Supporting Information for:

High-Resolution Ion-Flux Imaging of Proton Transport through Graphene | Nafion Membranes

Cameron L. Bentley,^{†,‡,*} *Minkyung Kang*,[‡] *Saheed Bukola*,[§] *Stephen E. Creager*[§] *and Patrick R.*

Unwin^{‡,*}

⁺School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

[‡]Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

[§]Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United

States

*E-mail: <u>cameron.bentley@monash.edu</u> (C.L.B.); <u>p.r.unwin@warwick.ac.uk</u> (P.R.U.)

Contents

ASSESSING THE QUALITY OF GRAPHENE AS A WORKING ELECTRODE	3
LOCAL PROTON CONDUCTION MECHANISMS	5
MOVIE CAPTIONS	6
TOPOGRAPHICAL MAPS	7
OVERPOTENTIAL, CAPACITANCE AND RC TIME CONSTANT	9
EQUIVALENT CIRCUIT: ION TRANSPORT THROUGH A NANOPORE	11
MACROSCOPIC AREAL CONDUCTIVITY OF GRAPHENE MEMBRANES	15
ELECTRON MICROSCOPY IMAGES OF SECCM PROBES	16
XPS CHARACTERIZATION OF GRAPHENE NAFION MEMBRANES	17
SI REFERENCES	18

ASSESSING THE QUALITY OF GRAPHENE AS A WORKING ELECTRODE

In order to assess the quality of the graphene overlayer film as a working electrode (WE), we studied the electrochemistry of the outer-sphere FcDM^{0/+} (FcDM = ferrocendimethanol) process using the same dual-channel scanning electrochemical cell microscopy (SECCM) set up^{1, 2} as for the proton transmission measurements. As shown in Figure S1a, in this configuration, the potential (E_{surf}) at the graphene WE surface (directly connected to the electrometer, rather than floating, as in the main text), was controlled through the applied potential (E_{app}) *via*: $E_{surf} = -(E_{app} + E_{bias}/2)$, as described in the main text. The employed dual-channel probe had a tip radius (r_{tip}) of *ca*. 100 nm (Figure S1a, inset), and during measurement, was equipped with Ag/AgCl quasi-reference counter electrodes (QRCEs) and filled with an aqueous solution of 1.3 mM FcDM + 12.5 mM HCl.

Linear-sweep voltammograms (LSVs), obtained in the SECCM format on graphene and GC WEs, shown in Figure S1c, are sigmoidal in shape, indicating (near-)steady-state behaviour,¹ with mass-transport limiting currents (i_{lim}) of ≈ 3.2 pA. FcDM^{0/+} is an apparently ideal (Nernstian) process on both materials, evidenced by: $E_{1/2} \approx E^{0'} \approx 0.15$ V [where $E_{1/2}$ is the potential where $i = i_{lim}/2$ and; $E^{0'}$ is the formal reversible potential, estimated by macroscopic cyclic voltammetry, not shown] and; $|E_{3/4} - E_{1/4}| \approx 57$ mV (where $E_{3/4}$ and $E_{1/4}$ are the potentials where $i = 3 \cdot i_{lim}/4$ and $i = i_{lim}/4$, respectively), satifying Tomes criterion of reversibility.³ Assuming an upper limit of detection of the heterogeneous electron-transfer rate constant (k^0) $\approx 5 \cdot k_m \approx D/(2r_{tip})$, where k_m is the mass-transfer coefficient [$\approx D/(10r_{tip})$ in the SECCM configuration] and D is the diffusion coefficient of FcDM ($\approx 8 \cdot 10^{-6}$ cm² s⁻¹); $k^0 \ge 0.04$ cm s⁻¹ on both graphene and GC.⁴ This effectively demonstrates that the graphene prepared as described herein is usable as a WE that supports facile electron-tunnelling, in agreement with previous reports.⁵

