atoms are omitted for clarity. The Mayer bond orders are presented in parenthesis.

Table S10. SCF energies (in vacuo), thermal energy corrections at 298 K , SCF enegies in THF.

Species	SCF energy /hartree	Thermal corrections /hartree	SCF energy (THF) /hartree
$\mathbf{3 a}$	-1878.67001596	0.571365	-3116.12441083
$\mathbf{1}$	-1856.62487600	0.554889	-3094.07385705
I	-2287.92085942	0.674142	-3525.45227131
II	-2697.19367511	0.785825	-3934.81170635
III	-3106.48642047	0.887419	-4344.18338624

NMR and IR Spectra.
4, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

4, ${ }^{19}$ F NMR ($\left.\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$

${ }^{\mathrm{H} P C P}-\mathrm{Br},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$

${ }^{H} \mathrm{PCP}-\mathrm{Br},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$

${ }^{H} \mathrm{PCP}-\mathrm{Br},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right)$

${ }^{\mathrm{MeO}} \mathrm{PCP}-\mathrm{Br},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$

${ }^{\mathrm{MeO}} \mathrm{PCP}-\mathrm{Br},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$

${ }^{\mathrm{MeO}} \mathrm{PCP}-\mathrm{Br},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right)$

${ }^{\text {tBuPCP }}$ - $\mathrm{Br},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$

${ }^{t \mathrm{Bu}} \mathrm{PCP}-\mathrm{Br},{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$

${ }^{t \mathrm{Bu}} \mathrm{PCP}-\mathrm{Br},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right)$

${ }^{\text {ArFPCP-Br, }}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right)$

${ }^{\mathrm{ArF}} \mathrm{PCP}-\mathrm{Br},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right)$

${ }^{\text {ArF }} \mathrm{PCP}-\mathrm{Br},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right)$

${ }^{\text {ArF }} \mathrm{PCP}-\mathrm{Br},{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 376 \mathrm{MHz}\right)$

3a, IR (KBr)

3a, IR (THF)

3a, IR (ATR)

Reduction of $\mathbf{3 a}$ with 10 equiv of $\mathrm{K}, \mathrm{IR}(\mathrm{KBr})$

3b, IR (KBr)

3b, IR (THF)

3b, IR (ATR)

3c, $\operatorname{IR}(\mathrm{KBr})$

3c, IR (THF)

3c, IR (ATR)

3d, IR (KBr)

3d, IR (THF)

3d, IR (ATR)

References.

S1 (a) Evans, D. F. J. Chem. Soc. 1959, 2003. (b) Live, D. H.; Chan, S. I. Anal. Chem. 1970, 42, 791. (c) Bain, G. A.; Berry, J. F. J. Chem. Educ. 2008, 85, 532.

S2 Fan, H. Sun, H.; Peng, X. Chem. Eur. J. 2018, 24, 7671.
S3 Tashiro, M.; Yamato, T. J. Org. Chem. 1985, 50, 2939.
S4 Zhang, Z.; Edkins, R. M.; Nitsch, J.; Fucke, K.; Eichhorn, A.; Steffen, A.; Wang, Y., Marder, T. B. Chem. Eur. J. 2015, 21, 177.

S5 Meiners, J.; Friedrich, A.; Herdtweck, E.; Schneider, S. Organometallics 2009, 28, 21, 6331.

S6 Weitz, I. S.; Rabinovitz, M. J. Chem. Soc., Perkin Trans. 1993, 117.
S7 Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
S8 CrysAlisPro: Data Collection and Processing Software, Rigaku Corporation: Tokyo, Japan, 2015.

S9 CrystalStructure 4.3: Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000-2018.
S10 Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
S11 Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Adv. 2014, C1437, 70.
S12 Sheldrick, G. M. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3.
S13 Spek, A. L. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2015, C71, 9.
S14 Gaussian 09, Revision E.01: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc.: Wallingford CT, 2013.

S15 Becke, A. D. Phys. Rev. A 1988, 38, 3098.
S16 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

S17 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
S18 Vosko, S. H.; Wilk, L.; Nusair, M. J. Can. J. Phys. 1980, 58, 1200.
S19 Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Phys. Chem. 2010, 132, 154104.
S20 Dolg, M.; Wedig, U.; Stoll, H.; Preuß, H. J. Chem. Phys. 1987, 86, 866.
S21 Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta.
1990, 77, 123.
S22 Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
S23 Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
S24 Hariharan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 28, 213.
S25 Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.;
DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
S26 Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
S27 Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
S28 Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057.

[^0]: ${ }^{a}$ Average of 4 runs.

