Supporting Information

Enantioselective Total Syntheses of Grayanane Diterpenoids: (-)-Grayanotoxin III, (+)-Principinol E, and (-)-Rhodomollein XX

Lingran Kong, ${ }^{\dagger}$ Hang Yu, ${ }^{\dagger}$ Mengping Deng, \dagger Fanrui Wu, ${ }^{\dagger}$ Zhe Jiang, ${ }^{\dagger}$ Tuoping Luo ${ }^{*,+,+, \&}$
${ }^{\dagger}$ Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
${ }^{\text {t }}$ Peking - Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
${ }^{\S}$ Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China

Table of Contents

I. Supplementary Figures and Tables S3
II. Experimental Procedures and Spectroscopic Data S15
III. NMR Spectra S48
IV. DFT Calculation. S84
V. References S100

I. Supplementary Figures and Tables

Matsumoto (1976): (土)-grayanotoxin II (39 steps, < 0.0005\% yield)

7. UV
9. $\mathrm{CH}_{3} \mathrm{ONa}, \mathrm{HCO}_{2} \mathrm{Et}$
10. p - TsCl, n - BuSH
10. $p-\mathrm{TsCl}, n-\mathrm{BuSH}$
11. Mel
11. Mel
12. $\mathrm{KOH}, \mathrm{EtOH}$
13. hydrolysis
$\xrightarrow{\text { 14. acetylation }}$

15. OsO_{4}
16. Br_{2}
17. LiCI, DMF
18. trimesityborane 2.6% (6 steps)
Na, t - BuOH
19. HClO_{4}
20. CrO_{3}
22. NaBH_{4}
23. HCl
24. DHP
25. p - TsCl, n - BuSH

31. hydrolysis
32. acetylation
33. MeMgI
34. POCl_{3}
35. $\mathrm{Na},{ }^{i} \mathrm{PrOH}$
$<15 \%$ (5 steps)

36. $\mathrm{Hg}(\mathrm{OAc})_{2}$
37. acetylation
38. HClO_{4}
39. NaOH

(\pm)-Grayanotoxin II

Figure S1. Relay total synthesis of grayanotoxin II. ${ }^{[1]}$
Shirahama (1994): (-)-grayanotoxin III (38 steps, 0.05\% yield)

10. FeCl_{3}
11. $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
12. $\mathrm{NaAuCl}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

14. MOMCI, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$
15. $\mathrm{KOH}, \mathrm{MeOH}$
then HC
17. Jones reagent
18. $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ then $\mathrm{Tf}_{2} \mathrm{NPh}$ 19. $\mathrm{Li}_{2} \mathrm{CuCN}\left(\mathrm{CH}_{2} \mathrm{SPh}\right)_{2}$
45\% (6 steps)

Figure S2. Reported total syntheses of grayanane diterpenoids. ${ }^{[2,3]}$

Ding (2019): (土)-rhodomolleins XX and XXII (23 steps, 1.2\% yield; 22 steps, 1.4\% yield)

(\pm)-Rhodomolleins XXII

$$
\begin{array}{l|c}
\text { 16. } \mathrm{DMDO} & \\
\text { 17. } \mathrm{Cp}_{2} \mathrm{TiCl}_{2}, \mathrm{Mn}, 2,4,6 \text {-collidine } \cdot \mathrm{HCl} & 38 \% \\
\text { 18. } \mathrm{Cp}_{2} \mathrm{TiMe}_{2} \text { then } p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O} & \text { (3 steps) }
\end{array}
$$

(\pm)-Rhodomolleins XX

21. TBSOTf, $\mathrm{Et}_{3} \mathrm{~N}$
22. MeMgBr
23. $\mathrm{MeReO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}$, Py then PPTS

64\% (3 steps)
19. PhSeCl
$\stackrel{\text { 20. } \mathrm{Co}(\mathrm{acac})_{2}, \mathrm{PhSiH}_{3}, \mathrm{O}_{2}}{ }$
60\% (2 steps)

Figure S2. Reported total syntheses of grayanane diterpenoids (continued). ${ }^{[4]}$

Figure S3. DFT calculated potential energy surface (PES) for Mukaiyama aldol reaction. Energies were obtained at B3LYP/6-31G(d,p) level of theory.

The intermolecular Mukaiyama aldol reaction between $\mathbf{8}$ and $\mathbf{1 1}$ catalyzed by 0.1 equiv TMSOTf in DCM was followed by the EtAlCl_{2}-mediated Sakurai reaction in the same reaction flask, affording two major products, $\mathbf{7 a}$ and $\mathbf{7 b}$, as a $2: 1$ mixture. In order to rationalize the diastereoselectivity, we performed preliminary density functional theory (DFT) calculations and located two competing synclinal open transition states $\mathbf{T S}_{\mathbf{a}}$ and $\mathbf{T S}_{\mathbf{b}}$ with minimized gauche interactions between the OTMS moiety and the substituents on the oxocarbenium (Figure S3); ${ }^{[5]}$ the facial selectivity of silyl enol ether was dictated by the Fürst-Plattner rule. ${ }^{[6]}$ In agreement with the experimentally observed diastereoselectivity (assuming the similar efficiency of intramolecular Sakurai cyclizations), $\mathbf{T S}_{\mathbf{a}}$ is favored over $\mathbf{T S}_{\mathbf{b}}$ by $0.7 \mathrm{kcal} / \mathrm{mol}$, which could be expected from the pseudo-axial occupation of the bulky propenyl group in TS ${ }_{\text {b }}$.

Table S1. Optimization of the Mukaiyama Adol Reaction Followed by Cyclization.

${ }^{{ }^{\text {I }} \text { solated yield after flash chromatography. }{ }^{b}[8]=0.114 \mathrm{M}(0.057 \mathrm{mmol}) .}{ }^{c}[8]=0.114 \mathrm{M}(0.114 \mathrm{mmol})$. ${ }^{d}$ The products were contaminated by a small amount of unidentified impurity. ${ }^{\text {e }}$ Trace amount of Mukaiyama aldol products were observed via TLC, and subsquent cyclization was not executed. ${ }^{\dagger}$ The Mukaiyama aldol reaction was quenched by NaHCO_{3} (aq.), and the reaction mixture was extracted with EtOAc and concentrated in vacuo to give a residue that was subsequently dissolved in DCM (1 mL), followed by the addition of $\mathrm{EtAlCl}_{2} .{ }^{9} 3 \mathrm{~g}$ scale. ${ }^{\text {h }}$ The Mukaiyama aldol reaction was quenched by $\mathrm{MeOH} / \mathrm{TEA}$, and the reaction mixture was diluted by DCM followed by the addition of 2 equiv $\mathrm{EtAICl}_{2} ; 7$ a was isolated in 58% yield as a single diastereomer.

Table S2. Optimization of the Cyclization to Afford 4. ${ }^{a}$

${ }^{\text {a }}$ Reaction performed on 0.06 mmol scale; after triflation in DCM, 3 equiv 'PrOH was added and the volatiles were removed under vacuo, followed by the addition of solvent and base to the same flask. ${ }^{b}$ NMR yield determined using 1,4-dinitrobenzene as the internal control. ${ }^{\circ} \mathrm{T}=70^{\circ} \mathrm{C}$. ${ }^{d}$ Reaction performed on 12 mmol scale, isolated yield.

Table S3. Optimization of the MHAT Hydrogenation. ${ }^{a}$
entry
${ }^{a}$ Reaction performed on 0.022 mmol scale in the glove box at room temperature, [22a] $=0.043 \mathrm{M} .{ }^{b} \mathrm{NMR}$ yield and conversion determined using 1,4-dinitrobenzene as the internal control. Yield in parentheses is isolated yield after flash chromatography. ${ }^{d}$ Isolated yields for the reaction performed on 0.043 mmol scale, [22a] = 0.043 M .

Table S4. Optimization of the Epoxide Reduction. ${ }^{a}$

18

entry	reductant	solvent	yield (ratio) ${ }^{\text {b }}$
1	2.5 equiv SmI_{2}	THF/ $\mathrm{MeOH}=4: 1$	59\% (2:1)
2	2.5 equiv SmI_{2}	THF/MeOH $=1: 1$	65\% (3:1)
3	2.5 equiv SmI_{2}	THF/glycol $=10: 1$	67\% (1.3:1)
4	2.5 equiv Sml_{2}	THF/ $\mathrm{H}_{2} \mathrm{O}=10: 1$	70\% (1:1)
5	2.5 equiv SmI_{2}	THF/L-valinol $=20: 1$	52\% (10:1)
6	2.5 equiv Sml_{2}	THF/D-valinol $=20: 1$	65\% (20:1)
7	excess Li/Naphthalene	THF	40\% (1:1.5)
8	2.5 equiv SmI_{2}	THF/D-valinol $=20: 1$	$76 \%(8.5: 1)^{\text {c }}$

${ }^{a}$ Reaction performed on 0.012 mmol scale. ${ }^{b}$ Isolated yield over 2 steps after flash chromatography; the ratio (23a:23b) was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{c}$ Reaction performed on 0.046 mmol scale $(20 \mathrm{mg})$.

Table S5. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Natural and Synthesized Grayanotoxin III (1)

Grayanotoxin III (1)

Position	Natural product $\mathbf{1}^{\text {a,b }}$		Synthesized 1^{e}	
	$\delta_{\text {H }}(\mathrm{m}, \mathrm{J}[\mathrm{Hz}])^{\text {c }}$	$\delta_{\mathrm{C}}{ }^{\text {a,d }}$	$\delta_{H}(\mathrm{~m}, \mathrm{~J}[\mathrm{~Hz}])^{\text {c }}$	$\delta_{\mathrm{C}}{ }^{\text {d }}$
1	$3.20(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$	51.6	3.19 (dd, 11.8, 4.6, 1H)	51.9
2	-	35.7	2.64-2.57 (m, 1H); 2.55-2.48 (m, 1H)	36.0
3	$3.87(\mathrm{~s}, 1 \mathrm{H})^{\text {a }} 3.89(\mathrm{~d}, 2.5,1 \mathrm{H})^{\text {b }}$	82.6	3.88 (d, 4.6, 1H)	82.8
4	-	51.7	-	52.1
5	-	84.6	-	84.9
6	4.55 (dd, 11, 4, 1H) ${ }^{\text {a }} / 4.52(\mathrm{dd}, 10.5,4.0,1 \mathrm{H})^{\text {b }}$	74.0	4.56 (dd, 11.2, 4.2, 1H)	74.4
7	-	44.2	2.89 (dd, 13.5, 4.2, 1H); 2.55-2.48 (m, 1H)	44.5
8	-	52.4	-	52.8
9	-	55.1	2.18 (d, 6.9, 1H)	55.5
10	-	78.1	-	78.4
11	-	22.4	2.04 (dd, 14.1, 6.1, 1H); 1.64-1.58 (m, 1H)	22.8
12	-	27.0	2.64-2.57 (m, 1H); 1.69-1.65 (m, 1H)	27.3
13	-	56.3	2.55-2.48 (m, 1H)	56.5
14	$5.00(\mathrm{~s}, 1 \mathrm{H})^{\text {a }} / 5.00(\mathrm{~s}, 1 \mathrm{H})^{\text {b }}$	79.3	5.05 (s, 1H)	79.5
15	-	60.3	2.27 (d, 14.6, 1H); 2.09 (d, 14.5, 1H)	60.5
16	-	79.8	-	80.0
17	$1.51(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{a}} / 1.51(\mathrm{~s}, 3 \mathrm{H})^{\text {b }}$	23.8	1.51 (s, 3H)	24.0
18	$1.67(\mathrm{~s}, 3 \mathrm{H})^{a} / 1.65(\mathrm{~s}, 3 \mathrm{H})^{b}$	19.7	1.70 (s, 3H)	20.1
19	$1.17(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{a}} / 1.12(\mathrm{~s}, 3 \mathrm{H})^{b}$	23.3	1.13 (s, 3H)	23.5
20	$1.87(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{a}} / 1.84(\mathrm{~s}, 3 \mathrm{H})^{\text {b }}$	28.3	1.87 (s, 3H)	28.5
OH	-		-	

${ }^{a}$ Chemical shifts and coupling constants are reported by El-Naggar et al. (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \mathrm{D}_{2} \mathrm{O}$ exchanged) ${ }^{[7]}$
${ }^{b}$ Chemical shifts and coupling constants are reported by Kan et al. $\left(250 \mathrm{MHz} \text { in } \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)^{[2]}$
${ }^{c}$ TMS was used as internal standard: d_{H} in ppm, J values (Hz) are in parentheses.
${ }^{d}$ TMS was used as internal standard.
${ }^{e} 600 \mathrm{MHz}$ NMR spectrometer ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \mathrm{D}_{2} \mathrm{O}$ exchanged).

Table S6. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Natural and Synthesized Principinol E (2).

Principinol E (2)

Position	Natural product $\mathbf{2}^{\text {a }}$		Synthesized $\mathbf{2}^{\text {d }}$	
	$\delta_{H}(\mathrm{~m}, ~ J[\mathrm{~Hz}])^{\text {b }}$	$\delta_{C}{ }^{\text {c }}$	$\left.\delta_{\text {H }}(\mathrm{m}, \mathrm{JHz}]\right)^{\text {b }}$	$\delta_{C}{ }^{\text {c }}$
1	2.80 (t, 9.2, 1H)	56.2	2.81 (t, 9.3, 1H)	56.5
2	2.24 (m, 1H); 1.95 (dd, 14.7, 9.2, 1 H)	36.2	2.25 (ddd, 14.6, 9.3, 5.1 1H); 1.99-1.93 (m, 1 H)	36.4
3	3.74 (d, 5.2, 1H)	84.2	3.75 (dd, 7.3, 5.0, 1H)	84.4
4	-	50.5	-	50.7
5	-	86.5	-	86.6
6	3.77 (d, 10.3, 1H)	69.5	3.80 (dd, 10.1, 5.8, 1H)	69.8
7	2.46 (1H); 1.64 (1H)	37.6	2.51-2.45 (m, 1H); 1.67-1.62 (m, 1H)	37.9
8	-	54.1	-	54.3
9	2.16 (d, 7.1, 1H)	50.0	2.17 (d, 7.1, 1H)	50.3
10	-	152.5	-	152.8
11	1.74 (1H); 1.56 (dd, 13.1, 5.0, 1H)	26.5	1.75-1.71 (m, 1H); 1.59-1.54 (m, 1H)	26.7
12	1.81 (m, 1H); 1.64 (1H)	24.1	1.86-1.78 (m, 1H); 1.67-1.62 (m, 1H)	24.3
13	2.46 (1H)	54.0	2.53-2.51 (m, 1H)	54.3
14	4.05 (s, 1H)	79.5	4.04 (d, 8.9, 1H)	79.6
15	5.08 (s, 1H)	129.4	5.10-5.08 (m, 1H)	129.7
16	-	138.9	-	139.1
17	1.74 (s, 3H)	15.4	1.75 (d, 1.5, 3H)	15.6
18	0.97 (s, 3H)	22.3	0.98 (s, 3H)	22.5
19	1.24 (s, 3H)	19.8	1.24 (s, 3H)	20.0
20	5.26 (s, 1H); 5.15 (s, 1H)	111.8	5.26 (s, 1H); 5.15 (d, 0.9, 1H)	111.9
OH	-		$\begin{gathered} 3.41(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{~d}, 7.5,1 \mathrm{H}) \\ 2.02(\mathrm{~d}, 10.0,1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}) \end{gathered}$	

[^0]Table S7. Comparison of the ${ }^{1} \mathrm{H}$ NMR Data for Natural and Synthesized Rhodomollein XX (3).