Figure S1. (a) Schematic of the SECCM set up employed to assess the quality of graphene as a working electrode. The dual-channel nanopipet probe is filled with electrolyte solution (1.3 mM FcDM + 12.5 mM HCl) and equipped with identical Ag/AgCl QRCEs. During operation, E_{bias} is applied between the QRCEs and the resulting i_{dc} is used as a feedback signal to detect meniscus-surface contact. A potential of E_{app} was applied to one of the QRCEs to control the graphene WE potential (E_{surf}), where $E_{surf} = -(E_{app} + E_{bias}/2)$ and the WE current (i_{surf}) was measured. Note that in this configuration, the Nafion membrane simply serves as a support for the graphene WE and the underlying Pt electrode was floating (*i.e.*, it was neither biased nor electrically grounded). Inset is a scanning tunnelling electron microscopy (STEM) image of the employed nanopipet tip. (**b**) Representative LSVs (voltammetric scan rate, $u = 0.2 \text{ V s}^{-1}$) obtained from the FcDM^{0/+} process on graphene (black trace) and GC (red trace) WE substrates in the SECCM configuration [shown in (a)]. These curves are the average of 10 independent measurements carried out at randomly selected spots across the respective WE surfaces.

LOCAL PROTON CONDUCTION MECHANISMS

Figure S2. Scheme showing (a) intrinsic (through-plane) and (b) defect-driven proton (H⁺) conduction mechanisms. Note the differing scales.

MOVIE CAPTIONS

Movie S1. Spatially-resolved electrochemical (*current–voltage, i–E*) movie (51×51 pixels over a 100 × 100 µm² area, hopping distance = 2 µm) obtained with the voltammetric ($u = 0.1 \text{ V s}^{-1}$, 1 cycle) hopping mode SECCM configuration (shown in the main text, Figure 1), visualizing local proton transmission through a graphene|Nafion membrane. The micropipet probe (tip area $\approx 1 \text{ µm}^2$) was equipped with Ag/AgCl QRCEs and filled with 0.1 M HCl. Data extracted from Movie S1 were used to construct Figure 2a in the main text. The data presented are not interpolated.

Movie S2. Spatially-resolved electrochemical (*i*–*E*) movie (51 × 51 pixels over a 100 × 100 μ m² area, hopping distance = 2 μ m) obtained with the voltammetric (*u* = 0.2 V s⁻¹, 2 cycles) hopping mode SECCM configuration (shown in the main text, Figure 1), visualizing local proton transmission through a graphene|Nafion membrane. The micropipet probe (tip area ≈ 1 μ m²) was equipped with Ag/AgCl QRCEs and filled with 0.1 M HCl. Data extracted from Movie S2 were used to construct Figure 3a in the main text. The data presented are not interpolated.

Movie S3. Spatially-resolved electrochemical (*current-time*, *i*-*t*) movie (49 × 29 pixels over a 120 × 70 μ m² area, hopping distance = 2.5 μ m) obtained with the amperometric (pulse time = 10 seconds) hopping mode SECCM configuration (shown in the main text, Figure 1), visualizing local proton transmission through a "damaged area" of a graphene | Nafion membrane. The micropipet probe (tip area ≈ 2 μ m²) was equipped with Ag/AgCl QRCEs and filled with 0.1 M HCl. Data extracted from Movie S3 were used to construct Figure 4a-i in the main text. The data presented are not interpolated.

Movie S4. Spatially-resolved electrochemical (*i*-*t*) movie (49 × 29 pixels over a 125 × 70 μ m² area, hopping distance = 2.5 μ m) obtained with the amperometric (pulse time = 10 seconds) hopping mode SECCM configuration (shown in the main text, Figure 1), visualizing local proton transmission through a more pristine area of a graphene | Nafion membrane. The micropipet probe (tip area ≈ 2 μ m²) was equipped with Ag/AgCl QRCEs and filled with 0.1 M HCl. Data extracted from Movie S4 were used to construct Figure 4a-ii in the main text. The data presented are not interpolated.

TOPOGRAPHICAL MAPS

Figure S3. (a) Electrochemical activity $(\log_{10} |Q|)$ and **(b)** co-located topographical maps (measured synchronously), collected over a 100 × 100 μ m² area of a graphene|Nafion membrane, using SECCM in the voltammetric ($v = 0.1 \text{ V s}^{-1}$, 1 cycle, $E_{surf} = -0.225$ to 0.175 V vs. Ag/AgCl_{QRCE}) hopping mode configuration (hopping distance = 2 μ m, 51 × 51 pixels). **(c)** Overlay of (a) on (b). Note that SI, Figure S3a is reproduced from Figure 2a in the main text.

