
Precise Synthesis of Structurally Diverse Aggregation-Induced Emission-Active Polyacrylates by Cu(0)-Catalyzed SET-LRP with Macromolecular Structure-Correlated Emission

Zhiqiang Wei, Dong Chen, Xinru Zhang, Li Wang*, WantaiYang*

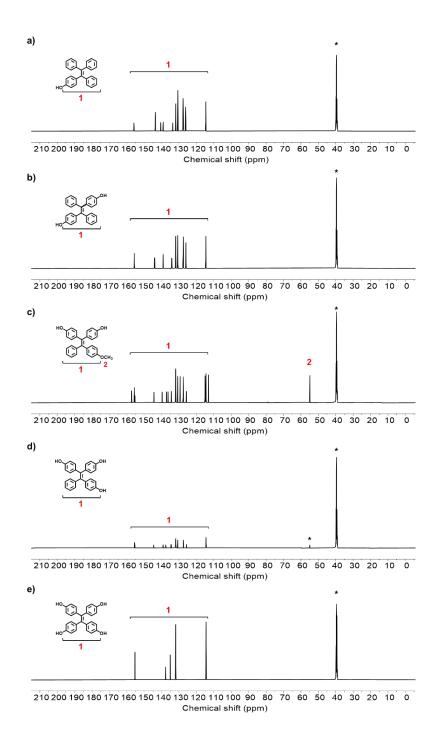

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Table of Contents:

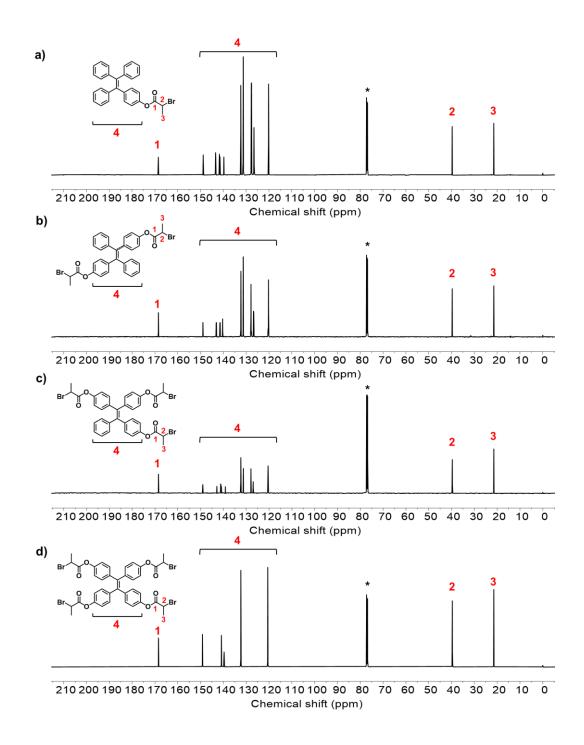

1. Structural Characterization of Initiators (TPE-nBr, <i>n</i> = 1-4)	
2. SET-LRP of MA and <i>t</i> BA Initiated with TPE-nBr ($n = 1-4$)	S10
3. AIE Behavior of TPE-PMA and TPE-PAA	S16

Figure S1. ¹H-NMR spectrum of (a) TPE-1OH, (b) TPE-2OH, (c) compound 1, (d) TPE-3OH and (e) TPE-4OH in DMSO- d_6 . ¹H NMR resonances from residual solvent in DMSO- d_6 are indicated by an asterisk (*).

Figure S2. ¹³C-NMR spectrum of (a) TPE-1OH, (b) TPE-2OH, (c) compound 1, (d) TPE-3OH in DMSO- d_6 and (e) TPE-4OH in DMSO- d_6 . ¹³C NMR resonances from residual solvent in DMSO- d_6 are indicated by an asterisk (*).

Figure S3. ¹³C-NMR spectrum of (a) TPE-1Br, (b) TPE-2Br, (c) TPE-3Br and (d) TPE-4Br in CDCl₃. ¹³C NMR resonances from residual solvent in CDCl₃ are indicated by an asterisk (*).