Rhodomollein XX (3)

Position	Natural product $3^{\text {a }}$	Synthesized $\mathbf{3}$ by Ding ${ }^{\text {b }}$	Synthesized $\mathbf{3}$ by us ${ }^{\text {d }}$
	$\delta_{\text {H }}(\mathrm{m}, \mathrm{JHz]})^{\text {c }}$	$\delta_{\text {H }}(\mathrm{m}, \mathrm{JHz]})^{\text {c }}$	$\delta_{\text {H }}(\mathrm{m}, \mathrm{JHz]})^{\text {c }}$
1	-	-	-
2	-	-	-
3	4.29 (s, 1H)	4.23 (d, 3.9, 1H)	4.18 (d, 4.1, 1H)
4	-	-	-
5	-	-	-
6	5.51 (dd, 5.4, 3.1, 1H)	5.51 (dd, 5.4, 3.1, 1H)	5.46-5.42 (m, 1H)
7	$\begin{aligned} & 3.35 \text { (dd, 14.8, 3.1, 1H); } \\ & 2.40 \text { (dd, 14.8, 5.4, 1H) } \end{aligned}$	$\begin{aligned} & 3.35 \text { (dd, 14.8, 3.4, 1H); } \\ & 2.40 \text { (dd, 14.8, 6.1, 1H) } \end{aligned}$	$\begin{aligned} & 3.32(\mathrm{dd}, 14.8,3.3,1 \mathrm{H}) \text {; } \\ & 2.34(\mathrm{dd}, 14.9,6.3,1 \mathrm{H}) \end{aligned}$
8	-	-	-
9	2.78 (d, 6.9, 1H)	2.78 (d, 6.8, 1H)	2.74 (d, 6.9, 1H)
10	-	-	-
11	2.18-2.06 (m, 1H); 1.64-1.58 (m, 1H)	2.12 (dd, 14.9, 5.7, 1H); 1.65-1.61 (m, 1H)	2.08 (dd, 14.5, 5.7, 1H); 1.60-1.56 (m, 1H)
12	2.58-2.44 (m, 1H); 1.76-1.68 (m, 1H)	2.58-2.52 (m, 1H); 1.76-1.70 (m, 1H)	2.50-2.44 (m, 1H); 1.70-1.65 (m, 1H)
13	2.53 (d, 6.6, 1H)	2.53 (d, 7.0, 1H)	2.50-2.44 (m, 1H)
14	5.14 (d, 6.6, 1H)	5.14 (d, 8.3, 1H)	5.08 (d, 7.8, 1H)
15	2.37 (d, 15.0, 1H); 2.32 (d, 15.0, 1H)	2.35 (d, 15.0, 1H); 2.32 (d, 15.0, 1H)	2.31 (d, 14.8, 1H); 2.27 (d, 14.7, 1H)
16	-	-	-
17	1.62 (s, 3H)	1.60 (s, 3H)	1.54 (s, 3H)
18	1.62 (s, 3H)	1.60 (s, 3H)	1.55 (s, 3H)
19	1.68 (s, 3H)	1.67 (s, 3H)	1.61 (s, 3H)
20	2.02 (s, 3H)	2.02 (s, 3H)	1.96 (s, 3H)
OH	-	-	-

${ }^{a}$ Chemical shifts and coupling constants are reported by Li et al. (400 MHz in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) ${ }^{[9]}$
${ }^{b}$ Chemical shifts and coupling constants are reported by Ding's group (400 MHz in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)^{[4 \mathrm{a}]}$
${ }^{c}$ TMS was used as internal standard: d_{H} in ppm, J values (Hz) are in parentheses.
${ }^{d} 600 \mathrm{MHz}$ NMR spectrometer ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$).

Table S8. Comparison of the ${ }^{13} \mathrm{C}$ NMR Data for Natural and Synthesized Rhodomollein XX (3).

Rhodomollein XX (3)

Position	Natural product $\mathbf{3}^{\text {a }}$	Synthesized 3 by Ding ${ }^{\text {b }}$	Synthesized 3 by us ${ }^{\text {d }}$
	$\delta_{C}{ }^{\text {c }}$	$\delta_{\text {C }}{ }^{\text {c }}$	$\delta_{C}{ }^{\text {c }}$
1	141.2	141.2	141.4
2	209.7	209.7	209.9
3	82.2	82.2	82.4
4	45.2	45.1	45.3
5	178.4	178.2	178.5
6	65.8	65.7	65.9
7	44.2	44.2	44.4
8	52.9	52.8	53.0
9	52.1	52.2	52.3
10	75.9	75.9	76.0
11	21.0	21.0	21.2
12	26.8	26.8	27.0
13	55.9	56.0	56.2
14	79.5	79.4	79.6
15	60.4	60.5	60.7
16	80.0	79.9	80.1
17	24.1	24.2	24.4
18	24.9	24.9	25.2
19	23.8	23.8	24.0
20	32.2	32.2	32.4

[^1]
II. Experimental Procedures and Spectroscopic Data

General Information

Unless otherwise mentioned, all reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF and ether were distilled from sodium-benzophenone, toluene was distilled from sodium, and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated.

Reactions were monitored by thin layer chromatography (TLC) carried out on 0.25 mm E. Merck silica plates ($60 \mathrm{~F}-254$), using UV light as the visualizing agent and an ethanolic solution of ammonium molybdate and heat, or KMnO_{4} and heat as developing agents. If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China).

NMR spectra were recorded on Brüker Advance $400\left({ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{13} \mathrm{C} 100\right.$ $\mathrm{MHz})$, Brüker Advance $500\left({ }^{1} \mathrm{H} 500 \mathrm{MHz},{ }^{13} \mathrm{C} 125 \mathrm{MHz}\right)$ or Brüker Advance $600\left({ }^{1} \mathrm{H}\right.$ $600 \mathrm{MHz},{ }^{13} \mathrm{C} 150 \mathrm{MHz}$). TMS was used as internal standard for ${ }^{1} \mathrm{H}$ NMR (0.00 ppm), and solvent signal was used as reference for ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 7.26 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}\right.$, $\left.3.31 \mathrm{ppm}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 8.74,7.58,7.22 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 2.05 \mathrm{ppm}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $77.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}, 49.00 \mathrm{ppm}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 150.35,135.91,123.87 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$, 206.26, 29.84 ppm$)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

Mass spectrometric data were obtained using Brüker Apex IV FTMS using ESI (electrospray ionization) and Waters GCT (GC-MS) using EI (electron impact ionization). Infrared spectra were recorded on a Thermo Nicolet iS5 spectrometer. Optical rotations were measured on a InsMark IP-digi300 digital polarimeter with a LED light source at ambient temperature and are reported as follows: $[\alpha] \lambda$ ($\mathrm{c} \mathrm{g} / 100$ mL).

Synthesis of compound S1

The procedure was modified from the reported protocol. ${ }^{[10,11]}$
To a solution of 2,2-dimethylcyclopentanedione ($10.0 \mathrm{~g}, 79.2 \mathrm{mmol}, 1.00$ equiv) in toluene (160 mL) was added (R)-oxazaborolidine ($31.7 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, 31.7 $\mathrm{mmol}, 0.40$ equiv) and $\mathrm{PhNEt}_{2}(6.30 \mathrm{~mL}, 39.6 \mathrm{mmol}, 0.50$ equiv). The reaction mixture was cooled to $-60^{\circ} \mathrm{C}$, then a solution of catecholborane ($111 \mathrm{~mL}, 1 \mathrm{M}$ in toluene, $111 \mathrm{mmol}, 1.40$ equiv) was added with syring pump over 2 h . The reaction was stirred for 30 min at the same temperature, and then quenched with $\mathrm{MeOH}(30$ $\mathrm{mL})$. The mixture was allowed to warm to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$. Then saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and 3 M NaOH aqueous solution $(100 \mathrm{~mL})$ were added to the flask. The mixture was stirred vigorously for 1 h . The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL}), 0.5 \mathrm{M} \mathrm{HCl}$ aqueous solution (80 mL) and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then $\mathrm{Et}_{2} \mathrm{O}$ was removed under vacuum. The resulting solution was loaded onto a silica gel and flushed with PE to remove toluene, and then purified by flash column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}=1 / 5\right.$ to $\left.2 / 1\right)$ to give compound $\mathbf{S} 1(5.14 \mathrm{~g}, 40.1 \mathrm{mmol}, 83 \%$ ee) as a colorless oil in 51% yield.

The characterization data are consistent with those reported in the literature. ${ }^{[10, ~ 11]}$

${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.18$ (m, 2H), $1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 221.4,78.3,50.2,34.3,27.8,22.3,16.9$.

Synthesis of compound (+)-10

To a solution of compound $\mathbf{S 1}$ ($15.0 \mathrm{~g}, 117 \mathrm{mmol}, 1.00$ equiv) in DCM (540 mL) was added pyridine ($12.0 \mathrm{~g}, 152 \mathrm{mmol}, 1.30$ equiv), DMAP ($4.40 \mathrm{~g}, 35.1 \mathrm{mmol}, 0.30$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}\left(17.9 \mathrm{~g}, 175 \mathrm{mmol}, 1.50\right.$ equiv) sequentially at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature and then quenched with saturated aq. $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with DCM ($3 \times 300 \mathrm{~mL}$). The combined organic layers were washed with 0.5 M HCl aqueous solution $(3 \times 150 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 50$ to $1 / 5)$ to give compound $(+)-\mathbf{1 0}(19.0 \mathrm{~g}, 112 \mathrm{mmol})$ as a pale yellow oil in 96% yield.

The H-NMR data are consistent with that reported in the literature. ${ }^{[12]}$

$\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{EtOAc} / \mathrm{PE}=1 / 3)$
$[\boldsymbol{\alpha}]_{D}^{17}+68.2\left(c 1.0 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{3} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]:$171.1016; Found:
171.1014.

IR (neat, cm^{-1}): 2973, 1735, 1470, 1373, 1239, 1076, 1048, 1026.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.13(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 219.8,170.5,79.8,49.2,34.2,25.5,22.7,21.2,17.7$.

Synthesis of compound S2

A flame-dried 1 L round-bottom flask equipped with a stir bar was charged with $\mathrm{CHCl}_{3}(400 \mathrm{~mL})$ and phosphorus tribromide ($118 \mathrm{~g}, 436 \mathrm{mmol}, 3.90$ equiv) under N_{2}. The mixture was cooled to $0^{\circ} \mathrm{C}$. DMF ($63.7 \mathrm{~g}, 873 \mathrm{mmol}, 7.80$ equiv) was added to the flask and then the mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. Then compound (+)-10 ($19.0 \mathrm{~g}, 112 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CHCl}_{3}(40 \mathrm{~mL})$ was added to the flask at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to heat to $50^{\circ} \mathrm{C}$ and stirred for 40 h .

The mixture was slowly added into saturated aq. NaOAc (400 mL), and then 2 M NaOH aqueous solution $(700 \mathrm{~mL})$ and saturated aq. $\mathrm{NaHCO}_{3}(450 \mathrm{~mL})$ were added slowly at $0^{\circ} \mathrm{C}$. The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 400 \mathrm{~mL})$. The combined organic layers were washed with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{PE}=1 / 20\right.$ to $\left.1 / 5\right)$ to give compound $\mathbf{S 2} 2(16.7 \mathrm{~g}, 64.0 \mathrm{mmol})$ as a pale yellow oil in 57% yield.

$$
\mathbf{R}_{\mathbf{f}}=0.65(\mathrm{EtOAc} / \mathrm{PE}=1 / 3)
$$

$$
[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{2 \boldsymbol{2 9}}+29.4\left(c \quad 1.0 \mathrm{CHCl}_{3}\right)
$$

HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrO}_{3} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 261.0121; Found: 261.0121.

IR (neat, cm^{-1}): 2968, 1746, 1677, 1605, 1464, 1373, 1236, 1042.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{dd}, \mathrm{J}=6.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}$ $=16.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, \mathrm{J}=16.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 189.6, 170.6, 150.1, 135.4, 77.3, 53.3, 34.9, 24.8, 21.1, 19.7.

Synthesis of compound (+)-8

To a solution of compound $\mathbf{S 2}(10.2 \mathrm{~g}, 39.0 \mathrm{mmol}, 1.00$ equiv) in MeOH (160 $\mathrm{mL})$ was added $\mathrm{HC}(\mathrm{OMe})_{3}(41.4 \mathrm{~g}, 390 \mathrm{mmol}, 10.0$ equiv) and $p \mathrm{TSA}(742 \mathrm{mg}, 3.90$ $\mathrm{mmol}, 0.10$ equiv) at room temperature. The reaction mixture was stirred for 1 h at the same temperature and then quenched with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL}) . \mathrm{MeOH}$ was removed under vacuum and the mixture was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 100$ to $1 / 20)$ to give compound $(+) \mathbf{8}(11.3 \mathrm{~g}, 36.8 \mathrm{mmol})$ as a colorless oil in 95% yield.

$\mathbf{R}_{\mathbf{f}}=0.65(\mathrm{EtOAc} / \mathrm{PE}=1 / 3)$
$[\alpha]_{\boldsymbol{D}}^{29}+16.0\left(c 1.0 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{BrNaO}_{4} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 329.0359$;
Found: 329.0355.
IR (neat, cm^{-1}): 2968, 2829, 1743, 1464, 1371, 1238, 1106, 1070.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.11(\mathrm{dd}, \mathrm{J}=7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, 3 H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{dd}, \mathrm{J}=16.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=16.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06$ (s, 3H), 1.13 (s, 3H), 1.05 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,133.5,130.5,101.8,78.0,54.6,54.5,51.3$, 35.6, 25.3, 21.2, 20.0.