Figure S4. (a) Electrochemical activity $(\log_{10} |Q|)$ and **(b)** co-located topographical maps (measured synchronously), collected over a 100 × 100 μ m² area of a graphene|Nafion membrane, using SECCM in the voltammetric ($v = 0.2 \text{ V s}^{-1}$, 2 cycles, $E_{\text{surf}} = -0.225$ to 0.175 V vs. Ag/AgCl_{QRCE}) hopping mode configuration (hopping distance = 2 μ m, 51 × 51 pixels). **(c)** Overlay of (a) on (b). Note that SI, Figure S4a is reproduced from Figure 3a in the main text.

OVERPOTENTIAL, CAPACITANCE AND RC TIME CONSTANT

Overpotential (η). The overpotential (η) is defined as:³

$$\eta = E - E_{eq}$$
(S1)

where E_{eq} is the equilibrium potential. The hydrogen evolution reaction (HER), *i.e.*, H⁺/H₂ process, by definition, possesses an E_{eq} value of 0 V vs. RHE (reversible hydrogen electrode), which is related to the SHE (standard hydrogen electrode) as follows:

$$E_{\rm RHE} = E_{\rm SHE} - 0.059 \cdot \rm pH \tag{S2}$$

As the HER is taking place at the Pt WE, the pH value here refers to that of the Nafion 211 membrane, which is taken to be ≈ -0.1 (Refs 6-8). In 0.1 M HCl, the Ag/AgCl QRCEs are poised at:

$$E_{\text{QRCE}} = E^{0'} - \frac{RT}{F} \ln[\text{Cl}^-] \approx 0.281 \text{ V } vs. \text{ SHE}$$
 (S3)

Thus, -0.5 V vs. Ag/AgCl_{QRCE} translates to \approx -0.2 V vs. RHE or η = 0.2 V.

Double layer capacitance (C_{dl} **).** C_{dl} arises from the charging of the electrical double layer at the macroscopic Pt WE and therefore is not necessarily limited to the dimensions of meniscus-surface contact. Indeed, a previous study has shown that in low-frequency AC measurements (*i.e.*, on the ms to s timescale), the nanopipet "senses" the capacitance of an electrode area that is orders-of-magnitude larger than the dimensions of the probe tip itself.⁹ C_{dl} was estimated from the nonfaradaic charging current measured by landing the SECCM probe directly on the Nafion, exposed at damaged areas of the graphene|Nafion membrane; a representative cyclic voltammogram (CV) is shown in Figure S5. From the nonfaradaic current 'envelope' (marked 2·*i*_c in Figure S5), C_{dl} can be estimated as follows:

$$C_{\rm dl} = \frac{i_{\rm C}}{v} \tag{S4}$$

where v is voltammetric scan rate. From $i_c \approx 0.2$ nA and v = 0.1 V s⁻¹, C is estimated to be ≈ 2 nF. As a rough estimate, if it is assumed that the Pt WE has a specific capacitance of 20 μ F cm⁻² (typical for a metal electrode in aqueous solution³), 2 nF corresponds to an electrode area of $\approx 10^{-4}$ cm². This means

that the area of the Pt WE that contributes to C_{dl} is *ca*. 4 orders-of-magnitude larger than that of the area of meniscus contact (*ca*. 1 – 2 μ m²), consistent with the previous report described above.⁹

RC **time constant (\tau).** The *RC* time constant (τ) is the product of the series resistance (R_{series}) and double layer capacitance (C_{dl}). As described in detail in the main text, over an active proton transmission site, $R_{series} \approx R_{pore} \approx 100$ to 1000 M Ω , giving rise to τ values of 0.2 to 2 s. Assuming a simple *RC* series circuit, for a potential-step experiment, the non-faradaic current (i_{nf}) decays exponentially with *t* as follows:

$$i_{\rm nf} = \frac{E}{R} e^{-t/\tau} \tag{S5}$$

Thus, i_{nf} drops to 5% of its initial value at $t = 3\tau$, meaning it can be effectively neglected at t > 6 s (assuming $\tau = 2$ s).

