# **Supporting Information**

# CoFe<sub>2</sub>O<sub>4</sub> Hollow Spheres Decorated Three-Dimensional rGO Sponge for Highly Efficient Electrochemical Charge Storage Device

Debika Gogoi,<sup>a</sup> Manash R. Das,<sup>bc</sup> Narendra Nath Ghosh<sup>a</sup>\*

<sup>a</sup> Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science,
Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India.

<sup>b</sup> Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.

<sup>c</sup> Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

\*Corresponding author. Tel. /fax: +91 832 2580318/25570339. \*E-mail address: naren70@yahoo.com (N. N. Ghosh) Author's email addresses: <u>p20180429@goa.bits-pilani.ac.in</u> (Debika Gogoi), <u>mnshrdas@yahoo.com (Manash R. Das)</u>

#### **S1.** Materials Synthesis

**S1.1.** Chemicals used. Cobalt chloride hexahydrate (CoCl<sub>2</sub>.6H<sub>2</sub>O), Ferric chloride hexahydrate (FeCl<sub>3</sub>.6H<sub>2</sub>O), and ethylene glycol were purchased from Merck, India. Polyethylene glycol (PEG-2000), Sodium hydroxide (NaOH), Hydrazine hydrate, Sulphuric acid (H<sub>2</sub>SO<sub>4</sub>), Potassium Hydroxide (KOH), Methanol (HPLC grade) and ethanol were purchased from Fisher Scientific. Graphite powder (mean particle size of <20 mm), Polyvinylidene difluoride (PVDF), acetylene black, N-methyl-2-pyrrolidinone (NMP) and polyvinyl alcohol (PVA) were purchased from Sigma-Aldrich. All the chemicals were used without further purification. Deionized water was used throughout the experiment.

#### S1.2. Synthesis of Graphene oxide (GO)

GO was synthesized by using modified Hummer's method. In the standard synthetic process, 0.6 g NaNO<sub>3</sub> was added to 35 mL conc. H<sub>2</sub>SO<sub>4</sub> taken in a beaker kept inside an ice-bath. Then 1.3 g of graphite powders were added to the mixture and stirred for 8 h by maintaining the temperature below  $5^{\circ}$ C. To this mixture, 3.8 g of KMnO<sub>4</sub> was added slowly and the temperature of the mixture was raised to ~35°C and stirred for 8-10 h. Then 180 mL of distilled water was added to the mixture and the temperature was raised to 98°C and maintained for ~1 h. After that 2 mL of 30% H<sub>2</sub>O<sub>2</sub> solution was added to the mixture and stirred for 1 h. The obtained product (GO) was washed with 10% HCl solution, distilled water and then dried at  $60^{\circ}$ C for 10 h.

### S1.3. Synthesis of reduced graphene oxide (rGO) with nanosheet-like structure

1 g of GO was dispersed in 200 mL distilled water and then 2 M NaOH was added drop by drop to this mixture till pH reaches ~12. The mixture was stirred for ~30 min and then 56 mL of hydrazine hydrate was added and refluxed for 4 h. The black ppt. obtained was washed with distilled water till pH of the mixture reaches ~7 followed by washing with ethanol and finally dried at  $60^{\circ}$ C for 10 h.

#### S1.4. Preparation of GO sponge (GO<sub>sp</sub>) and rGO sponge (rGO<sub>sp</sub>)

In a beaker, GO was well-dispersed in minimum amount of water and then kept in  $-80^{\circ}$ C for overnight followed by lyophilisation for 72 h. The obtained GO sponge was the kept in vacuum oven at  $60^{\circ}$ C for 10h. The prepared GO<sub>sp</sub> was placed in an alumina crucible and 6

mL hydrazine hydrate and then the crucible was covered with a lid. Then it was heated for 3 h at  $150^{\circ}$ C to obtain rGO<sub>sp</sub>.

#### S1.5. Synthesis of CoFe<sub>2</sub>O<sub>4</sub> hollow spheres (CF<sub>hs</sub>)

In a beaker CoCl<sub>2.6</sub>H<sub>2</sub>O and FeCl<sub>3.6</sub>H<sub>2</sub>O (molar ratio=1:2) were dissolved in 80 ml of ethylene glycol. To this mixture sodium acetate and poly ethylene glycol-2000 (PEG-2000) (weight ratio 1:3.6) were added and then stirred vigorously until NaAc and PEG-2000 gets completely dissolved. The mixture was then transferred to a stainless steel autoclave and heated at  $200^{\circ}$ C for 22 h. The obtained ppt. was separated from the reaction mixture by using an external magnet followed by washing with distilled water and ethanol and then dried at  $60^{\circ}$ C for 10 h.

#### S1.6. Synthesis of CF<sub>hs</sub>-rGO<sub>sp</sub> nanocomposites

 $CF_{hs}$ -rGO<sub>sp</sub> nanocomposites were prepared by employing a simple wet-impregnation method. In a round bottom flask, desired amount of  $CF_{hs}$  and rGO<sub>sp</sub> were dispersed in methanol and the refluxed for 3 h and then the obtained product was separated from the solvent by using an external magnet and then dried at 60°C for 10 h, for further use.