Preparation of compound 11

To a solution of (+)-9 ${ }^{[13]}(16.5 \mathrm{~g}, 73.6 \mathrm{mmol}, 1.00$ equiv) in DCM $(360 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($15.3 \mathrm{~mL}, 110 \mathrm{mmol}, 1.50$ equiv) followed by TMSOTf (16.6 $\mathrm{mL}, 92.0 \mathrm{mmol}, 1.25$ equiv). After being stirred at the same temperature for 30 min , the reaction mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with DCM $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to afford crude silyl enol ether 11 (20.6 g, quantitative) that could be used without further purification.

Two-step synthesis of compound (+)-7a

To a solution of compound (+)-8 ($3.15 \mathrm{~g}, 10.3 \mathrm{mmol}, 1.00$ equiv), compound $\mathbf{1 1}$ $\left(3.97 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.30\right.$ equiv) and $(+)-\mathrm{A}^{[14]}(1.07 \mathrm{~g}, 1.55 \mathrm{mmol}, 0.15$ equiv) in ${ }^{t} \mathrm{BuOMe}(100 \mathrm{~mL})$ was added TMSOTf ($0.28 \mathrm{~mL}, 1.55 \mathrm{mmol}, 0.15$ equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at the same temperature, then the reaction mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The layers were separated and the aqueous phase was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo.

The residue was dissolved in $\mathrm{DCM}(90 \mathrm{~mL})$, and $\mathrm{EtAlCl}_{2}(6.90 \mathrm{ml}, 1.8 \mathrm{M}$ in toluene, $12.4 \mathrm{mmol}, 1.20$ equiv) was added at $0^{\circ} \mathrm{C}$. After being stirred at the same temperature for 1 h , the reaction mixture was quenched with saturated aq. NaHCO_{3} $(20 \mathrm{~mL})$ and saturated aq. Rochelle's salt (60 mL) diluted with EtOAc (50 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$).

The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 30$ to $1 / 1$ to pure EtOAc) to give compound $(+)-7 \mathbf{a}(2.29 \mathrm{~g}$, $5.37 \mathrm{mmol})$ as a pale yellow oil in 52% yield and $(+)-7 \mathrm{~b}(0.273 \mathrm{~g}, 0.641 \mathrm{mmol})$ as a white solid in 6% yield over 2 steps, also recover $(+)-\mathbf{A}(1.02 \mathrm{~g}, 1.48 \mathrm{mmol})$.

Following the procedure reported by Jacobsen's group, ${ }^{[14]}$ we prepared both ligands $(+)-\mathbf{A}$ and its enantiomer, (-)-A.

One-pot synthesis of compound (+)-7a

To a solution of compound (+)-8(3.15 g, $10.3 \mathrm{mmol}, 1.00$ equiv), compound $\mathbf{1 1}$ $\left(3.97 \mathrm{~g}, 13.4 \mathrm{mmol}, 1.30\right.$ equiv) and (+)-A ($1.07 \mathrm{~g}, 1.55 \mathrm{mmol}, 0.15$ equiv) in ${ }^{t} \mathrm{BuOMe}$ $(100 \mathrm{~mL})$ was added TMSOTf $\left(0.28 \mathrm{~mL}, 1.55 \mathrm{mmol}, 0.15\right.$ equiv) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h at the same temperature. $\mathrm{Et}_{3} \mathrm{~N}$ ($0.64 \mathrm{~mL}, 4.64$ $\mathrm{mmol}, 0.45$ equiv) and $\mathrm{MeOH}(0.25 \mathrm{~mL}, 6.23 \mathrm{mmol}, 0.60$ equiv) was added slowly to the flask and the reaction mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$, then the mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After diluting with DCM $(200 \mathrm{~mL}), \mathrm{EtAlCl}_{2}(11.4 \mathrm{ml}$, 1.8 M in toluene, $20.6 \mathrm{mmol}, 2.00$ equiv) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 1 h , and then was quenched with saturated aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and saturated aq. Rochelle's salt $(150 \mathrm{~mL})$ diluted with EtOAc (50 $\mathrm{mL})$. The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 30$ to $1 / 1$ to pure EtOAc) to give compound $(+)-7 \mathbf{a}(2.57 \mathrm{~g}, 6.01 \mathrm{mmol})$ as a pale yellow oil in 58% yield and recover $(+)-\mathbf{A}(1.00 \mathrm{~g}, 1.45 \mathrm{mmol})$.

$\mathbf{R}_{\mathbf{f}}=0.46(\mathrm{EtOAc} / \mathrm{PE}=1 / 5)$
$[\alpha]_{D}^{18}+6.2\left(c 0.5 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BrNO}_{4} \quad\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$:
444.1744; Found: 444.1747.

IR (neat, cm^{-1}): 2930, 1742, 1724, 1459, 1372, 1239, 1090, 1046.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.12(\mathrm{dd}, \mathrm{J}=7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=16.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.79 (dd, J = 16.4, 7.0 Hz, 1H), 2.46 (dd, J = 16.4, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H})$, $2.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dd}, \mathrm{J}=$ $10.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,157.1,136.9,130.2,103.1,79.9,78.1,77.7$, 56.8, 54.9, 51.1, 49.2, 45.3, 42.7, 40.4, 36.4, 25.3, 24.4, 23.6, 21.2, 19.8.

$\mathbf{R}_{\mathbf{f}}=0.42(\mathrm{EtOAc} / \mathrm{PE}=1 / 5)$
$[\alpha]_{D}^{18}+87.7\left(c \quad 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $130-132{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BrO}_{4} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 427.1478; Found: 427.1485.
IR (neat, cm^{-1}): 2960, 2927, 1743, 1720, 1372, 1241, 1085, 1045.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11(\mathrm{dd}, \mathrm{J}=6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{t}, \mathrm{J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=16.3,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.55 (dd, J = 16.8, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.42(\mathrm{dt}, \mathrm{J}=16.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=16.3,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.59$ $-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,156.1,137.8,129.5,103.0,78.3,77.8,77.1$, 56.0, 51.0, 48.5, 48.3, 47.5, 46.7, 37.5, 35.9, 24.6, 23.7, 22.2, 21.2, 20.3.

CCDC 2144563 contains the supplementary crystallographic data for compound $(+)-7 \mathbf{b}$ and is available free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Synthesis of compound (+)-12

To the solution of compound (+)-7a ($4.15 \mathrm{~g}, 9.71 \mathrm{mmol}, 1.00$ equiv) in EtOH (83 $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(125 \mathrm{~mL})$ and toluene $(250 \mathrm{~mL}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4(2.80 \mathrm{~g}, 2.43 \mathrm{mmol}, 0.25$ equiv $)$, potassium vinyltrifluoroborate $\left(9.11 \mathrm{~g}, 68.0 \mathrm{mmol}, 7.00\right.$ equiv) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(10.3 \mathrm{~g}$, $97.1 \mathrm{mmol}, 10.0$ equiv) were added sequentially at room temperature. The reaction mixture was allowed to reflux for 72 h under air atmosphere, and then the mixture was allowed to cool to room temperature. EtOH and toluene were removed under reduced pressure, then $\mathrm{MeOH}(125 \mathrm{~mL})$ and $\mathrm{NaOH}(4.15 \mathrm{~g}, 104 \mathrm{mmol}, 10.7$ equiv) were added to the flask and the reaction mixture was stirred for 30 min at $50^{\circ} \mathrm{C}$. MeOH was removed under reduced pressure and the mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$. The mixture was subsequently extracted with EtOAc $(4 \times 150 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 30$ to $1 / 1)$ to give compound $(+) \mathbf{- 1 2}$ $(2.92 \mathrm{~g}, 8.78 \mathrm{mmol})$ as a light yellow foam in 90% yield.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$
$[\alpha]_{D}^{24}+10.2\left(c 0.5 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{3} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 333.2424$;
Found: 333.2424.
IR (neat, cm^{-1}): 2953, 2928, 1655, 1456, 1362, 1190, 1086, 1048.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.41(\mathrm{dd}, \mathrm{J}=17.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=17.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{dd}, \mathrm{J}=16.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (dd, J = 16.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.36(\mathrm{dd}, \mathrm{J}=16.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dd}, \mathrm{J}=10.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.41$ (dd, J = 10.7, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 1.38 - 1.29 (m, 3H), 1.15 (s, 3H), 1.14 (s, 3H), 1.09 (s, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,144.9,137.6,129.4,116.9,103.3,80.0,78.0$, 78.0, 56.03, 54.9, 50.4, 48.9, 45.2, 42.9, 40.5, 38.1, 25.1, 25.0, 23.6, 19.5.

Synthesis of compound (+)-4

To a solution of compound (+)-12 ($4.00 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.00$ equiv) in DCM $(240 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(10.1 \mathrm{~g}, 120 \mathrm{mmol}, 10.0$ equiv) and DMP ($10.2 \mathrm{~g}, 24.0$ mmol, 2.00 equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 4 h at the same temperature, then was quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(400 \mathrm{~mL})$ diluted with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with 0.5 M NaOH aqueous solution $(3 \times 240 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to obtain crude $\mathbf{6}$ that was used without purification.

The residue of crude $\mathbf{6}$ was dissolved in DCM (320 mL). Pyridine ($2.84 \mathrm{~mL}, 36.0$ mmol, 3.00 equiv) and $\mathrm{Tf}_{2} \mathrm{O}$ ($3.00 \mathrm{~mL}, 18.0 \mathrm{mmol}, 1.50$ equiv) were added sequentially at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 0.5 h at $0{ }^{\circ} \mathrm{C}$ and then allowed to warm to room temperature with stirring for 1.5 h . Subsequently, ${ }^{i} \mathrm{PrOH}$ ($2.76 \mathrm{~mL}, 36 \mathrm{mmol}, 3.00$ equiv) was added to the flask and the solution was concentrated in vacuo and azeotroped with toluene ($3 \times 30 \mathrm{~mL}$). The residue was dissolved in DCE (400 mL) and 4-Ph-pyridine ($2.80 \mathrm{~g}, 18.0 \mathrm{mmol}, 1.50$ equiv) was added. The reaction mixture was allowed to stir for 14 h at $80{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. DCE was removed under vacuum, the residue was diluted with $\mathrm{H}_{2} \mathrm{O}(400$ $\mathrm{mL})$, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 50$ to $1 / 5$) to give compound $(+)-4(1.65 \mathrm{~g}, 5.28 \mathrm{mmol})$ as a light yellow oil in 44% yield over 2 steps.

$\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{EtOAc} / \mathrm{PE}=1 / 5)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 4}}+56 . .9\left(c 0.5 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m / z) calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 313.2162$;
Found: 313.2161.
IR (neat, cm^{-1}): 2924, 1701, 1570, 1455, 1114, 1094, 1071, 873.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{ddd}, \mathrm{J}=7.2,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (s, 1H), $4.64(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=$ $16.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=17.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, \mathrm{J}=16.1,7.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.03-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, $3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,171.1,157.6,147.9,128.0,125.6,102.2,83.0$, 58.2, 55.3, 52.1, 47.9, 46.0, 44.8, 42.2, 40.5, 38.4, 25.2, 25.0, 23.6, 22.8.

Synthesis of compound (+)-14

To a solution of compound (+)-4 (3.25 g, $10.4 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CDCl}_{3}(150$ mL) was added TPP ($3.5 \mathrm{mg}, 5.7 \mu \mathrm{~mol}, 0.00055$ equiv), pyridine ($0.42 \mathrm{ml}, 5.20 \mathrm{mmol}$, 0.50 equiv), DMAP ($76.2 \mathrm{mg}, 0.620 \mathrm{mmol}, 0.06$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(1.20 \mathrm{~mL}, 12.5$ $\mathrm{mmol}, 1.20$ equiv). The solution was degassed by O_{2} over 15 min . The reaction mixture was allowed to stir for 36 h under $\mathrm{O}_{2}(1 \mathrm{~atm})$ with the irradiation of three fluorescent lamps (Essential 65 W , PHILIPS®, distance $\sim 2 \mathrm{~cm}$) at $0{ }^{\circ} \mathrm{C}$ (complete consumption of the starting material was indicated by TLC). The reaction was stopped by removing the light source and then allowed to warm to room temperature with stirring for 5 h . The reaction mixture was concentrated in vacuo and azeotroped with toluene ($3 \times 30 \mathrm{~mL}$). The residue was dissolved in xylene (53 mL), and $[\mathrm{IrCl}(\mathrm{cod})]_{2}\left(698 \mathrm{mg}, 1.04 \mathrm{mmol}, 0.10\right.$ equiv) and $\mathrm{PPh}_{3}(546 \mathrm{mg}, 2.08 \mathrm{mmol}, 0.20$ equiv) were added. The reaction mixture was degassed by a freeze-pump-thaw method for two times, and then allowed to reflux for 2.5 h . Subsequently, the reaction mixture was cooled to room temperature and quenched with brine (100 mL). The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 70 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 30$ to $1 / 3)$ to give compound $(+)-\mathbf{1 4}(1.95 \mathrm{~g}, 6.53 \mathrm{mmol})$ as a light yellow oil in 63% yield. This compound solidified during storage in the refrigerator $\left(-20^{\circ} \mathrm{C}\right)$.

$\mathbf{R}_{\mathbf{f}}=0.6(\mathrm{EtOAc} / \mathrm{PE}=1 / 3)$
$[\alpha]_{D}^{17}+211.4\left(c 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $84-86^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]:$299.2006; Found: 299.2004.

IR (neat, cm^{-1}): 2923, 2861, 1702, 1571, 1454, 1357, 1118, 1082.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{ddd}, \mathrm{J}=7.6,5.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (d, J = 5.7 Hz, 1H), $5.42(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$, 2.70 (dd, J = 16.4, 5.0 Hz, 1H), 2.29 (dd, J = 16.4, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.88 (dt, J = 8.7, 4.1 $\mathrm{Hz}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ - $1.23(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.1,170.3,147.4,138.8,132.4,129.1,126.2,83.8$, $60.2,57.9,53.3,48.3,48.2,46.5,36.9,31.6,25.8,25.3,24.5,22.6$.

CCDC 2144671 contains the supplementary crystallographic data for compound $(+)-14$ and is available free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Synthesis of compound (+)-16

To a solution of compound (+)-14 ($1.02 \mathrm{~g}, 3.42 \mathrm{mmol}, 1.00$ equiv) in THF (80 mL) was added KHMDS ($8.55 \mathrm{~mL}, 1 \mathrm{M}$ in THF, $8.55 \mathrm{mmol}, 2.50$ equiv) within 15 s at room temperature. The reaction mixture was allowed to stir for 5 min at the same temperature and then quenched with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$. The mixture was diluted with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was briefly purified by passing through a short column of silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 20$) to give crude 15.

