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1 Calculation of Packing Fractions and Coarse-Grained

Densities

Here, we estimate packing fractions Φ and density ρ0 for various real polymers using our

drastically coarse-grained (CG) framework.

Assuming that one CG monomer represents one actual monomer, the packing fraction

of a real polymer is estimated from:

Φ =
ρNA

M

4πL3

3
(1)

Here ρ is the density of the material in g cm−3, M is the molar mass of monomers in
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gmol−1, NA is the Avogadro constant, and L is a length that characterizes the size of

each monomer in cm. It is reasonable to expect that monomers start interacting with

each other when their side-chains come into contact, so we choose L to be the extended

length of a side-chain in the all-trans state. For simplicity, for all polymers, we use for

the density an approximate value ρ = 1g cm−3.

We first consider poly(3-hexylthiophene) (P3HT), whose monomers have a molar mass

of M = 166 gmol−1. The hexyl side-chains each consist of six C–C bonds, with bond

lengths of 1.54 Å and bond angles of 112°,1 so L = 7.66 Å = 7.66× 10−8 cm. Substituting

these values into eq 1 gives Φ = 6.8.

Poly(3-dodecylthiophene) (P3DDT) is another polymer in the same family as P3HT,

so we can calculate its Φ using the same values for bond length and angles. Monomers of

P3DDT have a molar mass of M = 250 gmol−1 and the dodecyl side-chains each contain

twelve C–C bonds, so L = 15.3 Å = 1.53× 10−7 cm. Therefore, Φ = 36.

We also estimate packing fractions for two other real polymers, PE12 polyester2 and

Ac-Ndc9-Nte9 polypeptoid,
3 because their scattering patterns are used later in the paper

for qualitative comparison with our generic modeled mesophase. These polymers have

more complex backbones than P3HT and P3DDT, and would therefore require an adapted

CG model to simulate accurately, but we can still make a rough estimate of Φ.

For PE12 (chemical structure shown in Ref. 2), we treat the entire repeat unit, with

molar mass of M = 977 gmol−1 as one monomer. Here, each side-chain consists of twelve

C–C bonds of length 1.54 Å and two C–O bonds of length 1.43 Å. Assuming bond angles

of 112° gives L = 17.7 Å = 1.77× 10−7 cm, meaning that Φ = 14. Note that the fact that

there are four side-chains per monomer in PE12 rather than one in P3HT and P3DDT

does not affect the packing fraction under our framework.

Ac-Ndc9-Nte9 polypeptoid (structure shown in Ref. 3) is a diblock copolymer con-

structed from two different monomers. However, as there are the same number of each

type of monomer per chain, and the molar masses (197 gmol−1 and 217 gmol−1) and

extended side-chain lengths (12.8 Å and 13.5× 10−9 Å) are similar, it is reasonable to use

average values. This choice of M = 207 gmol−1 and L = 13.1 Å = 1.31 × 10−7 cm gives

Φ = 28.

We remind the reader that ρ0 is defined as the number of monomers per σ3. Taking
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into account that σ = L in our model, ρ0 is estimated from:

ρ0 =
ρNA

M
σ3 =

ρNA

M
L3 (2)

Substituting the values presented during the calculations of Φ into eq 2, we obtain

for P3HT, P3DDT, PE12, and Ac-Ndc9-Nte9 polypeptoid, ρ0 = 1.6, 8.6, 3.4, and 6.5

monomers/σ3 respectively.

2 Quasi-Long-Range Order of Stacking

In Figure S1 we present 1D correlation functions g(rz) for three of our Σr mesophases,

equilibrated in simulation boxes of different sizes and shapes:

• Black line: {Lx, Ly, Lz} = {25.10, 21.36, 20.98} with {nx, ny, nz} ={3,12,40}.

• Red line: {Lx, Ly, Lz} = {16.74, 10.68, 41.96} with {nx, ny, nz} ={2,6,80}.

• Green line: {Lx, Ly, Lz} = {16.74, 7.12, 62.94} with {nx, ny, nz} ={2,4,120}.