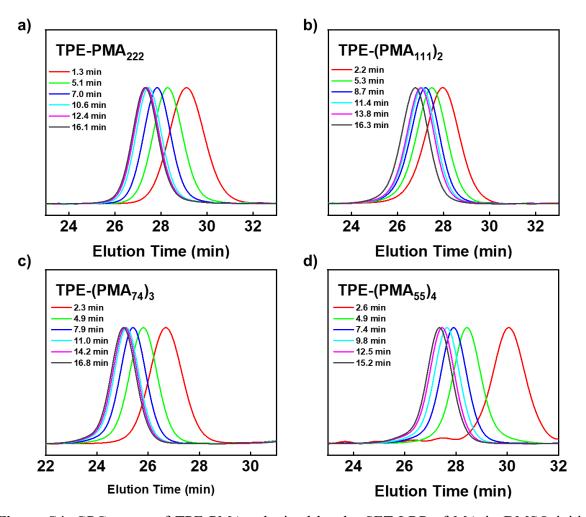


Figure S4. GPC traces of TPE-PMAs obtained by the SET-LRP of MA in DMSO initiated from (a) TPE-1Br, (b) TPE-2Br, (c) TPE-3Br and (d) TPE-4Br and catalyzed by the 12.5 cm nonactivated Cu(0) wire at 25 °C. Reaction conditions: MA = 1 mL, DMSO = 0.5 mL, $[MA]_0/[Initiator]_0/[Me_6-TREN]_0 = 222/1/0.1.$

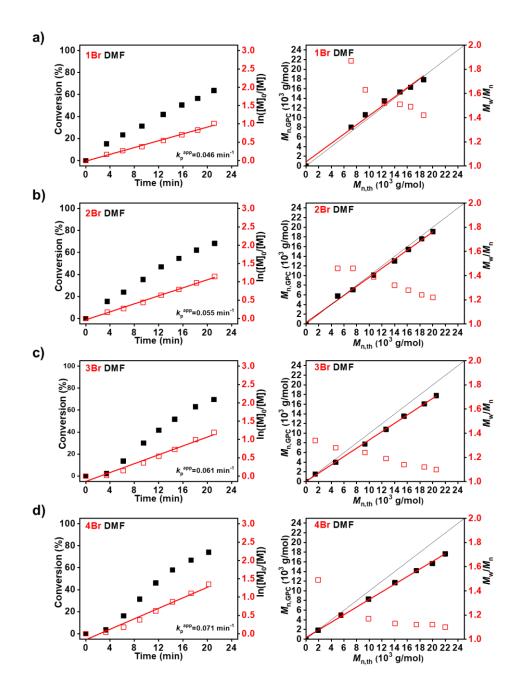


Figure S5. Monomer conversion, kinetic plots, and evolution of $M_{n,GPC}$ and $D(M_w/M_n)$ for the SET-LRP of *t*BA in DMF initiated from (a) TPE-1Br, (b) TPE-2Br, (c) TPE-3Br and (d) TPE-4Br and catalyzed by the 12.5 cm nonactivated Cu(0) wire at 25 °C. Reaction conditions: *t*BA = 1 mL, DMF = 0.5 mL, [*t*BA]_0/[Initiator]_0/[Me_6-TREN]_0 = 222/1/0.1.

Figure S6. GPC traces of TPE-P*t*BA obtained by the SET-LRP of *t*BA in DMF initiated from (a) TPE-1Br, (b) TPE-2Br, (c) TPE-3Br and (d) TPE-4Br and catalyzed by the 12.5 cm nonactivated Cu(0) wire at 25 °C. Reaction conditions: tBA = 1 mL, DMF = 0.5 mL, $[tBA]_0/[Initiator]_0/[Me_6-TREN]_0 = 222/1/0.1$.

	TPE-PMA ₅₀	TPE-(PMA ₂₅) ₂	TPE-(PMA ₁₇) ₃	TPE-(PMA _{12.5}) ₄
F^{Br} /%	98	99	99	100
F^{SPh} /% ^b	95	93	95	98

Table S1 End-group fidelity of TPE-PMA^a

^a End-group fidelity of TPE-PMA from the SET-LRP of MA in DMSO initiated with TPE-nBr (n = 1-4) and

catalyzed by nonactivated Cu(0) wire at 25 °C: before (a) and after (b) the thio-bromo "click" reaction.