The residue obtained was dissolved in DCM (55 mL) and then TPP $(1 \mathrm{mg}, 1.6$ $\mu \mathrm{mol}, 0.00047$ equiv) was added. The solution was degassed by O_{2} over 5 min . The reaction mixture was allowed to stir for 20 min under $\mathrm{O}_{2}(1 \mathrm{~atm})$ with the irradiation of three fluorescent lamps (Essential 65 W , PHILIPS®, distance $\sim 2 \mathrm{~cm}$) at $0{ }^{\circ} \mathrm{C}$ (complete consumption of the starting material was indicated by TLC). The reaction was stopped by removing the light source, then m CPBA $(70 \% \mathrm{wt} / \mathrm{wt}, 1.10 \mathrm{~g}, 4.45$ mmol, 1.30 equiv) was added to the flask at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was allowed to stir for 3.5 h at the same temperature. Subsequently, the reaction mixture was concentrated in vacuo and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, then Zn ($5.59 \mathrm{~g}, 85.5 \mathrm{mmol}, 25.0$ equiv) and $\mathrm{AcOH}(9.80 \mathrm{~mL}, 171 \mathrm{mmol}, 50.0$ equiv) were added sequentially at room temperature. The reaction mixture was stirred vigorously
for 1 h at the same temperature, and was quenched with saturated aq. $\mathrm{NaHCO}_{3}(200$ $\mathrm{mL})$. The layers were separated and the aqueous phase was extracted with EtOAc $(4 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 15$ to $1 / 1)$ to give compound $(+) \mathbf{- 1 6}(707 \mathrm{mg}, 2.23 \mathrm{mmol})$ as a white solid in 65% yield over 2 steps.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc} / \mathrm{PE}=1 / 1)$
$[\boldsymbol{\alpha}]_{D}^{17}+72.3\left(c 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $180-182{ }^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 317.1747; Found: 317.1743.
IR (neat, cm^{-1}): 2967, 1749, 1662, 1457, 1383, 1209, 1078, 916.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.79-4.74(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=12.5,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}$, $\mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.52(\mathrm{dt}, \mathrm{J}=11.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{dd}$, $\mathrm{J}=13.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 217.4,199.6,159.1,137.5,65.0,58.8,58.4,54.7$, 53.8, 47.1, 42.7, 42.5, 41.6, 41.0, 34.0, 22.6, 22.5, 21.4, 20.4.

Synthesis of compound (+)-17a

To a solution of compound (+)-16 (1.38 g, $4.36 \mathrm{mmol}, 1.00$ equiv) in DCM (140 $\mathrm{mL})$ was added $\mathrm{EtAlCl}_{2}\left(1.94 \mathrm{ml}, 0.9 \mathrm{M}\right.$ in heptane, $1.74 \mathrm{mmol}, 0.40$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, and then was quenched with saturated aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and saturated aq. Rochelle's salt $(150 \mathrm{~mL})$ diluted with EtOAc (200 mL). The mixture was stirred for 30 min , then the layers were separated and the aqueous phase was extracted with EtOAc ($4 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified carefully by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 15$ to $3 / 1)$ to give compound $(+) \mathbf{- 1 7 a}$
$(690 \mathrm{mg}, 2.18 \mathrm{mmol})$ as a white solid in 50% yield and compound $(+) \mathbf{- 1 7 b}(269 \mathrm{mg}$, 0.850 mmol) as a white solid in 19% yield.

$\mathbf{R}_{\mathbf{f}}=0.3(\mathrm{EtOAc} / \mathrm{PE}=2 / 1)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{17}+75.7\left(c \quad 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $179-181^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 317.1747; Found: 317.1741.
IR (neat, cm^{-1}): 3517, 2927, 1752, 1658, 1198, 1045, 904, 729.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=15.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (dd, J = 13.5, 5.9 Hz, 1H), $1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=$ $4.4 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 1.64(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.35(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 217.6,201.6,159.8,140.9,136.8,129.0,83.6,65.2$, 54.9, 53.7, 51.6, 51.0, 41.6, 39.5, 22.6, 22.4, 22.0, 20.8, 15.6.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc} / \mathrm{PE}=2 / 1)$
$[\boldsymbol{\alpha}]_{D}^{17}+42.0\left(c 0.2 \mathrm{CHCl}_{3}\right)$
Melting point: $199-201^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 317.1747; Found: 317.1740.
IR (neat, cm^{-1}): 3521, 2919, 2850, 1751, 1664, 1403, 1037, 862.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.02-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, \mathrm{~J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72$ (d, J = 17.2 Hz, 1H), 2.66-2.59 (m, 2H), 2.43 (dd, J = 15.4, 6.9 Hz, 1H), $2.21(\mathrm{dd}, \mathrm{J}=15.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, \mathrm{J}=13.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.67 (d, J = $4.3 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.5,201.4,159.9,153.1,137.0,107.4,81.2,65.3$, 55.6, 54.9, 52.1, 46.4, 45.9, 43.2, 41.6, 31.1, 22.6, 22.5, 20.4.

Isomerization of compound (+)-17b to compound (+)-17a

To the solution of compound $(+) \mathbf{- 1 7 b}(50.0 \mathrm{mg}, 0.158 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Co}\left(\mathrm{Sal}^{\mathrm{Bu}, \mathrm{Bu}}\right) \mathrm{Cl}^{[15]}(5.1 \mathrm{mg}, 0.00790 \mathrm{mmol}, 0.05$ equiv) in acetone $(1.8 \mathrm{~mL})$ was degassed by bubbling N_{2} through the solution for 10 min . $\mathrm{PhSiH}_{3}(2 \mu \mathrm{~L}, 0.0158 \mathrm{mmol}$, 0.10 equiv) was added at room temperature. The mixture was degassed by bubbling N_{2} through the solution for 1 min again and stirred for 27 h at room temperature. The mixture was concentrated in vacuo. The residue was purified carefully by flash column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 15$ to $3 / 1)$ to give compound (+)-17a ($23.0 \mathrm{mg}, 0.0727 \mathrm{mmol}$) as a white solid in 46% yield ($57 \% \mathrm{brsm}$) and recover compound $(+)-\mathbf{1 7 b}(9.7 \mathrm{mg}, 0.0306 \mathrm{mmol})$ as a white solid.

Synthesis of compound (+)-18

To a solution of compound (+)-17a ($1.00 \mathrm{~g}, 3.16 \mathrm{mmol}, 1.00$ equiv) in THF (200 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(1.10 \mathrm{~mL}, 7.90 \mathrm{mmol}, 2.50$ equiv) followed by TBSOTf (1.02 $\mathrm{mL}, 4.42 \mathrm{mmol}, 1.40$ equiv) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 5 min , and then was quenched with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ diluted with EtOAc (50 mL). The layers were separated and the aqueous phase was then extracted with $\mathrm{EtOAc}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc/PE $=1 / 15$ to $1 / 2$) to give compound $(+) \mathbf{- 1 8}(1.13 \mathrm{~g}, 2.62 \mathrm{mmol})$ as a white solid in 83% yield.

$\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{EtOAc} / \mathrm{PE}=1 / 2)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{17}+71.0\left(c 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $178-180^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O} 4 \mathrm{Si} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 431.2612$; Found: 431.2608 .

IR (neat, cm^{-1}): 3666, 2958, 2928, 1753, 1653, 1393, 1253, 1068.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.36$ (m, 1H), 2.31 (dd, J = 15.7, 6.4 Hz, 1H), 2.00-1.87 (m, 2H), $1.83-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.17$ (s, 3H), $0.82(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.8,201.9,159.9,139.7,136.8,128.9,84.7,65.5$, $54.9,53.5,51.6,51.3,41.6,39.6,25.9,22.6,22.3,22.1,20.9,18.3,15.6,-4.0,-4.7$.

Synthesis of compound (+)-19

$(+)-18$

(+)-19

To the solution of compound (+)-18 ($1.12 \mathrm{~g}, 2.60 \mathrm{mmol}, 1.00$ equiv) in THF $(350 \mathrm{~mL})$ was added $\mathrm{MeLi}\left(24.4 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$, $39.0 \mathrm{mmol}, 15.0$ equiv) at $40{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min at $-40^{\circ} \mathrm{C}$ and then allowed to warm to $0^{\circ} \mathrm{C}$ with stirring for 40 min . After quenching the reaction with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ diluted with EtOAc $(200 \mathrm{~mL})$, the layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 15$ to $1 / 1$) to give compound $(+) \mathbf{- 1 9}(1.01 \mathrm{~g}, 2.26 \mathrm{mmol})$ as a white foam in 87% yield $(95 \%$ brsm) and recover compound $(+)-\mathbf{1 8}(0.105 \mathrm{~g}, 0.244 \mathrm{mmol})$ as a white solid.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc} / \mathrm{PE}=1 / 2)$
$[\alpha]_{D}^{17}+21.5\left(c 0.5 \mathrm{CHCl}_{3}\right)$
HRMS-ESI (m / z) calc. for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 447.2925$;
Found: 447.2922.
IR (neat, cm^{-1}): 3675, 2987, 2970, 1736, 1405, 1393, 1250, 1066.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{dd}$, $\mathrm{J}=15.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dd}, \mathrm{J}=15.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-$
$1.63(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}$, $9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.5,145.4,139.5,138.3,131.8,82.4,76.9,66.1$, 55.3, 53.9, 53.7, 44.8, 43.2, 40.0, 31.6, 26.1, 23.8, 23.4, 22.7, 21.5, 18.4, 15.5, -3.8, -4.3.

Synthesis of compound (+)-20

To the solution of compound $(+) \mathbf{- 1 9}(200 \mathrm{mg}, 0.448 \mathrm{mmol}, 1.00$ equiv) in DCM $(24 \mathrm{~mL})$ was added $\mathrm{VO}(\mathrm{acac})_{2}(17.8 \mathrm{mg}, 0.0671 \mathrm{mmol}, 0.15$ equiv) and TBHP $(5.5 \mathrm{M}$ in decane, $0.20 \mathrm{~mL}, 1.12 \mathrm{mmol}, 2.50$ equiv) sequentially at $-20^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 1.5 h at the same temperature. Subsequently, the reaction mixture was concentrated in vacuo and the residue was dissolved in DCM (20 mL), and DBU ($0.10 \mathrm{~mL}, 0.672 \mathrm{mmol}, 1.50$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature with stirring for 15 min . The reaction mixture was concentrated in vacuo and the residue was dissolved in THF (8 mL) and MeOH (8 mL) followed by the addition of 2 M HCl aqueous solution (12 mL). The reaction mixture was stirred for 20 min at room temperature, and was quenched with saturated aq. NaHCO_{3} diluted with $\mathrm{EtOAc}(30 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc (contains 15% THF, $6 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (EtOAc/DCM $=1 / 5$ to pure EtOAc $)$ to give compound $(+) \mathbf{- 2 0}(101 \mathrm{mg}, 0.290 \mathrm{mmol})$ as a white solid in 65% yield.

$\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{EtOAc})$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{1 5}}+70.2(c 0.3 \mathrm{MeOH})$
Melting point: $199-20{ }^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{5} \quad[\mathrm{M}-\mathrm{H}]^{-}: 347.1864$; Found: 347.1863.
IR (neat, cm^{-1}): 3358, 2960, 2919, 2850, 1693, 1258, 1016, 797.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{dd}, \mathrm{J}=$ $7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{dd}, \mathrm{J}=14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 213.3,190.4,139.6,131.4,127.0,85.7,81.0,78.8$, 73.5, 58.5, 55.9, 55.1, 45.8, 40.6, 31.9, 27.9, 24.6, 21.4, 18.8 15.4.

Synthesis of compound (+)-21

To the solution of compound (+)-20 ($158 \mathrm{mg}, 0.454 \mathrm{mmol}, 1.00$ equiv) in 1,4-dioxane (2.4 mL) followed by the addition of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution (3.2 mL). The reaction mixture was stirred for 24 h at $30^{\circ} \mathrm{C}$, and was quenched with saturated aq. NaHCO_{3} diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc (contains $15 \% \mathrm{THF}, 6 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{DCM}=1 / 30$ to $1 / 10)$ to give compound $(+)$-21 $(102 \mathrm{mg}, 0.278$ mmol) as a white solid in 61% yield ($92 \% \mathrm{brsm}$) and recover compound (+)-20 (53.0 $\mathrm{mg}, 0.152 \mathrm{mmol}$) as a white solid.

$\mathbf{R}_{\mathbf{f}}=0.2(\mathrm{DCM} / \mathrm{MeOH}=1 / 10)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{15}+24.6(c 0.3 \mathrm{MeOH})$
Melting point: $130-132{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{6} \quad[\mathrm{M}-\mathrm{H}]^{-}$: 365.1970; Found: 365.1973.
IR (neat, cm^{-1}): 3358, 2963, 2921, 1687, 1259, 1091, 1018, 798.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=8.3,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H})$, $1.88(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.31$ $(\mathrm{s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 213.3,190.4,126.7,85.3,82.2,81.1,78.2,73.3$, 59.1, 58.4, 55.3, 52.9, 51.8, 44.4, 31.8, 27.8, 26.9, 23.4, 20.7, 18.7.

Syntheses of compound (+)-22a and (-)-22b

To the solution of compound (+)-21 ($100 \mathrm{mg}, 0.273 \mathrm{mmol}, 1.00$ equiv) in THF $(40 \mathrm{~mL})$ was added DIBAL-H ($2.73 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, $2.73 \mathrm{mmol}, 10.0$ equiv) at $78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature and then allowed to warm to $-20{ }^{\circ} \mathrm{C}$ over 2 h . Subsequently, the reaction mixture was quenched with saturated aq. Rochelle's salt (80 mL) diluted with EtOAc (80 mL). The mixture was stirred for 30 min , then the layers were separated and the aqueous phase was extracted with EtOAc (contains 15% THF, $6 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel $(\mathrm{MeOH} / \mathrm{DCM}=$ $1 / 20$ to $1 / 5$ to $\mathrm{MeOH} / \mathrm{EtOAc}=1 / 3$) to give compound $(-)-\mathbf{2 2 b}(4 \mathrm{mg}, 0.0108 \mathrm{mmol})$ as a white solid in 4% yield and compound (+)-22a contaminated by a small amount of silica gel. Afterwards, this sample of compound (+)-22a was dissoved in EtOAc $(100 \mathrm{~mL})$ and then filtered through a short pad of cotton, and the combined solution was concentrated in vacuo to give pure compound (+)-22a ($76 \mathrm{mg}, 0.206 \mathrm{mmol}$) as a white solid in 75% yield .