It is clear that as the box length Lz along the stacking direction z (and equivalently the

number of stacking layers nz) increases, the rate of decay of the peak heights in g(rz) also

increases. This dependence of correlations on system size provides further confirmation4

that our mesophase only has quasi-long-range order (QLRO) along the stacking direction.

Figure S1 Comparison of g(rz) in systems with different box dimensions and different numbers of

stacking layers nz. Black: nz = 40, red: nz = 80, green: nz = 120.
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3 Origin of Intralamellar Monomer-Level Lattice

In this section, we demonstrate that the intralamellar monomer-level lattice (Figure 6a of

the main paper) has a strong energetic driver. We present in Figure S2a the energy Enb

from all nonbonded interactions between monomers in a pair of polymers with N = 16,

κ = 0.874, λ = 0.408, ζ = 0.204 and η = 1. Figure S2b explains the geometrical setup

of the polymers. Both chains are in the all-trans conformation (with θ = 150°) and

their orientation is fixed such that the backbones point along the x-axis and the stacking

direction is along the z-axis. With the position of the first chain fixed, the second chain

is translated in space. Figure S2a presents the calculated energy Enb as a function of

the coordinates rx and rz of the vector connecting the end monomers of the two chains,

with ry = 0 (see Figure S2b). The energy “surface” in Figure S2a changes very little on

reversing the zig-zag direction of one of the oligomers.

Figure S2 demonstrates that the interference of attractive spherical shells of Vreg

potentials between different monomers has two consequences. Firstly, it forms a low-

energy band along the x-direction; the location of this band is consistent with the period

of regular stacking along the z-direction (magenta line). Secondly, it creates a sequence

of minima along the band, placed at rx = ±0.25,±0.5, . . .. The deepest minima are found

at rx = ±0.25, which causes the system to maintain an x-shift of ±0.25 between chains

and produces an intralamellar lattice of monomer positions. In Figure S2c we provide a

line graph showing the structure of the minima.

4 Origins of Smectic A and Smectic C Order

In our simulations, we find that SmA order is strongly preferred within each lamella. It is

likely that this behavior has a strong energetic contribution, because the energy landscape

favors close registration of chain centers of mass (see Figure S2c). However, the backbone

shifts between centers of mass of polymers in successive stacking layers may be either

rx = −0.25 or rx = 0.25, and there is no evidence that energetic contributions would

discourage an overall displacement towards either positive or negative rx via a random

walk. However, it appears that such random displacements are suppressed, because

intralamellar SmA order forms very fast in our simulations and remains strong during

and after equilibration. Therefore, it is possible that there are also entropic contributions
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Figure S2 (a) Energy Enb from all nonbonded interactions between the monomers of two N = 16

polymers in the all-trans conformation, with κ = 0.874, λ = 0.408, ζ = 0.204 and η = 1. The

geometric setup used in the calculation is illustrated in (b), where chains with only four monomers

are shown for clarity (see text above for detailed description). The potential surface in (a) is shown

as a function of the coordinates rx and rz of the vector connecting the end monomers of the two

chains, while ry = 0. The stacking distance is shown as a dashed magenta line, and arrows mark

the minimum energy regions along this line. (c) Potential along rx at the height of the stacking

distance, i.e. along the magenta line, where R2 = 0.65.

to SmA order, e.g. to increase the configurational entropy of the chain ends, or to give

the orientation of each individual stack freedom to fluctuate slightly within the plane of

its lamella.5

We also observe a SmC shift of chain backbones between polymers in neighboring

lamellae. It is difficult to identify the reason for this behavior, because interlamellar

monomer correlations are very weak (see Figure 6b in the main paper). To check whether

the SmC state is energetically favored, we compare interaction energies in the SmC phase

with interaction energies in systems purposefully prepared to have lamellae (i) in a SmA

arrangement and (ii) randomly shifted with respect to each other.

These test systems are assembled by taking equilibrated Σr configurations and man-

ually shifting each lamella individually along the x-direction to form the chosen struc-
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tures. The configurations are locally equilibrated using the flip move (see Section 2.3 of

the main paper) to relax monomer correlations without affecting the overall symmetries

of the mesophases. For each of the two types of test systems, we set up 16 indepen-

dent simulations, with {Lx, Ly, Lz} = {25.10, 21.36, 20.98} and {nx, ny, nz} = {3, 12, 40}

(n = 1440). As far as SmC phases are concerned, 32 samples (with the same dimensions

as the test systems) are equilibrated. In half of them, the tilt angle of the SmC is 21.4°

towards the left, whereas in the other half the same tilt angle occurs towards the right;

these tilt angles are commensurate with the PBCs of the simulation box. Effectively, the

samples with different tilt directions can be seen as repeats.