S2. Characterization and Instrumentation. For this work, we have used an Alpha 1-2 LD plus freeze dryer (Martin Christ, Germany) to prepare the GO sponge. Then, characterization of the synthesized materials were carried out by using the following characterization techniques: (i) X-ray diffraction (XRD) patterns were recorded using a powder X-ray diffractometer (Mini Flex II, Rigaku, Japan) with Cu K $\alpha$  ( $\lambda = 0.15405$  nm) radiation at a scanning speed of 3 ° min<sup>-1</sup>, (ii) Field emission scanning electron microscopy (FESEM) images of samples were obtained using Quanta 250 FEG (FEI), (iii) High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) images were obtained by JEM-2100 (JEOL), 200 kV equipped with LaB<sub>6</sub> filament, (iv) Energy dispersive X-ray spectra (EDS) and elemental mapping of the synthesized material was obtained from X-Max (Oxford Instruments) attached to a JEOL JEM 2100 TEM operated at 200 kV, (v) Fourier Transform Infrared spectra (FTIR) were recorded using Spectrum two FT-IR spectrometer (Perkin Elmer), (vi) Raman spectra were recorded on a Horiba via Raman microscope with a 633 nm laser excitation, (vii) XPS measurements were carried out by using a Thermo-Scientific ESCALAB Xi<sup>+</sup> spectrometer having a monochromatic Al Ka X-ray source (1486.6 eV) and a spherical energy analyzer that operates in the CAE (constant analyzer energy) mode. (vii) Multiple point BET surface area was determined by a Surface area and porosimetry analyzer (Micromeritics Tristar 3000, USA).

IVIUMSTAT (10V/5A/8MHz) workstation was used to perform the electrochemical studies.

#### **S3. Electrode preparation:**

To fabricate the working electrode, first, a viscous paste of 80 wt % active electrode material with 10 wt % poly(vinylidene fluoride) in N-methyl-2-pyrrolidinone and 10 wt % acetylene black was prepared and then this paste was coated on the nickel foam with deimensions (1.5 cm  $\times$  1.5 cm) and dried at 80 °C for 24 h under vacuum to remove the residual solvent. Mass loading on the Ni foam was ~2 mg.

Only one side of the Ni foam was coated in case of the working electrode for asymmetric cell.

#### S4. Fabrication of an asymmetric supercapacitor (ASC) cell.

The voltammetric charges (Q) were calculated based on the following equations:

$$\mathbf{Q} = \mathbf{C}_{\text{single}} \times \Delta \mathbf{V} \times \mathbf{m} \tag{S1}$$

where m is the mass of the electrode (g),  $\Delta V$  is the potential window (V), and C<sub>single</sub> is the specific capacitance (F g<sup>-1</sup>) of each electrode measured in three-electrode setup (calculated from cyclic voltammograms at a scan rate of 10 mV s<sup>-1</sup>).

Considering the charge/mass ratio for both anode and cathode, balancing of charge was carried out by substituting above equation as:

$$\frac{q_+}{q_-} = \frac{m_+}{m_-} = \frac{c_{sp}^- \times \Delta V^-}{c_{sp}^+ \times \Delta V^+}$$
(S2)

Where  $C_{sp^-}$  is the C<sub>s</sub> value obtained for the anode material in the potential window  $\Delta V^-$ ,  $C_{sp^+}$  is the C<sub>s</sub> value obtained for the cathode material in the potential window  $\Delta V^+$ .

#### **S5.** Fabrication of the flexible supercapacitor device.

30 mL distilled water was taken in a beaker and heated on a hotplate. 1.6 g KOH was added to the boiling water followed by the addition of 0.42 g K<sub>4</sub>[Fe(CN)<sub>6</sub>]. Then 3.2 g of PVA was

added gradually to the reaction mixture and stirred till a thick gel was formed. This gel was then pasted between the positive and negative electrode and allowed to cool and dried at room temperature for overnight.

#### **S6. Equations used:**

The values of specific capacitance  $(C_s)$  for the three-electrode cell and the two-electrode asymmetric cells were calculated by using the following equation:

$$C_s = \frac{i\Delta t}{m\Delta V} \tag{S3}$$

Where, i represents the charge or discharge current in Ampere (A),  $\Delta t$  is the discharge time in seconds (s), m represents the mass of supercapacitive material in gram (g) and  $\Delta V$  is the applied potential window.

For the two-electrode asymmetric cell, the energy density (E), the power density (P), and the Coulombic efficiency ( $\eta$ ) were determined by using the following equations:

$$E = \frac{C_s \times (\Delta V)^2}{2} \tag{S4}$$

$$P = \frac{E}{\Delta t} \tag{S5}$$

$$\eta(\%) = t_d / t_c \times 100 \tag{S6}$$

where,  $t_d$  is the discharging time,  $t_c$  is the charging time.