$\mathbf{R}_{\mathbf{f}}=0.32(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{1 6}}+24.0(c 0.3 \mathrm{MeOH})$
Melting point: $203-205{ }^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{6} \quad[\mathrm{M}-\mathrm{H}]^{-}: 367.2126$; Found: 367.2127.
IR (neat, cm^{-1}): 3358, 2960, 2919, 2850, 1259, 1088, 1016, 796.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.73(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.90$ (dd, J = 8.9, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14-2.04 (m, 2H), $2.00(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}$, $3 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, \mathrm{J}=14.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 2 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, CD 3 OD) $\delta 156.3,127.7,86.5,82.1,80.8,80.3,76.8,70.6,59.2$, $56.0,55.5,53.1,52.2,44.8,32.8,27.0,23.5,21.5,21.0,19.5$.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$
$[\boldsymbol{\alpha}]_{D}^{16}-10.3(c 0.15 \mathrm{MeOH})$
Melting point: $193-195{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{6} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 391.2091; Found: 391.2096.
IR (neat, cm^{-1}): 3357, 2957, 2920, 2851, 1469, 1258, 1011, 798.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.90(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{dd}, \mathrm{J}=$ $7.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, \mathrm{J}=14.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.73$ (dd, J = 14.3, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, CD 3 OD) $\delta 161.1,125.4,86.7,82.6,81.6, ~ 81.2,77.2,72.6,59.4$, 54.9, 53.1, 51.0, 50.6, 43.4, 32.4, 27.1, 27.0, 23.4, 20.4, 18.5.

CCDC 2144673 contains the supplementary crystallographic data for compound (-)-22b and is available free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Synthesis of (+)-1-epi-grayanotoxin III (23)

(+)-22a

The solution of compound (+)-22a ($8.0 \mathrm{mg}, 0.0217 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Fe}(\mathrm{acac})_{3}$ $(1.5 \mathrm{mg}, 0.00434 \mathrm{mmol}, 0.20$ equiv) and $p-\mathrm{MePhSH}(0.54 \mathrm{mg}, 0.00434 \mathrm{mmol}, 0.20$ equiv) in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ was degassed by bubbling N_{2} through the solution for 10 min . $\mathrm{PhSiH}_{3}(5.4 \mu \mathrm{~L}, 0.0434 \mathrm{mmol}, 2.00$ equiv) was added at room temperature. The mixture was degassed again by bubbling N_{2} through the solution for 1 min . Then the flask was moved into a glove box and the reaction mixture was stirred for 44 h at room temperature in the glove box under N_{2} atmosphere. The flask was removed from the glove box and the mixture was concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=1 / 7$) to give (+)-1-epi-grayanotoxin III $23(4.9 \mathrm{mg}, 0.0132 \mathrm{mmol})$ as a white solid in 61% yield ($77 \% \mathrm{brsm}$) and recover compound (+)-22a ($1.7 \mathrm{mg}, 0.00461 \mathrm{mmol}$) as a white solid.

$\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$
$[\boldsymbol{\alpha}]_{D}^{16}+7.9(c 0.3 \mathrm{MeOH})$
Melting point: $157-159{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{6} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 393.2248; Found: 393.2248.
IR (neat, cm^{-1}): 3675, 2970, 2901, 1396, 1259, 1066, 1027, 879.
${ }^{1} \mathbf{H}$ NMR (600 MHz , acetone $-d_{6} \mathrm{D}_{2} \mathrm{O}$ exchanged) $5.05(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}$, 1 H), $3.44(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=13.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=10.4,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{dd}, \mathrm{J}=13.3,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.78(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.45$ (m, 2H), $1.40(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz , acetone- $d_{6} \mathrm{D}_{2} \mathrm{O}$ exchanged) $\delta 86.5,81.7,79.6,77.5,77.2,68.8$, $60.8,57.5,55.6,53.0,52.7,49.1,40.8,36.3,29.4,25.0,22.4,21.1,21.0,19.7$.

Synthesis of (-)-grayanotoxin III (1)

(+)-22a

(-)-Grayanotoxin III (1)

The solution of compound (+)-22a ($16.0 \mathrm{mg}, 0.0434 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{Mn}(\mathrm{dpm})_{3}(5.2 \mathrm{mg}, 0.00869 \mathrm{mmol}, 0.20$ equiv) in DCM (1.2 mL) was degassed by bubbling N_{2} through the solution for 10 min . TBHP $(12 \mu \mathrm{~L}, 5.5 \mathrm{M}$ in decane, 0.0651 mmol, 1.50 equiv) and $\mathrm{Ph}\left({ }^{i} \mathrm{PrO}\right) \mathrm{SiH}_{2}$ ($19.5 \mu \mathrm{~L}, 0.108 \mathrm{mmol}, 2.50$ equiv) were added sequentially at room temperature. The mixture was degassed again by bubbling N_{2} through the solution for 1 min . Then the flask was moved into a glove box and the reaction mixture was stirred for 27 h at room temperature in the glove box under N_{2} atmosphere. The flask was removed from the glove box and the mixture was concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=1 / 7$) to give $(-)$-grayanotoxin III (1) $(8.2 \mathrm{mg}, 0.0221 \mathrm{mmol}$) as a white solid in 51% yield ($64 \% \mathrm{brsm}$) and recover compound (+)-22a ($3.2 \mathrm{mg}, 0.00869 \mathrm{mmol}$) as a white solid.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{DCM} / \mathrm{MeOH}=1 / 5)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{1 4}}-12.6(c 0.2 \mathrm{MeOH})\left[\right.$ Lit. $^{7}:[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{]^{24}}-16(c 0.45 \mathrm{MeOH})$,
Lit. $\left.{ }^{2}:[\boldsymbol{\alpha}]_{D}^{25}-17.5(c 0.4 \mathrm{MeOH})\right]$
Melting point: 244-246 ${ }^{\circ} \mathrm{C}$ [Lit. ${ }^{16}: \mathrm{mp}=218{ }^{\circ} \mathrm{C}$, Lit. ${ }^{7}: \mathrm{mp}=$ $218-222{ }^{\circ} \mathrm{C}$, Lit. $\left.^{2}: \mathrm{mp}=213-214{ }^{\circ} \mathrm{C}\right]$

HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{6} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 393.2248$; Found: 393.2250.
IR (neat, cm^{-1}): 3339, 2920, 1466, 1410, 1121, 1044, 933, 876. [Lit. ${ }^{7}$: IR: 3280, 1453, 1373, 1030, 870, 710.]
${ }^{1}$ H NMR (600 MHz , pyridine- $d_{5} \mathrm{D}_{2} \mathrm{O}$ exchanged) $\delta 5.05$ ($\mathrm{s}, 1 \mathrm{H}$), 4.56 (dd, J = 11.2, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, \mathrm{J}=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, \mathrm{J}=$ 13.5, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.13$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{1} \mathbf{H}$ NMR (600 MHz , acetone- $d_{6} \mathrm{D}_{2} \mathrm{O}$ exchanged) $\delta 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.88$ (dd, J = 11.1, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (ddd, J = $15.1,11.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=13.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, \mathrm{J}=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.02(\mathrm{dd}, \mathrm{J}=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}$, $2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, \mathrm{J}=13.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz , pyridine- $d_{5} \mathrm{D}_{2} \mathrm{O}$ exchanged) $\delta 84.9,82.8,80.0,79.5,78.4,74.4$, $60.5,56.5,55.5,52.8,52.1,51.9,44.5,36.0,28.5,27.3,24.0,23.5,22.8,20.1$.
${ }^{13} \mathbf{C}$ NMR (150 MHz , acetone- $d_{6} \mathrm{D}_{2} \mathrm{O}$ exchanged) $\delta 83.7,82.1,79.3,78.5,77.4,73.0$, $59.2,55.2,54.6,51.5,51.0,50.2,43.1,34.6,27.1,26.2,22.7,22.5,21.5,18.4$.

Syntheses of compounds (-)-23a and (-)-23b

To a solution of compound (+)-18 ($20.0 \mathrm{mg}, 0.0464 \mathrm{mmol}, 1.00$ equiv) in DCM $(1.2 \mathrm{~mL})$ was added $\mathrm{VO}(\mathrm{acac})_{2}(6.2 \mathrm{mg}, 0.0232 \mathrm{mmol}, 0.50$ equiv) and TBHP $(5.5 \mathrm{M}$ in decane, $25.3 \mu \mathrm{~L}, 0.139 \mathrm{mmol}, 3.00$ equiv) sequentially at $0^{\circ} \mathrm{C}$. The resulting dark-brown solution was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$ before additional TBHP (5.5 M in decane, $12.6 \mu \mathrm{~L}, 0.0696 \mathrm{mmol}, 1.50$ equiv) was added to the reaction mixture. The reaction mixture was allowed to warm to room temperature with stirring for 20 min (complete consumption of the starting material was observed by TLC). The mixture was diluted with $\mathrm{EtOAc}(3 \mathrm{~mL})$ and quenched with the saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 3 \mathrm{~mL})$ and saturated aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo.

The residue was dissolved in degassed THF (1.5 mL , contains 0.08 mL D-valinol), and then $\mathrm{SmI}_{2}(1.16 \mathrm{~mL}, 0.1 \mathrm{M}$ in THF, 0.116 mmol , 2.50 equiv) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 min at the same temperature, and then was quenched with saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ diluted with EtOAc (5 $\mathrm{mL})$. The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer

Chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1 / 3)$ to give a mixture of $(-)$-23a and $(-)-\mathbf{2 3 b}\left(15.9 \mathrm{mg}, 0.0354 \mathrm{mmol},{ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ ratio 23a:23b$\left.=8.5: 1\right)$ in 76% yield over 2 steps.

Syntheses of compounds (-)-23a and (-)-23b

To a solution of compound (+)-18 (20.0 mg, 0.0464 mmol, 1.00 equiv) in DCM $(1.2 \mathrm{~mL})$ was added $\mathrm{VO}(\mathrm{acac})_{2}(6.2 \mathrm{mg}, 0.0232 \mathrm{mmol}, 0.50$ equiv) and TBHP $(5.5 \mathrm{M}$ in decane, $25.3 \mu \mathrm{~L}, 0.139 \mathrm{mmol}, 3.00$ equiv) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting dark-brown solution was stirred for 3 h at $0^{\circ} \mathrm{C}$ before additional TBHP (5.5 M in decane, $12.6 \mu \mathrm{~L}, 0.0696 \mathrm{mmol}, 1.50$ equiv) was added to the reaction mixture. The reaction mixture was allowed to warm to room temperature with stirring for 20 min (complete consumption of the starting material was observed by TLC). The mixture was diluted with $\mathrm{EtOAc}(3 \mathrm{~mL})$ and quenched with the saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The layers were separated, and the organic layer was washed with saturated aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 3 \mathrm{~mL})$ and saturated aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo.

The residue was dissolved in degassed THF (0.8 mL) and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$, then SmI_{2} ($1.16 \mathrm{~mL}, 0.1 \mathrm{M}$ in THF, $0.116 \mathrm{mmol}, 2.50$ equiv) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 min at the same temperature, then the mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ diluted with EtOAc (5 mL). The layers were separated and the aqueous phase was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel (acetone/toluene $=1 / 10$ for 2 times) to give compound $(-)-\mathbf{2 3 a}(9.0 \mathrm{mg}, 0.0201 \mathrm{mmol})$ as a white solid in 43% yield and compound (-)-23b $(6.2 \mathrm{mg}, 0.0138 \mathrm{mmol}$) as a white solid in 30% yield over 2 steps.

$\mathbf{R}_{\mathbf{f}}=0.5$ (Acetone/Toluene $=1 / 10$ for 2 times)
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 8}}-13.2\left(c \quad 1.0 \mathrm{CHCl}_{3}\right)$
Melting point: $160-162^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 449.2718$; Found: 449.2717 .
IR (neat, cm^{-1}): 3503, 2929, 2856, 1736, 1702, 1379, 1255, 1101.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}$, 1 H), 3.39 (dd, J = 10.1, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (dd, J = 19.2, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (br s, 1H), $2.78(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=14.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, \mathrm{J}=19.2,10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}$, 3 H), 1.68 (dd, J = 14.0, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.37$ (ddd, J $=19.6,14.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.1,213.7,140.0,126.8,81.9,80.6,69.3,56.6,55.0$, 54.7, 53.4, 53.0, 37.9, 36.5, 25.9, 22.6, 21.9, 21.7, 18.8, 18.1, 15.6, -3.7, -4.6.

$\mathbf{R}_{\mathbf{f}}=0.4$ (Acetone/Toluene $=1 / 10$ for 2 times)
$[\boldsymbol{\alpha}]_{D}^{27}-124.5\left(c 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $220-222{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 449.2718$; Found: 449.2719 .
IR (neat, cm^{-1}): 3486, 2950, 2928, 2855, 1727, 1684, 1257, 1105.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H})$, $3.34-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=19.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=19.9,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 219.1, 209.7, 137.8, 129.1, 83.4, 82.6, 72.2, 57.3, 53.7, 53.4, 51.9, 51.2, 39.3, 37.0, 25.9, 22.9, 22.7, 22.1, 18.2, 17.8, 15.3, -3.3, -4.5.

CCDC 2144675 contains the supplementary crystallographic data for compound $(-)-\mathbf{2 3 b}$ and is available free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

To a solution of compound (-)-23a ($21.0 \mathrm{mg}, 0.0468 \mathrm{mmol}, 1.00$ equiv) in DCE (0.5 mL) was added N, N-diisopropylethylamine ($90.7 \mathrm{mg}, 0.702 \mathrm{mmol}, 15.0$ equiv), DMAP ($12.6 \mathrm{mg}, 0.103 \mathrm{mmol}, 2.20$ equiv) and chloromethyl ethyl ether (44.2 mg , $0.468 \mathrm{mmol}, 10.0$ equiv) sequentially. The reaction vial was capped and heated to $80^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to $23^{\circ} \mathrm{C}$ and quenched with saturated aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ diluted with EtOAc $(2 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 3 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=$ $1 / 3$) to give compound (-)-24 ($18.0 \mathrm{mg}, 0.0319 \mathrm{mmol}$) as a white solid in 68% yield.

$\mathbf{R}_{\mathbf{f}}=0.7(\mathrm{EtOAc} / \mathrm{PE}=1 / 2)$
$[\alpha]_{D}^{28}-44.0\left(c 0.5 \mathrm{CHCl}_{3}\right)$
Melting point: $122-124^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$ calc. for $\mathrm{C}_{31} \mathrm{H}_{53} \mathrm{O}_{7} \mathrm{Si} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 565.3555; Found: 565.3557.
IR (neat, cm^{-1}): 2929, 2857, 1741, 1704, 1473, 1257, 1098, 1021.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, \mathrm{J}=10.0,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{dq}, \mathrm{J}=9.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.50(\mathrm{dq}, \mathrm{J}=14.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=19.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}=14.7,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}=19.2,10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{dd}$, $\mathrm{J}=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{ddd}, \mathrm{J}=20.6,13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.22$ $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.08 (s, 3H), 0.07 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.3,213.4,140.2,127.7,93.1,91.4,88.0,81.1$, $75.6,65.1,64.3,55.0,53.5,53.3,52.4,36.7,36.6,33.5,26.5,22.4,22.2,22.2,18.9$, 18.8, 15.6, 15.4, 15.2, -2.4, -3.3.