After equilibration, we calculate the total energy of each system, as well as the energies

originating from intralamellar and interlamellar interactions separately. The mean values

of these energies, for each type of symmetry, are plotted in Figure S3, where uncertainties

denote the standard errors between repeats.

Figure S3 (a) Interlamellar, (b) intralamellar and (c) total energies for systems with SmA (blue),

SmC (orange and red) and random (green) interlamellar order.

We find that the energies originating from interlamellar interactions are smaller for

SmC and random arrangements than SmA ones. However, these energetic benefits appear

to be compensated for by lower intralamellar interaction energies in the SmA systems,

so that the total energies are similar for all symmetries. Therefore, the data shown in
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Figure S3 (at least, for the accumulated statistics) do not provide clear indication that our

SmC phase is driven by energetics. The SmC arrangement might offer entropic benefits,

but their identification would require a free-energy based analysis, which is out of the

scope of this study.

5 Descriptors of Order for Creating Phase Diagram

To construct the phase diagram shown in Figure 7 of the main paper, it is necessary to

reliably determine which mesophase is exhibited by each of the systems studied. Although

this can be judged to some extent by eye, various order parameters and phase descriptors

are also used for quantification; these are discussed here.

5.1 Uniaxial and Biaxial Order Parameters, S and B

To distinguish biaxial nematics from isotropic melts, we use standard uniaxial and biaxial

order parameters,6 S and B. These are calculated for each system as follows; more details

about the procedure can be found in Ref. 6.

Each monomer has an assigned set of orientation vectors n
(1)
j (s), n

(2)
j (s) and n

(3)
j (s),

as described in Section 2.1 of the main paper. This allows us to define three tensors, Q11,

Q22 and Q33, for each instantaneous configuration of the system:

Qkk =
1

2

(
3

nN

n∑
j=1

N∑
s=1

n
(k)
j (s)⊗ n

(k)
j (s)− I

)
(3)

Here, N is the chain length, n is the number of chains in the system and I is the identity

matrix. k = 1, 2 or 3, depending on the orientation vector considered.

We then find the eigenvalues and eigenvectors for each of the matrices Qkk. The dom-

inant eigenvalue (i.e. the eigenvalue of Q11, Q22 or Q33 with the highest absolute value)

is defined as the uniaxial order parameter S, with its associated eigenvector providing

the primary nematic director n̂ for the system. This direction is also labelled EZ , with

unit vector Z, and the tensor corresponding to the dominant eigenvalue is labelled QZZ .

We then consider the eigenvalue with the next largest positive value, and project

its associated eigenvector onto the plane orthogonal to EZ – this defines the secondary

system director, labelled EY , with unit vector Y . The corresponding tensor is labelled
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QY Y . The final axis EX , with unit vector X, is chosen to create a right-handed basis

(i.e. X = Y ×Z), with the remaining tensor labelled QXX . The biaxial order parameter

B is then defined as follows, where the superscript T denotes taking the transpose of a

vector:

B =
1

3

(
XTQXXX + Y TQY YY −XTQY YX − Y TQXXY

)
(4)

The order parameters S and B are then averaged over all relevant conformations.

5.2 Smectic A Order Parameter, Λ

A major difference between our Σd and Σr mesophases is the presence of SmA order

within each lamella in the latter. We quantify intralamellar SmA order using a standard

order parameter7–9 Λ.

Λ =

〈
1

na

∣∣∣ na∑
j=1

exp

(
2πi[rj,COM · n̂a]

dbackbone

)∣∣∣〉 (5)

Here, na is the number of chains in the considered lamella a. rj,COM is the center of

mass of each polymer j located in lamella a, and n̂a is the nematic director for the chain

backbones in that lamella. dbackbone is the period of the SmA, estimated by dividing Lx

(the box length in the backbone direction) by nx (the number of chains lying along the

x-axis in each stacking layer). Angular brackets indicate averaging over all lamellae in

all conformations generated with the desired system parameters.