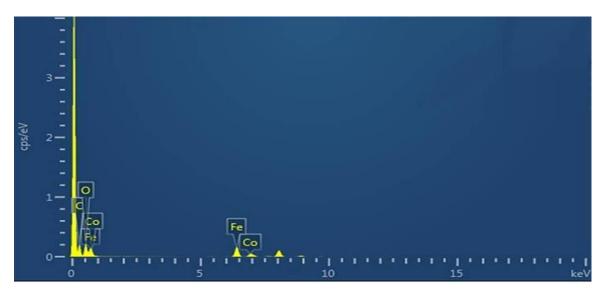



Figure S1. EDS spectra of 80CFhs-20rGOsp

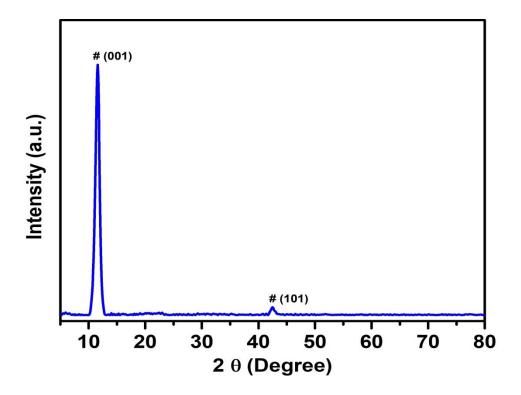



Figure S2. XRD of Graphene oxide (GO)

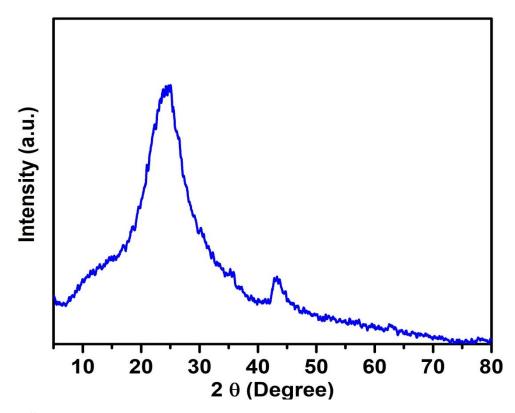



Figure S3. XRD of rGO nanosheets

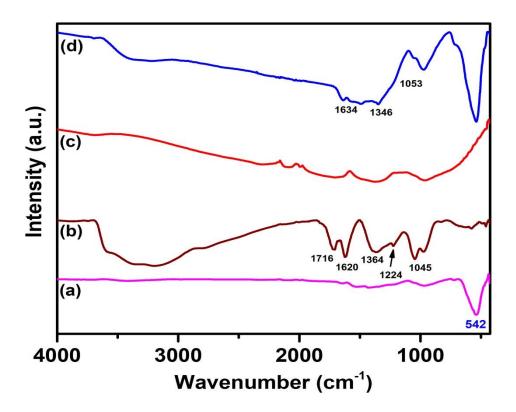



Figure S4. FTIR spectra of (a) CFhs, (b) GOsp, (c) rGOsp, and (d) 80CFhs-20rGOsp

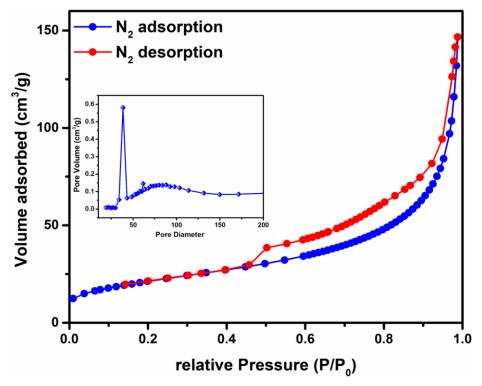



Figure S5.  $N_2$  adsorption-desorption isotherm, inset: pore size distribution of  $80CF_{hs}$ -20rGO<sub>sp</sub> nanocomposite.