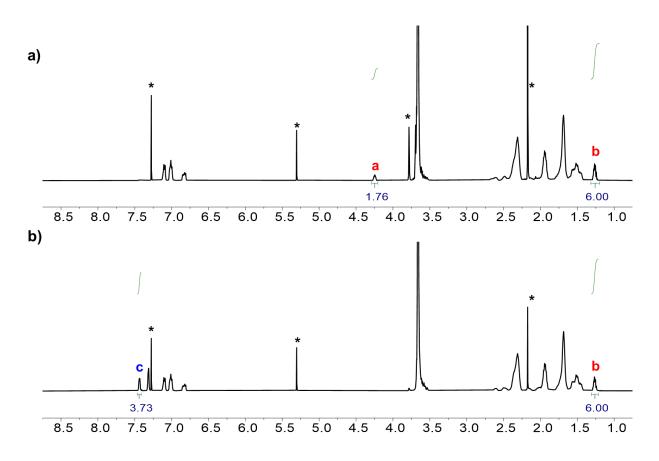


Figure S7. ¹H NMR spectra (600 MHz) of TPE-PMA at 88% conversion from the SET-LRP of MA in DMSO initiated with TPE-2Br and catalyzed by a nonactivated Cu(0) wire at 25 °C: before (a, $F^{Br} = 1.76/1.78*100 = 99\%$) and after (b, $F^{SPh} = 3.73/4*100 = 93\%$) the thio-bromo "click" reaction. Polymerization conditions: MA = 1 mL, DMSO = 0.5 mL, [MA]₀/[TPE-2Br]₀/[Me₆-TREN]₀ = 50/1/0.1, 12.5 cm of the Cu(0) wire. ¹H NMR resonances from residual solvents in CDCl₃ are indicated by an asterisk (*).