5.3 Cross-Lamellar Smectic C Order: Center of Mass Correla-

tions

Cross-lamellar smectic order is generally quite easy to identify by visualization if the end

monomers of each polymer are colored differently to the rest of the chain (e.g. Figure 4c

of the main paper). However, this is only a qualitative analysis, so we also developed a

quantitative method to test for the presence of cross-lamellar smectics. It is important

to note that this method assumes well-formed intralamellar SmA layers.

We construct a correlation function between the centers of mass of polymers in neigh-

boring lamellae:
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b(rx) =

〈
Lx

2nanb

na∑
j=1

nb∑
l=1

δ (rx − |rjl,COM;x|)

〉
(6)

When carrying out this calculation, we label our lamellae consecutively across the sim-

ulation box, and then consider each neighboring pair of lamellae (a and b = a + 1) in

turn, taking into account periodic boundary conditions. na and nb refer to the numbers

of molecules in each lamella of the pair.

Figure S4 Comparison between smectic correlation functions for typical systems with SmA (black)

and SmC (red) order, calculated using eq 6. In both cases, the chain spacing dbackbone along the

backbone direction is 8.37. In SmA systems, maxima in b(rx) are found at the origin and at intervals

corresponding to multiples of dbackbone. In SmC systems, characteristic double peaks are observed,

with their maxima surrounding multiples of dbackbone.

We take two polymers j and l, one in each lamella a and b respectively, and project the

center of mass of each onto the x-axis of the simulation box (i.e. the backbone direction).

The modulus of the distance rjl,COM;x between the projections is placed into a histogram

with bin size 0.25. This process is repeated for all possible pairs of monomers located

across the chosen lamellae. We then average over all pairs of neighboring lamellae in all

configurations, as indicated by the angular brackets.

Maxima in b(rx) at the origin and at intervals corresponding to multiples of the chain

spacing dbackbone along the backbone direction signify SmA cross-lamellar order. Charac-

teristic double peaks with the maxima surrounding multiples of dbackbone correspond to

SmC (see Figure S4). The shift of the first maxima from the origin gives an indication

of the SmC tilt angle. A similar correlation function considering only molecules in the

same lamella can be used to confirm the presence of an intralamellar SmA.
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6 Order-of-Magnitude Estimations for λ and ζ

We present analytical estimations to help understand which magnitudes of λ and ζ are

needed to promote a biaxial nematic Nb and a disordered sanidic mesophase Σd, respec-

tively. These estimations do not constitute a rigorous statistical mechanical theory, and

are only back-of-the-envelope calculations which aim to provide a simple physical picture.

6.1 λ Parameter and Biaxial Nematic

We estimate the magnitudes of λ that are required to induce a transition from isotropic

melt to biaxial nematic. All other anisotropic interactions are deactivated, that is to say

we set ζ = 0 and η = 0. We consider disconnected monomers, i.e. we neglect chain

connectivity. The definitions of Vbiaxial and the biaxial tensor in eq 5 and eq 8 of the main

paper demonstrate that λVbiaxial has a maximum value of λVbiaxial(max) = λU(r) when two

board-like monomers, say s and m, are “orthogonal” to each other: n(1)(s) ∥ n(1)(m),

n(2)(s) ⊥ n(2)(m) and n(3)(s) ⊥ n(3)(m). The minimum value λVbiaxial(min) = −λU(r)

corresponds to a perfectly biaxial orientation: n(1)(s) ∥ n(1)(m), n(2)(s) ∥ n(2)(m) and

n(3)(s) ∥ n(3)(m). Hence the maximum possible energy difference between pairs of

monomers with different relative orientations is ∆(λVbiaxial) = 2λU(r). We now sub-

stitute for r a length scale characterizing the structure of the liquid. Making the rough

approximation that the local liquid packings in an isotropic melt and biaxial nematic are

similar, we use the average distance between monomers rav = 1/ 3√ρ0 = 1/
3√
2.05 (in units

of σ) to obtain ∆(λVbiaxial) = 2λU(rav) ≃ 1.76λ (in units of thermal energy kBT ). We

can expect that a biaxial nematic will appear, i.e. the symmetry of orientation will be

broken, when ∆(λVbiaxial) is on the order of kBT . Hence, we take as a reference point

λ ≃ 0.57, i.e. the value of λ where ∆(λVbiaxial) = 1.