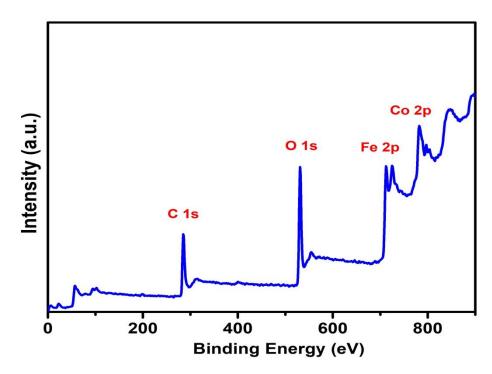
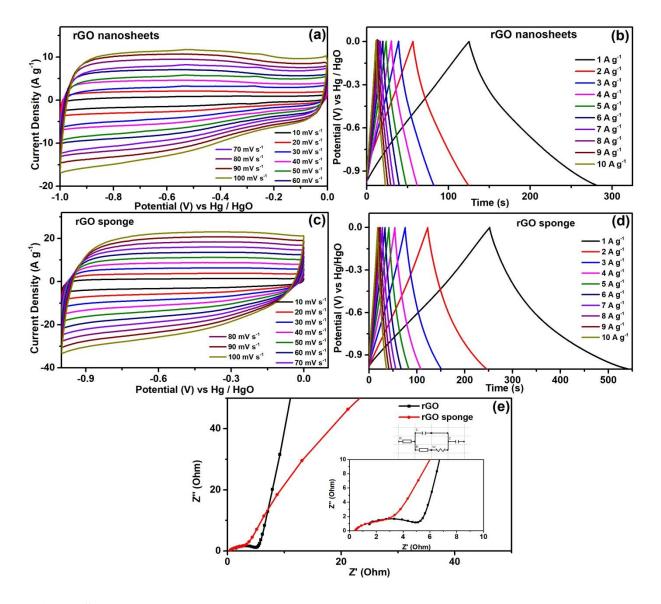
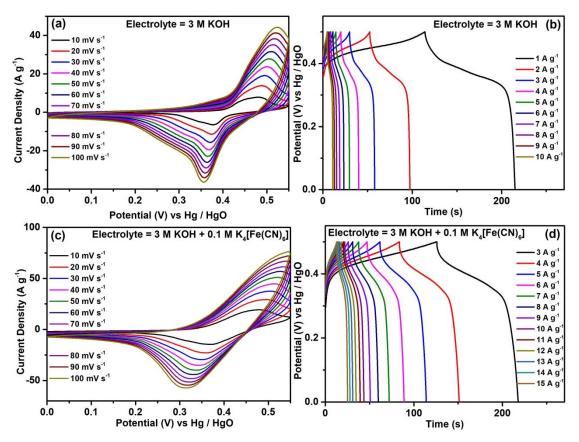





Figure S6. XPS survey spectrum of 80CFhs-20rGOsp



**Figure S7.** CV profiles at various scan rates and GCD curves at various current densities of (a), (b) rGO nanosheet; (c), (d) rGO sponge; and (e) Nyquist plots of rGO nanosheets and rGO sponge, inset shows the equivalent circuit used for fitting the Nyquist plots and the EIS curves at high frequency region.



**Figure S8.** CV profiles at various scan rates and GCD curves at various current densities of CF<sub>hs</sub> in (a), (b) 3 M KOH electrolyte; (c), (d) 3 M KOH +  $0.1 \text{ M K}_4[\text{Fe}(\text{CN})_6]$  electrolyte.

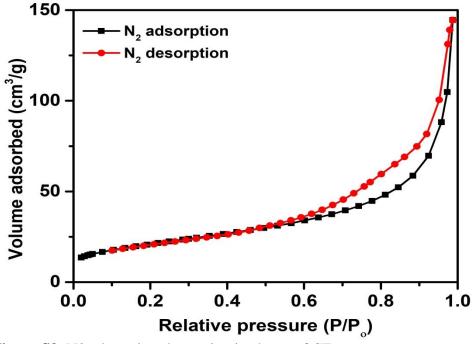
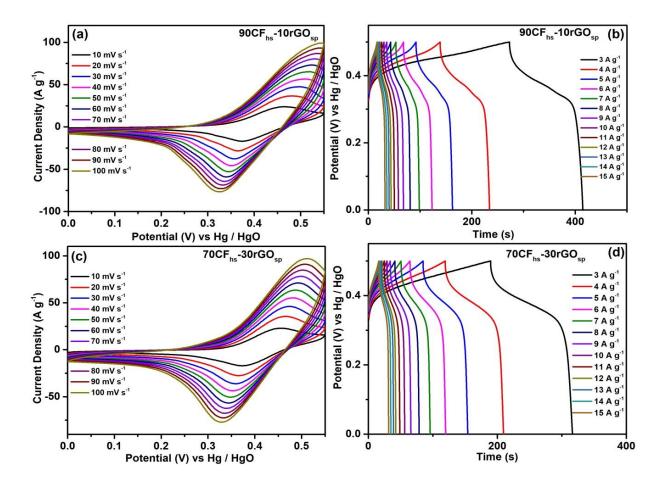




Figure S9. N2 adsorption-desorption isotherm of CF<sub>hs</sub>.