CCDC 2144676 contains the supplementary crystallographic data for compound $(-)-24$ and is available free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/

Synthesis of (+)-principinol E (2)

To a solution of compound (-)-24 ($8.0 \mathrm{mg}, 0.0142 \mathrm{mmol}, 1.00$ equiv) in THF $(1.4 \mathrm{~mL})$ was added (trimethylsilyl)methyllithium solution $(0.26 \mathrm{~mL}, 0.55 \mathrm{M}$ in hexane, $0.142 \mathrm{mmol}, 10.0$ equiv) at $0{ }^{\circ} \mathrm{C}$ and then stirred for 10 min at the same temperature. The reaction mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ diluted with EtOAc (2 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo.

The residue was dissolved in THF (1.2 mL), and then $\mathrm{LiEt}_{3} \mathrm{BH}(0.20 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, $0.198 \mathrm{mmol}, 14.0$ equiv) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at the same temperature, and quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ diluted with EtOAc (2 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was briefly purified by flash column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 10$ to $1 / 2$) to give crude product.

The residue of the crude product above was dissolved in 1,4-dioxane (1.0 mL) followed by the addition of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution (0.6 mL). The reaction mixture was stirred for 20 h at room temperature, and quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ diluted with $\mathrm{EtOAc}(2 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with $\operatorname{EtOAc}(5 \times 4 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel (EtOAc) to give (+)-principinol E (2) ($3.7 \mathrm{mg}, 0.0111 \mathrm{mmol}$) as a white solid in 78% yield over 3 steps.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{EtOAc})$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 6}}+51.8(c 0.27 \mathrm{MeOH})\left[\mathrm{Lit}^{8}{ }^{8}:[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}+34.5(c 0.51 \mathrm{MeOH})\right)$
Melting point: $173-175{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NaO}_{4} \quad\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 357.2036$; Found: 357.2032.
IR (neat, cm^{-1}): 3384, 2933, 2865, 2173, 1633, 1441, 1049, 1020. [Lit. ${ }^{8}$: IR: 3403, 2942, 1633, 1458, 1047.]
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.08(\mathrm{~m}$, $1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=10.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, \mathrm{J}=7.3,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.41$ (br s, 1H), $2.92(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 2.81(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.51$ $(\mathrm{m}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, \mathrm{J}=14.6,9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, \mathrm{OH}-1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}$, $\mathrm{J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.24$ (s, 3H), 0.98 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,139.1,129.7,111.9,86.6,84.4,79.6,69.8$, $56.5,54.3,54.3,50.7,50.3,37.9,36.4,26.7,24.3,22.5,20.0,15.6$.

Synthesis of compound (+)-25

To the solution of compound (+)-17b ($225 \mathrm{mg}, 0.711 \mathrm{mmol}, 1.00$ equiv) in THF $(100 \mathrm{~mL})$ was added $\operatorname{MeLi}\left(6.7 \mathrm{~mL}, 1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 10.7 \mathrm{mmol}, 15.0$ equiv) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $-40^{\circ} \mathrm{C}$ and then allowed to warm to $0^{\circ} \mathrm{C}$ with stirring for 30 min . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ diluted with EtOAc (60 mL). The layers were separated and the aqueous phase was extracted with EtOAc $(5 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (Acetone/PE = 1/10 to $1 / 1$) to give compound $(+)-25(120 \mathrm{mg}, 0.361 \mathrm{mmol})$ as a white foam in 51% yield $(77 \%$ brsm) and recover compound (+)-17b ($76 \mathrm{mg}, 0.240 \mathrm{mmol}$) as a white solid.

$\mathbf{R}_{\mathbf{f}}=0.5$ (Acetone $/ \mathrm{PE}=1 / 1$)
$[\alpha]_{D}^{13}+19.6(c 0.5 \mathrm{MeOH})$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{4} \quad\left[\mathrm{M}+\mathrm{H}^{+}\right]: 333.2060$; Found: 333.2060 .

IR (neat, cm^{-1}): 3431, 2923, 2850, 1735, 1656, 1459, 1121, 1020.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.87-4.84(\mathrm{~m}, 2 \mathrm{H}$ overlap), $4.65(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.61(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{dd}, \mathrm{J}=23.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=23.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.53(\mathrm{~m}$, 1H), 2.49 (s, 1H), $2.47-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, \mathrm{J}=14.5,7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.42(\mathrm{~m}$, $1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 223.5,157.1,146.7,141.7,105.3,80.1,75.5,66.2$, $55.0,52.7,52.3,51.5,48.9,44.0,43.4,32.2,30.3,23.7,23.1,21.7$.

Synthesis of compound (+)-26

To the solution of compound (+)-25 ($53.0 \mathrm{mg}, 0.159 \mathrm{mmol}, 1.00$ equiv), $\mathrm{Mn}(\mathrm{dpm})_{3}\left(14.5 \mathrm{mg}, 0.0239 \mathrm{mmol}, 0.15\right.$ equiv) and $\mathrm{PPh}_{3}(62.6 \mathrm{mg}, 0.238 \mathrm{mmol}, 1.50$ equiv) in $\mathrm{EtOH}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was placed under an O_{2} atmosphere (balloon). After the dropwise addition of $\mathrm{PhSiH}_{3}(43.2 \mu \mathrm{~L}, 0.350 \mathrm{mmol}, 2.20$ equiv), the reaction mixture was then stirred under an oxygen atmosphere at $0{ }^{\circ} \mathrm{C}$ for 1 h and then the mixture was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=1 / 30$ to $1 / 10$) to give compound $(+)-26$ ($33.2 \mathrm{mg}, 0.0947 \mathrm{mmol}$) as a white foam in 59% yield.

$\mathbf{R}_{\mathbf{f}}=0.2(\mathrm{DCM} / \mathrm{MeOH}=1 / 10)$
$[\alpha]_{D}^{13}+18.1(c 0.5 \mathrm{MeOH})$
HRMS-ESI (m / z) calc. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{5} \quad\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$: 368.2431;
Found: 368.2428.
IR (neat, cm^{-1}): 3387, 2918, 2852, 1736, 1465, 1378, 1112, 1040.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.63-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~d}, \mathrm{~J}=23.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=14.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, \mathrm{J}=14.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H})$, $1.91-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.13$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 223.6,146.1,141.0,82.2,81.8,76.0,66.2,60.0$, 55.0, 54.9, 53.1, 53.0, 44.9, 44.1, 30.7, 26.5, 23.6, 23.5, 23.0, 21.7.

Syntheses of (-)-rhodomollein XX (3) and (-)-3-epi-rhodomollein XX (28)

To the solution of compound (+)-26 ($18.0 \mathrm{mg}, 0.0514 \mathrm{mmol}, 1.00$ equiv) in THF (5.6 mL) was added NaHMDS (2.0 M in THF, $0.28 \mathrm{~mL}, 0.56 \mathrm{mmol}, 11.0$ equiv) at $78{ }^{\circ} \mathrm{C}$, and stirring was continued at the same temperature for 2.5 h . Subsequently, to the reaction mixture was added a solution of (\pm)-trans-2-(phenylsulfonyl)-3-phenyloxaziridine ($161 \mathrm{mg}, 0.619 \mathrm{mmol}, 12.0$ equiv) in THF (1 mL) at the same temperature, and stirring was continued for further 2 h . The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ diluted with EtOAc (5 mL). The layers were separated and the aqueous phase was extracted with EtOAc $(6 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was briefly purified by passing through a short column of silica gel (eluted by $\mathrm{DCM} / \mathrm{MeOH}=1 / 30$ to $1 / 7$) to give crude $27(10.0 \mathrm{mg}, 0.0273 \mathrm{mmol})$ as a white foam.

The residue obtained above was dissolved in $\mathrm{MeOH}(1.8 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.8 $\mathrm{mg}, 0.0273 \mathrm{mmol}, 1.00$ equiv) was added in one portion at room temperature. The reaction mixture was stirred for 1.5 h at the same temperature, and then quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ diluted with $\mathrm{EtOAc}(5 \mathrm{~mL})$. The layers were separated and the aqueous phase was extracted with EtOAc ($6 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel $(\mathrm{DCM} / \mathrm{MeOH}=1 / 7)$ to give a mixture of (-)-rhodomollein XX (3) and (-)-3-epi-rhodomollein XX (28) ($5.8 \mathrm{mg}, 0.0158 \mathrm{mmol},{ }^{1} \mathrm{H}-\mathrm{NMR}$ ratio $\left.\mathbf{3 : 2 8}=1: 1.3\right)$ in 31% yield over 2 steps.

Protection followed by deprotection to afford pure (-)-rhodomollein XX (3) and (-)-3-epi-rhodomollein XX (28)

To a solution of the mixture of (-)-rhodomollein XX (3) and (-)-3-epi-rhodomollein III (28) ($5.8 \mathrm{mg}, 0.0158 \mathrm{mmol},{ }^{1} \mathrm{H}-\mathrm{NMR}$ ratio $\mathbf{3 : 2 8}=1: 1.3$, 1.00 equiv) in THF (1.5 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(4.4 \mu \mathrm{~L}, 0.0316 \mathrm{mmol}, 2.00$ equiv) followed by TBSOTf ($4.7 \mu \mathrm{~L}, 0.0205 \mathrm{mmol}, 1.30$ equiv) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 10 min , and then was quenched with saturated aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ diluted with EtOAc (2 mL). The layers were separated and the aqueous phase was then extracted with EtOAc ($4 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel (hexane/EtOAc $=1 / 1$) to give compound $\mathbf{S 3}(\sim 3 \mathrm{mg})$ as a white foam and give compound $\mathbf{S 4}(\sim 3 \mathrm{mg})$ as a white foam.

To a solution of compound $\mathbf{S 3}$ in THF (0.15 mL) and $\mathrm{MeOH}(0.15 \mathrm{~mL})$ was added 2 M HCl aqueous solution $(75 \mu \mathrm{~L})$. The reaction mixture was stirred for 10 min at $15{ }^{\circ} \mathrm{C}$, and was quenched with saturated aq. NaHCO_{3} diluted with EtOAc (3 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($6 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=1 / 7$) to give $(-)$-rhodomollein $\mathrm{XX}(3)$ $(1.8 \mathrm{mg}, 0.00491 \mathrm{mmol})$ as a white solid in 31% yield over 2 steps.

To a solution of compound $\mathbf{S 4}$ in THF $(0.15 \mathrm{~mL})$ and $\mathrm{MeOH}(0.15 \mathrm{~mL})$ was added 2 M HCl aqueous solution ($75 \mu \mathrm{~L}$). The reaction mixture was stirred for 10 min at $15{ }^{\circ} \mathrm{C}$, and was quenched with saturated aq. NaHCO_{3} diluted with EtOAc (3 mL). The layers were separated and the aqueous phase was extracted with EtOAc ($6 \times 3 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by preparative Thin-Layer Chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}=1 / 7$) to give $(-)$-3-epi-rhodomollein XX (28) ($2.0 \mathrm{mg}, 0.00546 \mathrm{mmol}$) as a white solid in 34% yield over 2 steps.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{DCM} / \mathrm{MeOH}=1 / 7)$
$[\alpha]_{D}^{17}-45.7(c 0.1 \mathrm{EtOH}) ; \quad[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{17}-44.8(c 0.2 \mathrm{EtOH})$
Melting point: $210-212{ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{6} \quad[\mathrm{M}-\mathrm{H}]^{-}: 365.1970$; Found: 365.1968.
IR (neat, cm^{-1}): 3469, 3356, 1680, 1644, 1470, 1419, 1367, 1106. [Lit.' ${ }^{9}$ IR: 3415, 1676, 1630, 1363.]
${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.84(\mathrm{dd}, \mathrm{J}=6.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=15.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.99(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{dd}, \mathrm{J}=15.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, \mathrm{J}=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (d, J $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}$, 3 H).
${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 209.4,177.9,141.7,82.5,81.1,80.0,76.2,66.1$, 59.9, 56.0, 52.9, 52.8, 45.6, 43.4, 31.6, 26.8, 24.3, 23.3, 23.2, 21.1.
${ }^{1}$ H NMR (600 MHz , pyridine- $d 5$) $\delta 5.46-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (d, J = 4.1 Hz, 1H), $3.32(\mathrm{dd}, \mathrm{J}=14.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-$ $2.44(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=14.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, \mathrm{~J}=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, \mathrm{J}=14.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.61$ $(\mathrm{s}, 3 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (150 MHz, pyridine- d_{5}) δ 209.9, 178.5, 141.4, 82.4, 80.1, 79.6, 76.0, 65.9, 60.7, 56.2, 53.0, 52.3, 45.3, 44.4, 32.4, 27.0, 25.2, 24.4, 24.0, 21.2.

There has been only one reported isolation of rhodomollein XX by Li et al., ${ }^{[9]}$ which reported the optical rotation: $[\alpha]_{\mathrm{D}}^{25}+8.6$ (c 0.1 EtOH). However, the sign of our optical rotation was opposite to that reported by Li et al.: $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{17}-45.7(c 0.1 \mathrm{EtOH})$. We determines absolute configuration based on the established stereochemistry of $\mathbf{9},{ }^{[13]}$ as well as the X-ray crystallography of synthetic intermediate $\mathbf{1 4}$, which is further supported by the X-ray crystallography of other related compounds (such as 22b and 23b). The discrepancy in the sign of the optical rotation may have been a tabulation error, or due to a minor impurity.

$\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{DCM} / \mathrm{MeOH}=1 / 7)$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{17}-2.7(c 0.1 \mathrm{EtOH})$
Melting point: 202-204 ${ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z) calc. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{6} \quad[\mathrm{M}-\mathrm{H}]^{-}: 365.1970$; Found: 365.1972.

IR (neat, cm^{-1}): $3429,3355,2920,1683,1635,1456,1419,1367$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.66(\mathrm{dd}, \mathrm{J}=5.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $1 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, \mathrm{J}=15.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{dd}, \mathrm{J}=15.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~d}, \mathrm{~J}=$ $15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.31(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 210.7,176.9,141.8,82.8,82.1,81.6,76.7,65.3$, 61.0, 55.3, 53.2, 50.9, 45.7, 43.5, 30.4, 26.8, 23.7, 23.5, 23.3, 20.