This reasoning involves several drastic simplifications. For example, it does not ac-

count for entropic effects and neglects cooperativity between monomers found in the

same chain. Studies of uniaxial polymer nematics demonstrate10–13 that chain stiffness

correlates orientations of segments in the same molecule. These correlations enhance

alignment forces between individual monomers and reduce the coupling strength that is

required for an isotropic-nematic transition.

With these simplifications in mind, we compare our reference point with the phase
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diagram in Figure 7 of the main paper. The simulations indeed demonstrate that λ ≤

0.175, which is equivalent to ∆(λVbiaxial) ≤ 0.3, are indeed too weak to obtain a biaxial

nematic melt. In Figure 7, a biaxial melt is observed at λ = 0.291, which corresponds to

∆(λVbiaxial) ≃ 0.5.

Furthermore, the requirement that βVlamella ≥ 0 (see main paper and Ref. 14) sets an

upper boundary on λ. At each distance r, the most negative value of λVbiaxial + ζVstack =

−λ−2ζ occurs14 when two interacting monomers are found in a perfectly biaxial, face-to-

face registration. Hence, the condition βVlamella ≥ 0 leads to the constraint14 κ ≥ λ+2ζ.

Therefore, when ζ = 0, for our choice of κ = 0.874, it is necessary for λ ≤ 0.874. When

ζ > 0, the region of allowed values of λ values shrinks further.

6.2 ζ Parameter and Disordered Sanidic Mesophase Σd

The stacking potential ζVstack is introduced to act cooperatively14 with the biaxial inter-

action λVbiaxial, following the logic that stacking requires a parallel, i.e. biaxial, arrange-

ment of planes of chain backbones. Therefore, we consider the emergence of a lamellar

Σd mesophase as a transition from a state of biaxial nematic with uniform density ρ0 into

a state with biaxial order and density modulation. Our goal is to compare the energies

of these two states as a function of ζ.

In our analytical calculation, both states contain an equal number of disconnected

monomers in a volume V . Because spatial density modulation is affected by compress-

ibility, we take into account the isotropic repulsion κViso, but set η = 0. Hence, the

average energy E(a) per monomer has three contributions:

E(a) = Eiso(a) + Ebiaxial(a) + Estack(a) (7)

where Eiso(a), Ebiaxial(a), and Estack(a) are, respectively, the average energy (per monomer)

due to the isotropic repulsive, biaxial, and stacking interactions. The subscript a = u,m

indicates the state: uniform or modulated density.

We first estimate the average energy E(u) in a biaxial nematic with uniform density

distribution ρ3D(r) = ρ0, where r is a vector in 3D space. The setup is illustrated

in Figure S5a. We assume perfect biaxial alignment, such that for each monomer s,

n(1)(s) ∥ x̂, n(2)(s) ∥ ŷ and n(3)(s) ∥ ẑ, where {x̂, ŷ, ẑ} are the unit vectors of the
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Figure S5 Cartoons clarifying the setups of the biaxial nematics with (a) uniform density and (b)

modulated density used in the analytical calculations.

laboratory frame.

Within a mean-field ansatz, Eiso(u) is given by:

Eiso(u) =
κ

2ρ0V

∫ ∫
ρ3D(r)U(|r− r′|)ρ3D(r′)drdr′ = κρ02π

∫ 2σ

0

U(r)r2dr =
4

3
κρ0πσ

3 (8)

Ebiaxial(u) is estimated in a similar way, considering that, for perfect biaxial order, the

biaxial potential between two monomers is λVbiaxial(u) = −λU(r) (see previous section):

Ebiaxial(u) = −λρ02π

∫ 2σ

0

U(r)r2dr = −4

3
λρ0πσ

3 (9)