**Figure S10.** CV curves at different scan rates and GCD curves at different current densities of (a), (b) 90CF<sub>hs</sub>-10rGO<sub>sp</sub>, and (c), (d) 70CF<sub>hs</sub>-30rGO<sub>sp</sub>.

| <b>S.</b> | Material          | Equivalent                             | Charge                                           | Warburg    | C <sub>1</sub> =C <sub>DL</sub> | C <sub>2</sub> =C <sub>L</sub> |
|-----------|-------------------|----------------------------------------|--------------------------------------------------|------------|---------------------------------|--------------------------------|
| No.       |                   | Series                                 | Transfer                                         | Resistance | ( <b>F</b> )                    | ( <b>F</b> )                   |
|           |                   | Resistance                             | Resistance                                       | (W) Ω      |                                 |                                |
|           |                   | $(\mathbf{R}_1=\mathbf{R}_S) \ \Omega$ | $(\mathbf{R}_2=\mathbf{R}_{\mathrm{CT}}) \Omega$ |            |                                 |                                |
| 1         | Pure CF           | 0.45                                   | 19.3                                             | 1.66E-03   | 3.03E-03                        | 8.34E+00                       |
|           | (in 3 M KOH)      |                                        |                                                  |            |                                 |                                |
| 2         | Pure CF           | 0.44                                   | 9.2                                              | 1.69E-03   | 3.04E-03                        | 1.00E+01                       |
|           | (in 3M KOH+ 0.1M  |                                        |                                                  |            |                                 |                                |
|           | $K_4[Fe(CN)_6]$   |                                        |                                                  |            |                                 |                                |
| 3         | Pure rGO          | 1.39                                   | 3.68                                             | 6.52E-01   | 2.22E-03                        | 1.91E-01                       |
| 4         | rGO sponge        | 0.68                                   | 2.33                                             | 2.34E-02   | 1.76E-01                        | 3.30E-01                       |
| 5         | 90CF-10rGO sponge | 0.38                                   | 0.53                                             | 4.34E-02   | 9.38E-04                        | 7.01E-02                       |
| 6         | 80CF-20rGO sponge | 0.37                                   | 0.38                                             | 1.18E-02   | 1.92E-02                        | 3.89E-01                       |
| 7         | 70CF-30rGO sponge | 0.47                                   | 0.77                                             | 3.79E-02   | 9.52E-04                        | 4.29E-01                       |

 Table S1. Obtained EIS data of the electrode materials after circuit fitting

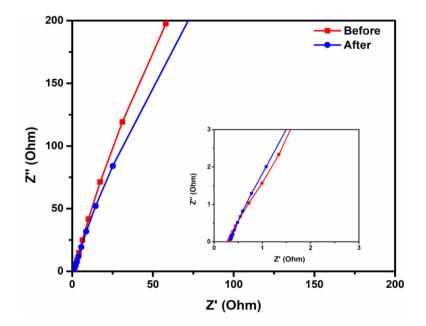



Figure S11. Nyquist plot of  $80CF_{hs}$ -20rGO<sub>sp</sub> before and after ~5000 GCD cycles.

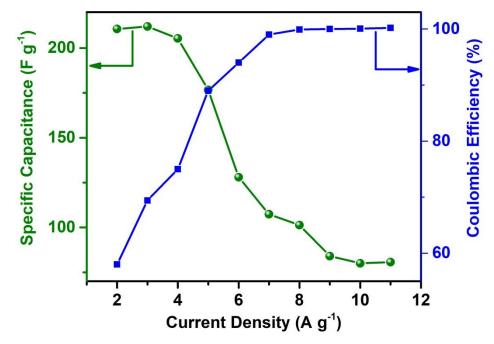



Figure S12. Variation of specific capacitance and Coulombic efficiency with current density.

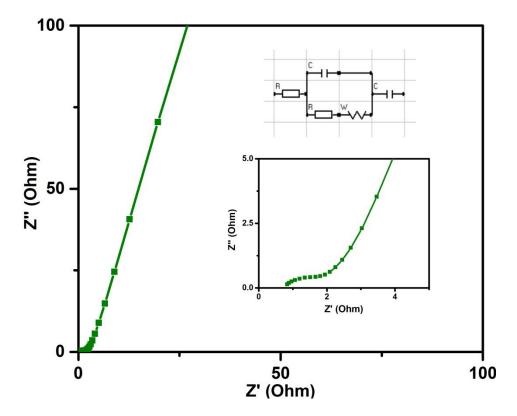



Figure S13. Nyquist plot of the fabricated all-solid-state flexible supercapacitor device.

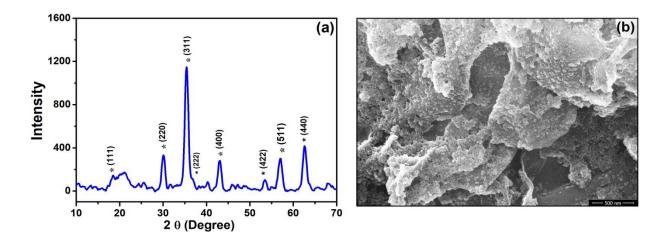



Figure S14. (a) XRD patterns (b) FESEM micrograph of used  $80CF_{hs}$ -20rGO<sub>sp</sub> nanocomposite.