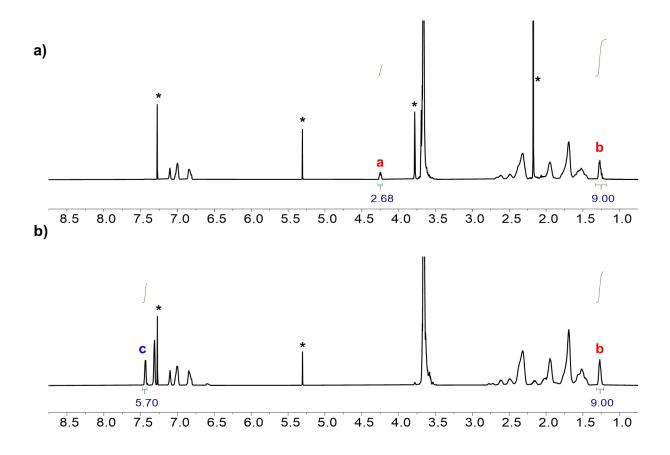
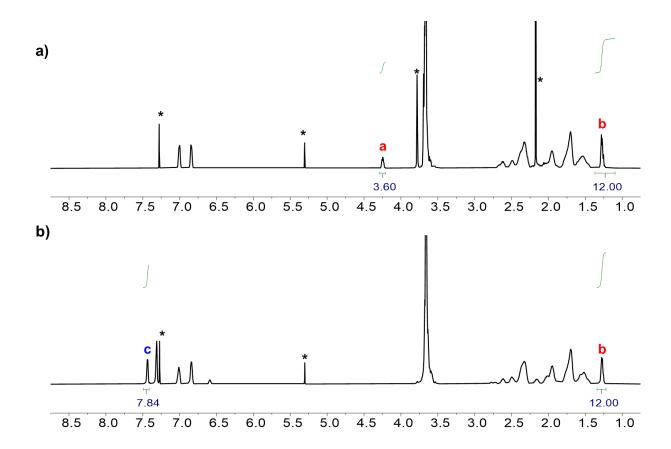
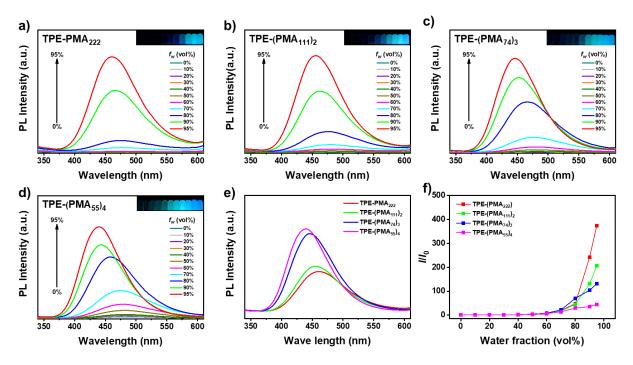
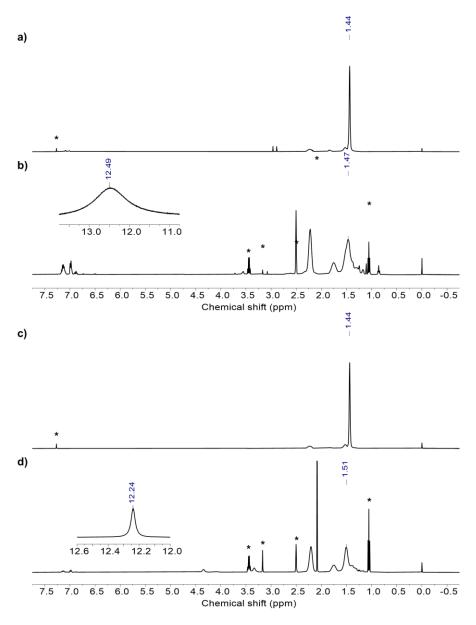
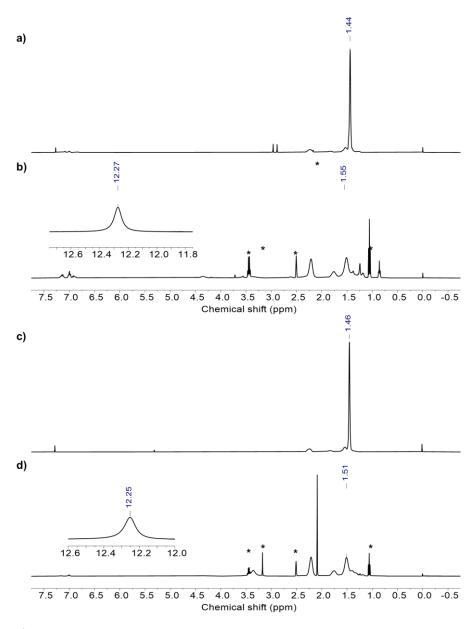
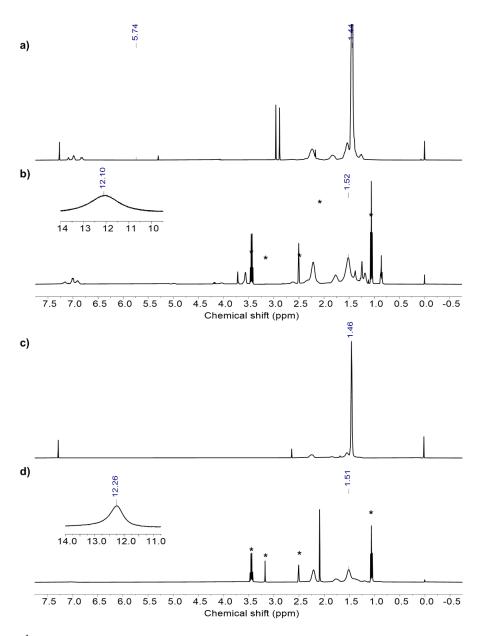
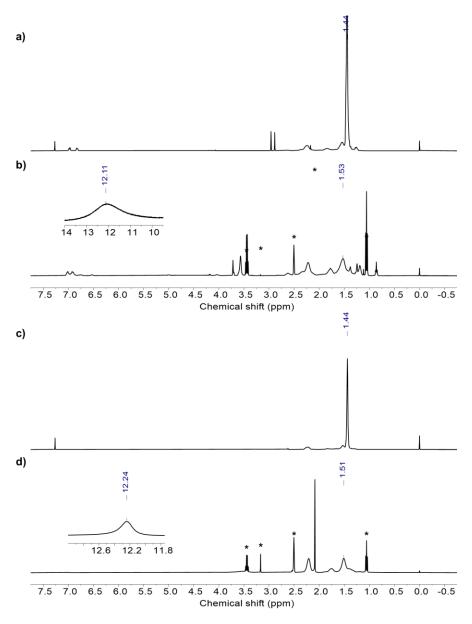