To calculate Estack(u) we consider that, for our specific orientation of the biaxial phase,

the Vstack(u) between two monomers, say s and m, with distance vector r is:

Vstack(u) = −U (r)
[
P2

(
n(3)(s) · r̂

)
+ P2

(
n(3)(m) · r̂

)]
= −2U (r)P2 (ẑ · r̂) (10)

Therefore, using spherical polar coordinates:

Estack(u) = − ζ

ρ0V

∫ ∫
ρ3D(r)U(|r− r′|)P2 (ẑ · (r− r′)/|r− r′|) ρ3D(r′)drdr′

= −ζρ02π

∫ π

0

∫ 2σ

0

U(r)P2(cos θ)r
2 sin θdrdθ = 0

(11)
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Collecting all terms gives:

E(u) =
4

3
ρ0πσ

3(κ− λ) (12)

Next, we estimate the average energy E(m) in a state with modulated density. For the

modulation, we assume a simple profile, where the centers of mass of monomers are

randomly distributed on infinitely thin parallel sheets (lamellae) with area A. The 2D

density of monomers on each sheet is ρ2D(r) = ρ2D, where r is a vector in 2D space.

Furthermore, the distance between the sheets is 2σ; in other words, there are no interac-

tions between monomers belonging to neighboring lamellae. The setup is illustrated in

Figure S5b. Because the number of particles is conserved, ρ2D = 2σρ0. Since lamellae

do not interact with each other in this setup, we can calculate E(m) by considering the

energetics within one sheet only.

Eiso(m) is given by:

Eiso(m) =
κ

2Aρ2D

∫ ∫
ρ2D(r)U(|r− r′|)ρ2D(r′)drdr′

= κρ2Dπ

∫ 2σ

0

U(r)rdr =
4

5
κρ2Dπσ

2 =
8

5
κρ0πσ

3

(13)

We estimate Ebiaxial(m), considering again that for perfect biaxial order, λVbiaxial(m) =

−λU(r):

Ebiaxial(m) = − λ

2Aρ2D

∫ ∫
ρ2D(r)U(|r− r′|)ρ2D(r′)drdr′

= −λρ2Dπ

∫ 2σ

0

U(r)rdr = −4

5
λρ2Dπσ

2 = −8

5
λρ0πσ

3

(14)

To calculate Estack(m), we take advantage of eq 10 and use plane polar coordinates in the

yz-plane, where ϕ is measured from the z-axis:

Estack(m) = − ζ

ρ2DA

∫ ∫
ρ2D(r)U(|r− r′|)P2 (ẑ · (r− r′)/|r− r′|) ρ2D(r′)drdr′

= −ζρ2D

∫ 2π

0

∫ 2σ

0

U(r)P2(cosϕ)rdrdϕ = −2

5
ζρ2Dπσ

2 = −4

5
ζρ0πσ

3

(15)

Collecting all terms gives:

E(m) =
4

5
ρ0πσ

3(2κ− 2λ− ζ) (16)

From eqs 12 and 16, we find the condition on ζ for which E(u) > E(m), i.e. the modulated

S13



state is energetically favorable:

ζ >
(κ− λ)

3
(17)

We now compare the condition in eq 17 with the phase diagram in Figure 7 of the main

paper. For κ = 0.874 (and η = 0), eq 17 predicts that the Σd mesophase is preferable for

ζ ≥ 0.19 when λ = 0.291, and ζ ≥ 0.16 when λ = 0.408. These predictions are close to

ζ = 0.204 and ζ = 0.175, where the Σd is first observed in Figure 7 for the same values of λ.

Of course, the agreement between the qualitative estimate and simulation data might be

a fortunate cancellation of errors introduced by the approximations used to derive eq 17.

These simplifications include neglecting polymer connectivity, entropic effects (such as

differences in translational entropy between 3D and 2D molecular arrangements), and

interactions across lamellae.

Analytically estimating the magnitude of η required for chain registration is even less

straightforward than estimating ζ. For example, molecular architecture must be explicitly

considered, because chain-chain registration is linked to the interference of non-bonded

interactions between a monomer and several other monomers situated in a foreign chain,

as demonstrated in Figure S2. Therefore, we do not provide an analytical estimation for

η here.
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