**Table S2.** Comparison table of the fabricated flexible ASC device (this work) with some of the already reported carbon-based two-electrode asymmetric supercapacitors.

| S.  |                                           |                 | Working   | Power                 | Energy                  |                |      |
|-----|-------------------------------------------|-----------------|-----------|-----------------------|-------------------------|----------------|------|
| No. | Material                                  | Electrolyte     | Potential | Density               | Density                 | Retention      | Ref. |
|     |                                           |                 | (V)       | (W kg <sup>-1</sup> ) | (W h kg <sup>-1</sup> ) |                |      |
| 1.  | CoFe <sub>2</sub> O <sub>4</sub> /rGO     | 6 M KOH         | 0-1.3     | 650                   | 17.84                   | 87%            | 1    |
| 1.  | rGO hydrogel                              |                 |           |                       |                         | (4000 cycles)  |      |
| 2.  | CoFe <sub>2</sub> O <sub>4</sub>   graphe | 1 M KOH         | 0-1.5     | 643                   | 12.14                   | 67%            | 2    |
| 2.  | ne                                        |                 |           |                       |                         | (3000 cycles)  |      |
| 3.  | CoFe2O4/rGO                               | 1 M KOH         | 0-1.7     | 840                   | 45.5                    | 91%            | 3    |
| 5.  | Fe3O4/rGO                                 |                 |           |                       |                         | (5000 cycles)  |      |
| 4.  | Co <sub>1-x</sub> S/CoFe2O                | 2 M KOH         | 0-1.4     | 700                   | 61.5                    | 84%            | 4    |
| 4.  | 4@rGO  AC                                 |                 |           |                       |                         | (10000 cycles) |      |
|     | NS/CoFe2O4/C                              |                 |           |                       |                         |                |      |
| 5.  | oOOH  rGO/PE                              | 3 М КОН         | 0-1.6     | 374.9                 | 54.1                    | -              | 5    |
|     | DOT:PSS                                   |                 |           |                       |                         |                |      |
| 6.  | Carbon                                    | 0.1 M<br>Na2SO4 | 0-2       | 100                   | 22.1                    | 99%            |      |
|     | spheres/MnO <sub>2</sub>                  |                 |           |                       |                         |                | 6    |
|     | Carbon spheres                            |                 |           |                       |                         | (1000 cycles)  |      |

| 7    |                                                 |                                                                  | 0 1 55 | 207.5 | 24.0           | 90.2%                   | 7  |
|------|-------------------------------------------------|------------------------------------------------------------------|--------|-------|----------------|-------------------------|----|
| 7. N | NiS  CNFs                                       | 2 M KOH                                                          | 0-1.55 | 387.5 | 34.9           | (3000 cycles)           | ,  |
| 8.   | Co <sub>3</sub> O <sub>4</sub> NSs-rGO<br>   AC | 2 М КОН                                                          | 0-1.45 | 2166  | 13.4           | 89%<br>(1000 cycles     | 8  |
| 9.   | Co <sub>3</sub> O <sub>4</sub> @CoNiS  <br>NOPC | 3 М КОН                                                          | 0-1.6  | 400   | 46.95          | 95.6% (20000<br>cycles) | 9  |
| 10.  | CuO∥AC                                          | 3 М КОН                                                          | 0-1.4  | 700   | 19.7           | 96%<br>(3000 cycles)    | 10 |
| 11.  | NiS  AC                                         | 3 М КОН                                                          | 0-1.8  | 900   | 31             | 100%<br>(1000 cycles)   | 11 |
| 12.  | MnO2  Graphen<br>e hydrogel                     | 0.1 M<br>Na <sub>2</sub> SO <sub>4</sub>                         | 0-2    | 1000  | 23.2           | 83.4%<br>(5000 cycles)  | 12 |
| 13.  | CNTG-40  MG-<br>50                              | PAAK/KCl                                                         | 0-1.8  | 9000  | 32.7<br>(22.9) | 86%<br>(10000 cycles    | 13 |
| 14.  | AC∥δ-<br>ACEP@MnO <sub>2</sub>                  | 1 M Na <sub>2</sub> SO <sub>4</sub>                              | 0-2    | 500   | 31             | 92.8%<br>(5000 cycles)  | 14 |
| 15.  | MnO2/GPCN-<br>SS  GPCN-SS                       | 1 M Na2SO4                                                       | 0-2    | 516   | 50.2           | 99.1%<br>(10000 cycles) | 15 |
| 16.  | NCS-650  AC                                     | 6 M KOH                                                          | 0-1.2  | 331   | 10.3           | 88%<br>(5000 cycles)    | 16 |
| 17.  | NiCoP<br>nanoplates∥<br>graphene films          | 1 M KOH +<br>Porous<br>polymer<br>membrane<br>(Celgrade<br>3501) | 0-1.5  | 1301  | 32.9           | 83.1 %<br>(5000 cycles) | 17 |
| 18.  | CF-200  <br>LRGONR                              | PVA/KOH                                                          | 0-1.6  | 727.8 | 33.5           | 95.8%<br>(5000 cycles)  | 18 |
| 19.  | L-CoFe <sub>2</sub> O <sub>4</sub> /C<br>  AC   | 2 М КОН                                                          | 0-1.6  | 720   | 14.38          | 76.6<br>(800 cycles)    | 19 |
| 20.  | CoFe2O4/CNT  <br>AC                             | 2 М КОН                                                          | 0-1.6  | 400   | 30.4           | 85.6%<br>(1000 cycles)  | 20 |