III. NMR Spectra

${ }^{1} \mathrm{H}$ NMR of compound (+)-10

${ }^{13} \mathrm{C}$ NMR of compound (+)-10

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{S} \mathbf{2}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{S} \mathbf{2}$

${ }^{1} \mathrm{H}$ NMR of compound (+)-7a

${ }^{13} \mathrm{C}$ NMR spectrum

${ }^{13} \mathrm{C}$ NMR of compound (+)-7a

${ }^{1} \mathrm{H}$ NMR of compound (+)-17a

${ }^{13} \mathrm{C}$ NMR of compound $(+)-\mathbf{1 7 a}$

${ }^{1} \mathrm{H}$ NMR of compound (+)-20

${ }^{13} \mathrm{C}$ NMR of compound $(+)$-20

${ }^{1} \mathrm{H}$ NMR of compound (+)-22a

${ }^{13} \mathrm{C}$ NMR of compound (+)-22a

${ }^{1} \mathrm{H}$ NMR spectrum (600 MHz , acetone- $\mathrm{d}_{6} \mathrm{D}_{2} \mathrm{O}$ exchanged)

${ }^{1} \mathrm{H}$ NMR of compound (+)-23

${ }^{13} \mathrm{C}$ NMR of compound (+)-23

DEPT-135 of compound (+)-23

H-H COSEY NMR of compound (+)-23

C-H HSQC NMR of compound (+)-23

C-H HSBC NMR of compound (+)-23

H-H NOSEY NMR of compound (+)-23

${ }^{1} \mathrm{H}$ NMR of synthesized (-)-grayanotoxin III (1)

${ }^{13} \mathrm{C}$ NMR of synthesized (-)-grayanotoxin III (1)

${ }^{1} \mathrm{H}$ NMR of synthesized (-)-grayanotoxin III (1)

${ }^{13} \mathrm{C}$ NMR of synthesized (-)-grayanotoxin III (1)

DEPT-135 of synthesized (-)-grayanotoxin III (1)

H-H COSEY NMR of synthesized (-)-grayanotoxin III (1)

C-H HSQC NMR of synthesized (-)-grayanotoxin III (1)

C-H HSBC NMR of synthesized (-)-grayanotoxin III (1)

H-H NOSEY NMR of synthesized (-)-grayanotoxin III (1)

${ }^{1} \mathrm{H}$ NMR of compound (-)-23a

${ }^{13} \mathrm{C}$ NMR of compound (-)-23a

${ }^{1} \mathrm{H}$ NMR of (+)-principinol E (2)

${ }^{13} \mathrm{C}$ NMR of (+)-principinol E (2)

${ }^{1} \mathrm{H}$ NMR spectrum
($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)
${ }^{1} \mathrm{H}$ NMR of compound (+)-25

${ }^{13} \mathrm{C}$ NMR of compound $(+)$-25

${ }^{1} \mathrm{H}$ NMR of the mixture of (-)-rhodomollein XX (3) and (-)-3-epi-rhodomollein XX (28)

${ }^{1} \mathrm{H}$ NMR spectrum （ $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）

葍葸男男
$98 \varepsilon-$
$9 \varepsilon \downarrow-$

 ． $\mathrm{E}+08$
$5 \mathrm{E}+08$

${ }^{1} \mathrm{H}$ NMR of（－）－rhodomollein XX（3）

${ }^{13} \mathrm{C}$ NMR spectrum （ $150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ）

${ }^{13} \mathrm{C}$ NMR of（－）－rhodomollein XX（3）

${ }^{1}$ H NMR of (-)-rhodomollein XX (3)

${ }^{13} \mathrm{C}$ NMR of (-)-rhodomollein XX (3)

${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{1} \mathrm{H}$ NMR of compound (-)-28

${ }^{13} \mathrm{C}$ NMR spectrum ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

${ }^{13} \mathrm{C}$ NMR of compound (-)-28

IV. DFT Calculation

Density functional theory (DFT) calculations was carried out using Gaussian 09 D. 01 software package. ${ }^{[17]}$ Geometry optimizations were performed with B3LYP functional using $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set for all atoms. Vibrational frequencies were computed at the same level of theory as geometry optimizations, and to make sure no imaginary frequency was found on the minima of potential energy surface.

Int1

Thermal Correction for Gibbs free energy: 0.208065 Eh
Thermal Correction for enthalpy: 0.273647 Eh
$E_{B 3 L Y P / 6-31 G(D, P)}=-3225.949608 \mathrm{Eh}$
Coordinate:

0	2.50968300	2.62449700	-0.04367200
C	3.85677600	3.17885000	-0.12141200
H	4.59565200	2.37781000	-0.18585900
H	3.88203700	3.81170800	-1.00826400
H	3.99960700	3.77703100	0.77827800
C	-1.32749700	0.57702400	-0.28963300
H	-1.53382200	0.58501500	-1.36292400
C	-0.25546500	1.62548400	0.07117800
H	-0.42016300	2.00337800	1.08683800
H	-0.25844300	2.48397400	-0.60483200
C	1.03007000	0.82965500	0.00219300
C	0.74834400	-0.52548500	0.00839500
0	-2.52723500	0.88454900	0.41253300
C	-3.71712000	0.62593600	-0.23786400
C	-4.88155500	1.11021900	0.57899100
H	-4.83361200	2.19844100	0.68278400
H	-5.81011700	0.82772600	0.08541200
H	-4.84410200	0.68516900	1.58574400
0	-3.76285100	0.08708300	-1.31650900
C	-0.72056900	-0.82871800	0.08062000
C	-1.04192600	-1.23067300	1.54948400
H	-2.11609100	-1.40599000	1.63411200
H	-0.51476500	-2.15083500	1.81204300
H	-0.76770100	-0.44967800	2.26297900
C	-1.16041400	-1.94434900	-0.88643600
H	-2.24853000	-2.02627200	-0.86520000
H	-0.86604000	-1.71931800	-1.91527700
H	-0.72903000	-2.90689300	-0.60166700
C	2.32236500	1.34826000	-0.05276200
H	3.19292300	0.69210400	-0.11257600
Br	2.01135300	-1.88998900	0.00265900

Compound 11

Thermal Correction for Gibbs free energy: 0.386698 Eh
Thermal Correction for enthalpy: 0.471556 Eh

$E_{B 3 L Y P / 6-31 G(D, P)}=-1283.321311$ Eh

Coordinate:

C	-1.57466300	0.55870000	0.08139200
C	-2.14132400	1.74403600	-0.18041400
H	-3.22319700	1.84038100	-0.20643500
C	-0.08389100	0.34339200	0.16830100
H	0.09801500	-0.33987100	1.00547000
H	0.23751400	-0.19353800	-0.73327400
C	-1.32496300	2.98606400	-0.42227100
H	-1.72227700	3.52836800	-1.29086000
H	-1.43690000	3.68014600	0.42461800
C	0.16251100	2.68510700	-0.66400500
H	0.72833700	3.62071000	-0.60277500
H	0.28900700	2.30083600	-1.68354500
C	0.74260700	1.64955100	0.32664100
C	0.60221200	2.18835000	1.77317600
H	1.06222400	1.51329600	2.50019800
H	1.09165900	3.16327600	1.86762300
H	-0.44951500	2.29956000	2.05041600
Si	3.60826800	-1.26500900	-0.03070100
C	5.15550600	-0.79721400	-1.01895600
H	5.62637600	-1.69431100	-1.43698500
H	4.91730600	-0.13077400	-1.85364100
H	5.90071100	-0.29581000	-0.39145000
C	2.35534500	-2.06249900	-1.20348300
H	2.80250400	-2.92954100	-1.70309700
H	1.46124200	-2.41000300	-0.67584600
H	2.03618100	-1.36200100	-1.98206700
C	4.09581100	-2.51426100	1.31084600
H	4.82978500	-2.08926300	2.00469900
H	3.22729800	-2.82853600	1.90043300
H	4.54001300	-3.41510100	0.87295400
0	-2.25418500	-0.61362000	0.29543400
Si	-3.84808700	-1.06713500	-0.04189300
C	-5.05784600	-0.17782800	1.09996900
H	-5.10719000	0.89867000	0.91061200
H	-6.06880700	-0.58261600	0.97356400

-4.77428600	-0.31745600	2.14856300
-4.24734900	-0.73256400	-1.85295100
-3.58931600	-1.31148200	-2.50947500
-5.28069900	-1.01694200	-2.08173000
-4.12549000	0.32385200	-2.10887500
-3.86831300	-2.91106200	0.31889800
-3.60034300	-3.11138700	1.36131900
-4.86225100	-3.33670100	0.14117500
-3.15588500	-3.44564100	-0.31742200
2.23339300	1.35989900	0.06390300
2.96535300	2.07310100	-0.80353200
4.02617600	1.87914400	-0.93029200
2.55717400	2.87753100	-1.40236700
2.88977400	0.25692700	0.88625900
2.20187400	-0.13440900	1.64319300
3.72874000	0.68037700	1.45549200

TS

Thermal Correction for Gibbs free energy: 0.619868 Eh
Thermal Correction for enthalpy: 0.746672 Eh

$E_{B 3 L Y P / 6-31 G(D, P)}=-4509.287035 E h$

Coordinate:

0
C
H
H
H
C
H
C
H
H
C
C
0
C
C
H
H
H
0
C
C
H
H
H
C
H
H
H
C
H
Br
C
C
H
C

-0.62895000
0.23941500
2.48678500
-0.07486200
1.25103400
3.36553500
-0.87367200 1.64744500 3.99824800
0.66523700
0.74125500
3.98011400
0.39027400
2.05382300
2.79209000
$-3.68567600-2.26577000 \quad 0.70184700$
-4.31504400
-2.97698800
1.23715800
-2.54735500
-1.67945900
1.56198600
$-1.63096900-2.26245700$
1.44312800
-2.80080500
-1. 69113900
2.62846700
-2.42291300
-0.24972900
1.07159400
-3.50741300
0.06980600
0.32820000
-3.05387800
-2.95814700
-0.39408500
-3.67308300
-4.09869600
-0.84281200
$-2.86325000-4.75160100$
-1.93118000
-1.86544000
-5.00128900
-1. 55930700
-3.37198400
-5.65467800
-2. 26501700
$-2.73824800 \quad-4.06340600 \quad-2.77229700$
$-4.72402400-4.49505000$
-0. 39962300
-4.53067600 -1. 04125800
0.20207000
-5.08182100
-1. 20009600
-1. 22328500
-5.73310600
-2.07587600
-1.27029600
$-5.66952600-0.32204700$
-1.50257200
-1.95398700
-4.27961800
-1.32343700
1.18975100
-1.57855300
1.11867400
-6.42864200
-0.71640900
2.22508500
-6. 19050900
$0.17046500 \quad 0.94895500$
-1.36773200
0.65442100
1.45966700
-1.54238900
1.72659500
1.37786400
-3.83050000
1.77235400
-0.41785100
0.85271400
1.40139200
0.09361600
-0.43364300
-0.23277900
0.71056100
-0.90059900
-1.01534100
1.30316700
0.58731400

H
H
C
H
H
C
H
H
C
C
H
H
H
Si
C
H
H
H
C
H
H
H
C

H

H
H

90927200	1.39404800	0.58381700
1.90224700	0.42158700	1.64146900
-0.04512000	-0.69983100	-0.94898700
-0.97642900	-1.26693000	-0.85134900
0.13334200	-0.63231900	-2.03075800
1.10616500	-1.44837900	-0.26370100
1.29102900	-2.38740500	-0.79434700
0.79933500	-1.71383700	0.75415300
2.41270000	-0.62460000	-0.18959100
2.89241500	-0.27122300	-1.61585800
3.82969300	0.28892100	-1.59990900
3.05980500	-1.17997900	-2.20045600
2.15871400	0.34145700	0
6.42625700	-1	0
6.16123300	-1.77206600	0
7.06226900	-2.22634400	-2.35635300
5.33364700	-2.46850300	0
5.95830100	-0.85822200	0
6.88439700	-3.04697600	0.78299600
7.83254000	-3.42894100	0.38847100
7.01302100	-2.90697300	1.86189700
6.13112200	-3.82615400	0.63075400
7.82076100	-0.17384100	0.13760800
7.60098000	0.77224400	-0.36954400
7.99568700	0.04925300	1.19586400
8.76085300	-0.55506600	-0.27561000
0.81462200	2.70374400	0.33537500
0.63762400	4.16661600	-0.60002600
2.31409200	4.47788800	-1.37406700
2.60394300	3.67210000	-2.05661100
2.29739300	5.40711100	-1.95454800
3.09445900	4.57696600	-0.61322400
-0.70000300	3.94325800	-1.89579700
-1.66676800	3.67812700	-1.45773500
-0.83287500	4.88720600	-2.43714500
-0.43898800	3.18191700	-2.63780100
0.18355300	5.43093600	0.70001300
0.94111800	5.48036500	1.48830000
0.11037300	6.42741000	0.25097700
-0.78159100	5.21009400	1.16693000
3.53012200	-1.35795000	0.58127100
3.33433200	-2.55747100	1.14630800
4.12489500	-3.03906200	1.7125260

H	2.40409300	-3.10739300	1.07918800
C	4.86736100	-0.64755300	0.73116000
H	5.11634900	-0.57179700	1.79796100
H	4.81806100	0.38703500	0.37403900

TS_{b}

Thermal Correction for Gibbs free energy: 0.617671 Eh
Thermal Correction for enthalpy: 0.746543 Eh
$E_{B 3 L Y P / 6-31 G(D, P)}=-4509.283823 E h$
Coordinate:

0
C
H
H
H
C
H
C
H
H
C
C
0
C
C
H
H
H
0
C
C
H
H
H
C
H
H
H
C
H
Br
C
C
H
C
0.69857000
-0.51651000
2.11725300
-0.32925100
0.07358200
2.93815600
-1. 22002400
0.26266100
2.33674100
-0.55009100 -0.65913200 3.71221000
0.03433600 1.00240300 3.38540300
4.29378700
-1.71291300
0.03567600
4.01464900
-2.14896700 -0.92642500
3.07048600 -1. 63895900
0.97159000
3.37622800
-1.75616700
2.01814100
2.33547500
-2.42049500
0.76093500
$2.54325900-0.24015000 \quad 0.72600200$
3.47712700
0.49583500
0.07582100
5.29044700
-2.54335500
0.63699300
6.03409200
-3.33714800
-0.19972000
6.97733500
-4.20159900
0.59244900
$-4.86191500 \quad 1.25531800$
$7.58403500-4.79393300 \quad-0.09077800$
7.61948200
-3.58066700
1.22342800
$5.91684600-3.32025100 \quad-1.40223200$
$4.76961100-0.23475500-0.21501000$
5.84419200
0.22087100
0.79875900
6.77994000
-0.31178000
0.61516700
6.03205900 1.29235600
0.68774200
5.53992600 0.02751400
1.83086500
5.26721800
-0.02164600
-1.65547400
-1.84824900
-2.38635800
6.12333300
4.49190900
-0.67129500
$5.57182200 \quad 1.01592700$
-1. 81621000
1.22403300
1.28909400
0.25951900
1.29385400
1.12530700
1.33398400
-0.39147000
-0. 28099500
-0. 68021400
-1.02779400
-0.30425900