Figure S8. ¹H NMR spectra (600 MHz) of TPE-PMA at 90% conversion from the SET-LRP of MA in DMSO initiated with TPE-3Br and catalyzed by a nonactivated Cu(0) wire at 25 °C: before (a, $F^{Br} = 2.68/2.71*100 = 99\%$) and after (b, $F^{SPh} = 5.70/6*100 = 95\%$) the thio-bromo "click" reaction. Polymerization conditions: MA = 1 mL, DMSO = 0.5 mL, [MA]₀/[TPE-3Br]₀/[Me₆-TREN]₀ = 50/1/0.1, 12.5 cm of the Cu(0) wire. ¹H NMR resonances from residual solvents in CDCl₃ are indicated by an asterisk (*).


Figure S9. ¹H NMR spectra (600 MHz) of TPE-PMA at 90% conversion from the SET-LRP of MA in DMSO initiated with TPE-4Br and catalyzed by a nonactivated Cu(0) wire at 25 °C: before (a, $F^{Br} = 3.60/3.60*100 = 100\%$) and after (b, $F^{SPh} = 7.84/8*100 = 98\%$) the thio-bromo "click" reaction. Polymerization conditions: MA = 1 mL, DMSO = 0.5 mL, [MA]₀/[TPE-4Br]₀/[Me₆-TREN]₀ = 50/1/0.1, 12.5 cm of the Cu(0) wire. ¹H NMR resonances from residual solvents in CDCl₃ are indicated by an asterisk (*).


Figure S10. Photoluminescence (PL) spectra of (a) TPE-PMA₂₂₂, (b) TPE-(PMA₁₁₁)₂, (c) TPE-(PMA₇₄)₃ and (d) TPE-(PMA₅₅)₄ in THF/H₂O mixtures with different f_w . (e) PL intensity of TPE-(PMA)_n (n = 1-4, [MA]₀/[TPE-nBr]₀ = 222/1) in THF/H₂O ($f_w = 95\%$). (f) I/I_0 of TPE-(PMA)_n (n = 1-4, [MA]₀/[TPE-nBr]₀ = 222/1). [TPE] = 10 µM; excitation wavelength: 320 nm; I_0 : the PL intensity of the polymer in pure THF. The insets in panel (a)-(d) were taken under a hand-held UV lamp at 365 nm.


Figure S11. ¹H NMR spectra of (a)TPE-P*t*BA₅₀ and (c)TPE-P*t*BA₂₂₂ in CDCl₃ at 99% conversion from SET-LRP of *t*BA in DMF initiated with TPE-1Br and catalyzed by nonactivated Cu(0) wire at 25 °C. ¹H NMR of (b) TPE-PAA₅₀ and (d) TPE-PAA₂₂₂ in DMSO-*d*₆ obtained by hydrolysis of TPE-P*t*BA. Polymerization conditions: *t*BA = 1 mL, DMF = 0.5 mL, [*t*BA]₀/[TPE-1Br]₀/[Me₆-TREN]₀ = 50/1/0.1 and [*t*BA]₀/[TPE-1Br]₀/[Me₆-TREN]₀ = 222/1/0.1, 12.5 cm of Cu(0) wire. ¹H NMR resonances from residual solvents are indicated by an asterisk (*).