| 21. | NFO/GNSs-10<br>  AC             | 6 М КОН                                     | 0-1.5 | 70    | 14.01 | 140%<br>(5000 cycles)  | 21           |
|-----|---------------------------------|---------------------------------------------|-------|-------|-------|------------------------|--------------|
| 22. | CC/ZnO@C@<br>NiO  graphene      | 3 M KOH +<br>PVA                            | 0-1.4 | 380.9 | 35.7  | 87%<br>(10000 cycles)  | 22           |
| 23. | 80MnFe2O4-<br>20rGO  rGO        | 3 M KOH +<br>0.1 M<br>K4[Fe(CN)6]           | 0-1.5 | 750   | 27.7  | 95%<br>(4000 cycles)   | 23           |
| 24. | (Ag0.50Ni0.50)90-<br>rGO10  rGO | 3 М КОН                                     | 0-1.7 | 1700  | 49    | 97%<br>(5000 cycles)   | 24           |
| 25  | CuFe2O4-<br>rGO  rGO            | 3 M KOH +<br>0.1 M<br>K4[Fe(CN)6]<br>in PVA | 0-1.3 | 2600  | 38    | 97%<br>(10,000 cycles) | 25           |
| 26  | (CoNid)60-<br>rGO40  rGO        | 3 M KOH +<br>0.1 M<br>K4[Fe(CN)6]<br>in PVA | 0-1.6 | 2000  | 52.8  | 95%<br>(4000 cycles)   | 26           |
| 27. | 80CFhs-<br>20rGOsp  rGOsp       | 3 M KOH +<br>0.1 M<br>K4[Fe(CN)6]<br>in PVA | 0-1.5 | 1500  | 65.8  | 96%<br>(5000 cycles)   | This<br>Work |

## References

1. Zheng, L.; Guan, L.; Yang, G.; Chen, S.; Zheng, H. One-pot synthesis of CoFe<sub>2</sub>O<sub>4</sub>/rGO hybrid hydrogels with 3D networks for high capacity electrochemical energy storage devices. *RSC Adv.* **2018**, *8*, 8607-8614.

2. Sankar, K. V.; Selvan, R. K.; Meyrick, D. Electrochemical performances of CoFe<sub>2</sub>O<sub>4</sub> nanoparticles and a rGO based asymmetric supercapacitor. *RSC Adv.* **2015**, *5*, 99959-99967.

3. Wang, H.; Song, Y.; Ye, X.; Wang, H.; Liu, W.; Yan, L. Asymmetric supercapacitors assembled by dual spinel ferrites@graphene nanocomposites as electrodes. *ACS Appl. Energy Mater.* **2018**, *1*, 3206-3215.

4. Ren, C.; Jia, X.; Zhang, W.; Hou, D.; Xia, Z.; Huang, D.; Hu, J.; Chen, S.; Gao, S. Hierarchical Porous Integrated Co<sub>1-x</sub>S/CoFe<sub>2</sub>O<sub>4</sub>@rGO Nanoflowers Fabricated via Temperature-Controlled In Situ Calcining Sulfurization of Multivariate CoFe-MOF-74@ rGO for High-Performance Supercapacitor. *Adv. Funct. Mater.* **2020**, *30*, 2004519.

5. Song, K.; Wang, X.; Li, J.; Zhang, B.; Yang, R.; Liu, P.; Wang, J. 3D hierarchical CoFe<sub>2</sub>O<sub>4</sub>/CoOOH nanowire arrays on Ni-Sponge for high-performance flexible supercapacitors. *Electrochim. Acta* **2020**, *340*, 135892.

6. Lei, Z.; Zhang, J.; Zhao, X. S. Ultrathin MnO<sub>2</sub> nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. *J. Mater. Chem.* **2012**, *22*, 153-160.

7. Ma, X.; Zhang, L.; Xu, G.; Zhang, C.; Song, H.; He, Y.; Zhang, C.; Jia, D. Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. *Chem. Eng. J.* **2017**, *320*, 22-28.

8. Yuan, C.; Zhang, L.; Hou, L.; Pang, G.; Oh, W.-C. One-step hydrothermal fabrication of strongly coupled Co<sub>3</sub>O<sub>4</sub> nanosheets–reduced graphene oxide for electrochemical capacitors. *RSC Adv.* **2014**, *4*, 14408-14413.

9. Yan, Y.; Ding, S.; Zhou, X.; Hu, Q.; Feng, Y.; Zheng, Q.; Lin, D.; Wei, X. Controllable preparation of core-shell Co<sub>3</sub>O<sub>4</sub>@CoNiS nanowires for ultra-long life asymmetric supercapacitors. *J. Alloys Compd.* **2021**, 867, 158941.