H
H
C
H
H
C
H
H
C
C
H
H
H
Si
C
H
H
H
C
H
H
H
C
H
H
H

-2.92905900	0.87539000	0.64108200
-2.94141000	1.23518500	-1.06441400
-0.14993000	-1.06508500	-1.23708200
0.53726400	-1.22338800	-2.07414600
0.10729600	-1.82807100	-0.49199200
-1.59483900	-1.27188000	-1.72390300
-1.73188700	-2.31684300	-2.01821700
-1.74591400	-0.66475200	-2.62368400
-2.65681900	-0.88650000	-0.66837000
-2.48209200	-1.77635900	0.58313700
-3.20155200	-1.52087700	1.36521500
-2.63883800	-2.82652300	0.32296400
-1.47953900	-1.68978500	1.01134500
-6.48868400	-2.01086300	0.27179500
-5.62013300	-3.50661300	1.03793200
-6.36441900	-4.24892000	1.34696200
-4.95057000	-3.99639800	0.32345000
-5.03585900	-3.24392600	1.92612300
-7.51865000	-2.58172500	-1.20588200
-8.30885000	-3.26299500	-0.87093800
-8.00668000	-1.74266200	-1.71361600
-6.91717900	-3.11996400	-1.94496900
-7.61623600	-1.19847100	1.55605900
-7.05735400	-0.86591700	2.43801700
-8.13554000	-0.32649400	1.14334500
-8.38252000	-1.90117000	1.90064900
-0.76868500	2.34147400	0.11535400
-1.58375200	3.88186500	0.07583600
-1.89772300	4.27854000	-1.72882700
-2.59130500	3.57546300	-2.20109000
-2.33935100	5.27747300	-1.81840500
-0.96732300	4.27640900	-2.30516100
-3.16416000	3.81512500	1.08676800
-2.98416200	3.45032300	2.10340800
-3.57262300	4.82849000	1.1771200
-3.93968900	3.19362300	0.62969700
-0.30042900	4.99813100	0.8543250
0.67243400	4.87707100	0.36757000
-0.59300900	6.04940900	0.76151500
-0.17282200	4.78629000	1.92080600
-4.09816900	-1.02617600	-1.20447800
-4.35588400	-1.41610600	-2.46014200
-5.37656000	-1.47227200	-2.82399100

H	-3.58777900	-1.68709000	-3.17322800
C	-5.23517000	-0.64702700	-0.26597400
H	-5.85108100	0.12749600	-0.74232600
H	-4.86036700	-0.18853500	0.65635400

Int-a

Thermal Correction for Gibbs free energy: 0.624489 Eh
Thermal Correction for enthalpy: 0.749237 Eh

$E_{B 3 L Y P / 6-31 G(D, P)}=-4509.309561$ Eh

Coordinate:

0
C
H
H
H
C
H
C
H
H
C
C
0
C
C
H
H
H
0
C
C
H
H
H
C
H
H
H
C
H
Br
C
C
H
C
-0.16750000
-0. 38587500
2.20328800
3.57101800
3.76104500
4.16526500
3.86400000
-0.52175600
0.83551700
0.47436700
0.95356600
-4.36301300
-3.05687100
1.25041800
-2.46680400
-1.94469200
0.91301600
-2.59250900
-2. 14366800
2.32207400
-2.27847900
-0.45924600
1.00039200
-3.41612300
0.04816200
0.51560600
$-2.79488200-0.80974000$
$-3.78580200-1.36842200$
-4.25720500 -2.66504600
-4.62382900 -2.49511700
-5.05209900 -3.08209800
-3.42668000 -3.37424700
$-4.20569300-0.86555700$
-0.94515800 0.33319400
$-0.79320000-1.00921500$
$-1.59437400-1.13051100$
$0.16185500-1.04383800$
$-0.82773800-1.85085400$
-0.80881100 1.49822600
-1.52899800 1.37943600
-0.98523100 2.46787800
$0.19632100 \quad 1.51515900$
0.294778001 .28740200
-1.00193400
-1.26144100
1.28738600
1.68846300
-3.68357600
1.90009200
0.14252100

1. 01882800
1.34991000
0.17019600
0.22276200
0.55475500
-0.06704900
-0.91964900
1.15598300
-0.65484700
2.22416600
0.67563100
0.69463100

H
H
C
H
H
C
H
H
C
C

H
H
H
Si
C
H
H
H
C
H
H
H
C
H
H
H

3.03389200	1.39772100	0.79964000
1.94388900	0.27489000	1.67733000
0.15603500	-0.72131500	-0.87414400
-0.71631900	-1.37972500	-0.89697800
0.32318500	-0.41637500	-1.91270200
1.38449900	-1.46290600	-0.33155000
1.61129900	-2.30116200	-0.99859500
1.13582300	-1.88228600	0.64604800
2.64135200	-0.57019300	-0.19602400
3.10202800	-0.06876900	-1.58294700
3.96820100	0.59227700	-1.50871800
3.38375300	-0.91515700	-2.21457200
2.31560600	0.48879500	-2.10372900
6.71962200	-1.11501500	0
6.49602600	-1.40607200	0
7.43144700	-1.77430900	-2.35713300
5.72501400	-2.15651100	-2.12500700
6.22845800	-0.48913600	-2.45730400
7.30073400	-2.71343700	0.75775800
8.29186800	-2.98805200	0.37986800
7.38501500	-2.60495400	1.84458100
6.63195000	-3.55501700	0.55255200
7.99829600	0.24841800	0.22368300
7.70857500	1.18759900	-0.26074700
8.13441300	0.45331200	1.29125300
8.97450300	-0.04008200	-0.18056300
1.10245400	2.59201900	-0.08414000
0.15879700	3.98775700	-0.75431000
-0.85554700	3.39024500	-2.20888500
-1.77428800	2.88072500	-1.90606900
-1.14816200	4.26752700	-2.79863900
-0.28603400	2.73645000	-2.87712800
-0.84313000	4.59588900	0.69950600
-0.22518100	4.72900800	1.59263900
-1.27272900	5.57390200	0.45246900
-1.67335700	3.92380000	0.93455900
1.56170700	5.11183500	-1.24507600
2.19052100	4.66046300	-2.01869800
1.16529700	6.05034100	-1.64841800
2.19621600	5.35912200	-0.38890900
3.80768900	-1.27614400	0.52309800
3.70081900	-2.53597200	0.96731900
4.52855100	-3.01078700	1.48317700

H	2.81252300	-3.14257300	0.84691800
C	5.08728400	-0.48348100	0.74522100
H	5.29615500	-0.43302300	1.82217400
H	4.97813900	0.55904000	0.42660500

Int-b

Thermal Correction for Gibbs free energy: 0.618968 Eh
Thermal Correction for enthalpy: 0.748444 Eh

$E_{B 3 L Y P / 6-31 G(D, P)}=-4509.306216 E h$

Coordinate:

0

C
H
H
H

C
H
C
H
H
C
C
0
C
C
H
H
H
0
C
C
H
H
H

C

H
H
H
C
H
Br
C
C
H
C
0.89225200
0.70270100
2.05651800
1.51263400
1.60556400
2.96594300
1.29751700
2.64936800
2.69667800
1.09738100
1.39295900 3.95242900
2.60020300
1.47248100
3.00218600
4.44292100
-1.38670500
0.41105700
4.08252900 -2.27904700 -0.81369700 -0.33844300
-1.58694400
1.69504700
2.66081800
-1.58694400
0.43184100
3.44375200
0.
-0.62447100
5.57577600
-1.75642800
1.20833500
$6.24072200-2.90190800$
0.86582500
1.82480500
7.37304200
6.99295100
-3.16094800
2.84822500
7.87293500
. 22520600
1.55195500
8.08589000
.08917300
-2.33163800
1.79399800
-0.08050800
4.76381100
3.59124500
-0.66608200
-0.23376900
-0.24293800
-0.92664300
0.77307500
-2.03985600
-1.97920500
-2.39041700
-2.78650400
0.71092100
0.45603700
-1.98027500
-0.13846300
-0.16717500
-1.21973400
-0.74773800

H
H
C
H
H
C
H
H
C
C
H
H
H
Si
C
H
H
H
C
H
H
H
C
H
H
H

C
H

-3.15810500	1.05817900	-0.57170300
-2.11800800	0.38798900	-1.83293600
-0.02256200	-1.28131400	0.10960700
0.86522200	-1.81693200	-0.23567200
-0.07635600	-1.42145600	1.19156800
-1.26399000	-1.84901500	-0.58415500
-1.39406100	-2.89212500	-0.27944300
-1.09726300	-1.85646700	-1.66744200
-2.55590500	-1.06242900	-0.27369100
-2.82582900	-1.06655100	1.24817400
-3.73751200	-0.52259600	1.50323300
-2.94566000	-2.09258500	00
-2.00491100	-0.61135700	0
-6.53865200	-	0
-6.00153600	-2.72051000	0
-6.82692900	-3.30107400	2.06760500
-5.15557300	-3.40439000	0
-5.72168700	-1.96389800	0
-7.06630800	-3.33666100	-1.18761300
-7.93776100	-3.86380200	-0.78365600
-7.34922700	-2.94624600	-2.17124600
-6.27609100	-4.07960600	-1.33271900
-7.97581800	-0.76426700	0.27361400
-7.70935500	0.03919700	0.96946200
-8.30204200	-0.29986700	-0.66338800
-8.84041200	-1.28700000	0.69662600
-1.05213400	2.17313100	0.35454800
-2.18478800	3.58222700	0.54317100
-2.73741100	4.02854300	-1.18566300
-3.40004200	3.28507800	-1.63715200
-3.29064900	4.97419800	-1.14440100
-1.88359700	4.18463300	-1.85267300
-3.53844300	3.00692600	1.69566700
-3.12661700	2.56154900	2.60651800
-4.13471300	3.87538100	1.99922500
-4.22250700	2.28816600	1.23634000
-1.03501800	4.83257600	1.30545100
-0.18067800	5.04457900	0.65552500
-1.56630100	5.77639300	1.47140700
-0.65606100	4.49241100	2.27384400
-3.78273800	-1.58109500	-1.05053400
-3.67747900	-2.56712700	-1.95224300
-4.54698600	-2.90150100	-2.5082130

H	-2.75171700	-3.07996900	-2.17904000
C	-5.12432200	-0.90966600	-0.79814800
H	-5.53424600	-0.55514900	-1.75294200
H	-5.02144800	-0.01212100	-0.17658500

V. References

[1] (a) Hamanaka, N.; Matsumoto, T. Tetrahedron Lett. 1972, 13, 3087-3090. (b) Gasa, S.; Hamanaka, N.; Matsunaga, S.; Okuno, T.; Takeda, N.; Matsumoto, T. Tetrahedron Lett. 1976, 17, 553-556.
[2] Kan, T.; Hosokawa, S.; Nara, S.; Oikawa, M.; Ito, S.; Matsuda, F.; Shirahama, H. J. Org. Chem. 1994, 59, 5532-5534.
[3] Turlik, A.; Chen, Y.; Scruse, A. C.; Newhouse, T. R. J. Am. Chem. Soc. 2019, 141, 8088-8092.
[4] (a) Yu, K.; Yang, Z.-N.; Liu, C.-H.; Wu, S.-Q.; Xin, H.; Zhao, X.-L.; Ding, H. Angew. Chem., Int. Ed. 2019, 58, 8556-8560. (b) Gao, J.; Rao, P.; Xu, K.; Wang, S.; Wu, Y.; He, C.; Ding, H. J. Am. Chem. Soc. 2020, 142, 4592-4597.
[5] For reviews of the Mukaiyama aldol reaction, see the following: (a) Mahrwald, R. Chem. Rev. 1999, 99, 1095-1120. (b) Kan, S. B. J.; Ng, K. K.-H.; Paterson, I. Angew. Chem., Int. Ed. 2013, 52, 9097-9108. (c) Matsuo, J.-i.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9109-9118.
[6] (a) Fürst, A.; Plattner, P. A. Helve. Chim. Acta 1949, 32, 275-283. (b) Evans, D. A.: Alkylation of Chiral Enolates. In Asymmetric Synthesis Vol 3; Morrison, J. D. Ed.; Academic Press Inc.: Orlando, 1984; pp. 2-110.
[7] El-Naggar, S. F.; Doskotch, R. W.; Odell, T. M.; Girard, L. J. Nat. Prod. 1980, 43, 617-631.
[8] Liu, C.-C.; Lei, C.; Zhong, Y.; Gao, L.-X.; Li, J.-Y.; Yu, M.-H.; Li, J.; Hou, A.-J. Tetrahedron. 2014, 70, 4317-4322.
[9] Li, C.-J.; Liu, H.; Wang, L.-Q.; Jin, M.-W.; Chen, S.-N.; Bao, G.-H.; Qin, G.-W.. Acta Chim. Sinica 2003, 61, 1153-1156.
[10] Yeung, Y. Y.; Chein, R. J.; Corey, E. J. J. Am. Chem. Soc. 2007, 129, 1034610347.
[11] Hanessian, S.; Auzzas, L. Org. Lett. 2008, 10, 261-264.
[12] Lu, Y.; Barth, G.; Kieslich, K.; Strong, P. D.; Duax, W. L.; Djerassi, C. J. Org. Chem. 1983, 48, 4549-4554.
[13] Kong, L.; Su, F.; Yu, H.; Jiang, Z.; Lu, Y.; Luo, T. J. Am. Chem. Soc. 2019, 141, 20048-20052.
[14] Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science. 2017, 358, 761764.
[15] Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788-16791.
[16] Meguri, H. Yakugaku Zasshi. 1959, 79, 1057-1059.
[17] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;

Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.

[^0]: ${ }^{a}$ Chemical shifts and coupling constants are reported by Liu et al. (400 MHz in $\left.\mathrm{CDCl}_{3}\right)^{[8]}$
 ${ }^{b}$ TMS was used as internal standard: d_{H} in ppm, J values (Hz) are in parentheses.
 ${ }^{c}$ TMS was used as internal standard.
 ${ }^{d} 500 \mathrm{MHz}$ NMR spectrometer $\left(\mathrm{CDCl}_{3}\right)$

[^1]: ${ }^{a}$ Chemical shifts and coupling constants are reported by Li et al. (400 MHz in $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)^{[9]}$
 ${ }^{b}$ Chemical shifts and coupling constants are reported by Ding's group (400 MHz in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) ${ }^{[4 \mathrm{a}]}$
 ${ }^{c}$ TMS was used as internal standard
 ${ }^{d} 600 \mathrm{MHz}$ NMR spectrometer $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$.