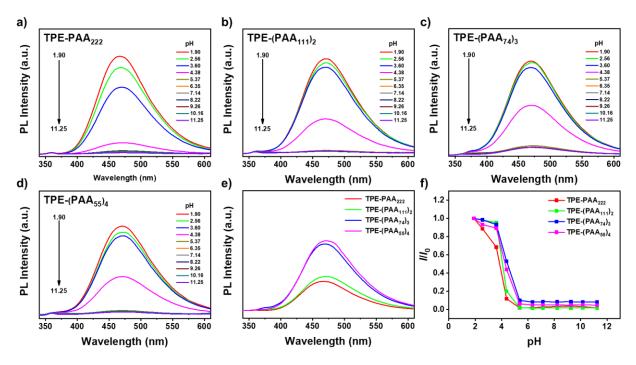

Figure S12. ¹H NMR spectra of (a) TPE-(P tBA_{25})₂ and (c) TPE-(P tBA_{111})₂ in CDCl₃ at 99% conversion from SET-LRP of tBA in DMF initiated with TPE-2Br and catalyzed by nonactivated Cu(0) wire at 25 °C. ¹H NMR of (b) TPE-(PAA₂₅)₂ and (d) TPE-(PAA₁₁₁)₂ in DMSO- d_6 obtained by hydrolysis of TPE-PtBA. Polymerization conditions: tBA = 1 mL, DMF = 0.5 mL, $[tBA]_0/[TPE-2Br]_0/[Me_6-TREN]_0 = 50/1/0.1$ and $[tBA]_0/[TPE-2Br]_0/[Me_6-TREN]_0 = 222/1/0.1$, 12.5 cm of Cu(0) wire. ¹H NMR resonances from residual solvents are indicated by an asterisk (*).

Figure S13. ¹H NMR spectra of (a) TPE-(P*t*BA₁₇)₃ and (c) TPE-(P*t*BA₇₄)₃ in CDCl₃ at 99% conversion from SET-LRP of *t*BA in DMF initiated with TPE-3Br and catalyzed by nonactivated Cu(0) wire at 25 °C. ¹H NMR of (b) TPE-(PAA₁₇)₃ and (d) TPE-(PAA₇₄)₃ in DMSO-*d*₆ obtained by hydrolysis of TPE-P*t*BA. Polymerization conditions: tBA = 1 mL, DMF = 0.5 mL, $[tBA]_0/[TPE-3Br]_0/[Me_6-TREN]_0 = 50/1/0.1$ and $[tBA]_0/[TPE-3Br]_0/[Me_6-TREN]_0 = 222/1/0.1$, 12.5 cm of Cu(0) wire. ¹H NMR resonances from residual solvents are indicated by an asterisk (*).

Figure S14. ¹H NMR spectra of (a) TPE-(P*t*BA₁₂)₄ and (c) TPE-(P*t*BA₅₅)₄ in CDCl₃ at 99% conversion from SET-LRP of *t*BA in DMF initiated with TPE-4Br and catalyzed by nonactivated Cu(0) wire at 25 °C. ¹H NMR of (b) TPE-(PAA₁₂)₄ and (d) TPE-(PAA₅₅)₄ in DMSO-*d*₆ obtained by hydrolysis of TPE-P*t*BA. Polymerization conditions: tBA = 1 mL, DMF = 0.5 mL, $[tBA]_0/[TPE-4Br]_0/[Me_6-TREN]_0 = 50/1/0.1$ and $[tBA]_0/[TPE-4Br]_0/[Me_6-TREN]_0 = 222/1/0.1$, 12.5 cm of Cu(0) wire. ¹H NMR resonances from residual solvents are indicated by an asterisk (*).

Figure S15. Photoluminescence (PL) spectra of (a) TPE-PAA₂₂₂, (b) TPE-(PAA₁₁₁)₂, (c) TPE-(PAA₇₄)₃ and (d) TPE-(PAA₅₅)₄ in B-R buffer solutions of different pH values. (e) PL intensity of TPE-(PMA)_n (n = 1-4, [AA]/[TPE-nBr] = 222/1) in B-R buffer solutions at pH = 1.90. (f) I/I_0 of TPE-(PAA)_n (n = 1-4) at [AA]/[TPE-nBr] = 222/1. [TPE] = 20 µM; excitation wavelength: 320 nm; and I_0 : the PL intensity of TPE-(PAA)_n in B-R buffer solution at pH 1.90.