10. Moosavifard, S. E.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. *ACS Appl. Mater. Interfaces* **2015**, *7*, 4851-4860.

11. Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. *Chem. Eng. J.* **2017**, *308*, 1165-1173.

12. Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO<sub>2</sub>. *ACS Appl. Mater. Interfaces* **2012**, *4*, 2801-2810.

13. Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn<sub>3</sub>O<sub>4</sub> Nanoparticle/Graphene Paper Electrodes. *ACS Appl. Mater. Interfaces* **2012**, *4*, 7020-7026.

14. Wang, X.; Chen, S.; Li, D.; Sun, S.; Peng, Z.; Komarneni, S.; Yang, D. Direct Interfacial Growth of MnO<sub>2</sub> Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors. *ACS Sustain. Chem. Eng.* **2018**, *6*, 633-641.

15. Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. MnO<sub>2</sub> Nanostructures Deposited on Graphene-Like Porous Carbon Nanosheets for High-Rate Performance and High-Energy Density Asymmetric Supercapacitors. *ACS Sustain. Chem. Eng.* **2019**, *7*, 3101-3110.

16. He, F.; Li, K.; Cong, S.; Yuan, H.; Wang, X.; Wu, B.; Zhang, R.; Chu, J.; Gong, M.; Xiong, S.; Wu, Y.; Zhou, A. Design and Synthesis of N-Doped Carbon Skeleton Assembled by Carbon Nanotubes and Graphene as a High-Performance Electrode Material for Supercapacitors. *ACS Appl. Energy Mater.* **2021**, *4*, 7731-7742.

17. Liang, H.; Xia, C.; Jiang, Q.; Gandi, A. N.; Schwingenschlögl, U.; Alshareef, H. N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. *Nano Energy* **2017**, *35*, 331-340.

18. Lalwani, S.; Marichi, R. B.; Mishra, M.; Gupta, G.; Singh, G.; Sharma, R. K. Edge enriched cobalt ferrite nanorods for symmetric/asymmetric supercapacitive charge storage. *Electrochim. Acta* **2018**, *283*, 708-717.

S18

19. Zhao, Y.; Xu, Y.; Zeng, J.; Kong, B.; Geng, X.; Li, D.; Gao, X.; Liang, K.; Xu, L.; Lian, J. Low-crystalline mesoporous CoFe<sub>2</sub>O<sub>4</sub>/C composite with oxygen vacancies for high energy density asymmetric supercapacitors. *RSC Adv.* **2017**, *7*, 55513-55522.

20. Yue, L.; Zhang, S.; Zhao, H.; Feng, Y.; Wang, M.; An, L.; Zhang, X.; Mi, J. One-pot synthesis CoFe<sub>2</sub>O<sub>4</sub>/CNTs composite for asymmetric supercapacitor electrode. *Solid State Ion*. **2019**, *329*, 15-24.

21. Gao, X.; Bi, J.; Wang, W.; Liu, H.; Chen, Y.; Hao, X.; Sun, X.; Liu, R. Morphologycontrollable synthesis of NiFe<sub>2</sub>O<sub>4</sub> growing on graphene nanosheets as advanced electrode material for high performance supercapacitors. *J. Alloys Compd.* **2020**, *826*, 154088.

22. Ouyang, Y.; Xia, X.; Ye, H.; Wang, L.; Jiao, X.; Lei, W.; Hao, Q. Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. *ACS Appl. Mater. Interfaces* **2018**, *10*, 3549-3561.

23. Makkar, P.; Ghosh, N. N. Facile synthesis of MnFe<sub>2</sub>O<sub>4</sub> hollow sphere-reduced graphene oxide nanocomposites as electrode materials for all-solid-state flexible high-performance asymmetric supercapacitors. *ACS Appl. Energy Mater.* **2020**, *3*, 2653-2664.

24. Makkar, P.; Ghosh N. N., High-Performance All-Solid-State Flexible Asymmetric Supercapacitor Device Based on a Ag-Ni Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposite as an Advanced Cathode Material. *Ind. Eng. Chem. Res.* **2021**, *60*, 1666-1674.

25. Makkar, P.; Gogoi, D.; Roy, D.; Ghosh, N. N. Dual-Purpose CuFe<sub>2</sub>O<sub>4</sub>-rGO-Based Nanocomposite for Asymmetric Flexible Supercapacitors and Catalytic Reduction of Nitroaromatic Derivatives. *ACS Omega* **2021**, *6*, 28718-28728.

26. Makkar, P.; Ghosh, N. N. Snowflake-Like Dendritic CoNi Alloy-rGO Nanocomposite as a Cathode Electrode Material for an All-Solid-State Flexible Asymmetric High-Performance Supercapacitor Device. *ACS Omega* **2020**, *5*, 10572-10580.

S19