Figure S5. Representative CV ($u = 0.1 \text{ V s}^{-1}$, 1 cycle, $E_{surf} = -0.225$ to 0.175 V vs. Ag/AgCl_{QRCE}), obtained in the SECCM format by landing the micropipet probe directly on the Nafion 211 film (exposed at a damaged area of the graphene|Nafion membrane). This curve is the average of 10 independent measurements. These data were collected with a dual-channel micropipet probe of tip area $\approx 1 \mu m^2$, equipped with Ag/AgCl QRCEs and filled with 0.1 M HCl.

EQUIVALENT CIRCUIT: ION TRANSPORT THROUGH A NANOPORE

Analogizing proton conduction through local transmission "sites" on the graphene | Nafion membranes to ion transport through an atomically-thin, cylindrical nanopore,^{10, 11} the equivalent circuit model^{12, 13} schematized in Figure S6 was derived.

Figure S6. Equivalent circuit representing local proton transmission through graphene|Nafion membranes. The transmission site is analogized to a cylindrical nanopore (zoomed in on right) in the graphene overlayer film. R_{tip} = tip resistance; R_a = access resistance; R_g = geometric resistance; R_{pore} = pore resistance; R_{ct} = charge-transfer resistance and; C_{dl} = double layer capacitance. Note that R_{pore} = $R_{a,t} + R_g + R_{a,n}$ (shown on right). The subscripts *t* and *n* refer to the tip and Nafion sides of the graphene film, respectively.

Beginning from the top of Figure S6, R_{tip} is the resistance of the micropipet tip, which is known to depend on the inner cone angle (β) and tip radius (r_t) according to:

$$R_{\rm tip} \approx \frac{\rho}{\pi r_{\rm t} \tan \beta} + \frac{\rho}{4r_{\rm t}}$$
(S6)

where ρ is the solution resistivity. In practice, R_{tip} can be estimated from using Ohm's law, by measuring an current–voltage curve in the scanning ion conductance microscopy (SICM) configuration.¹⁴ Alternatively, when using a dual-channel probe, R_{tip} can be readily estimated as follows:

$$R_{\rm tip} \approx \frac{E_{\rm bias}}{i_{\rm dc}}$$
(S7)

where E_{bias} is the bias voltage that is applied between the Ag/AgCl quasi-reference counter electrodes (QRCEs) located in the two channels and i_{dc} is the ion conductance current that flows through the meniscus located at the end of the probe.

 $R_{\rm a}$ is the access resistance, which refers to the resistance through solution from electrodes (*i.e.*, QRCE and WE) to pore aperture, and depends on the pore radius (assuming a circular pore of radius, $r_{\rm p}$) as follows:^{10, 11}

$$R_{\rm a,t} = \frac{\rho_{\rm t}}{4r_{\rm p}} \tag{S8}$$

$$R_{\rm a,n} = \frac{\rho_{\rm n}}{4r_{\rm p}} \tag{S9}$$

Note that the subscripts *t* and *n* refer to the *tip* (*i.e.*, 0.1 M HCl) and *Nafion* sides of the graphene film, respectively. R_g is the geometric resistance, which is proportional to the length (L_p) and inversely proportional to the area (πr_p^2) of nanopore, as follows:^{10, 11}

$$R_{\rm g} = \frac{\rho_{\rm p} L_{\rm p}}{\pi r_{\rm p}^2} \tag{S10}$$

Note that the subscript p signifies properties of the pore itself. Assuming $\rho_t = \rho_n = \rho_p = \rho$ (vide infra), consolidating Eqs. (S8) – (S10) gives the following (Figure S6):

$$R_{\text{pore}} = \frac{\rho L_{\text{p}}}{\pi r_{\text{p}}^2} + \frac{\rho}{2r_{\text{p}}}$$
(S11)

where R_{pore} is the pore resistance. From Eq. (S11), pores with a high aspect ratio (*i.e.*, $r_p < L_p$) give a pore-dominated response (*i.e.*, $R_g > R_p$), whereas pores with a low aspect ratio ($r_p > L_p$) give an access-dominated response (*i.e.*, $R_g < R_p$). Monolayer graphene is atomically thin, with L_p estimated to be in the ≈ 0.34 nm (*i.e.*, van der Waals diameter of carbon atoms) to ≈ 1 nm range,¹⁰ taken to be ≈ 0.6 nm,

herein.¹⁵ Thus, for atomic-scale proton transmission sites ($r_p \approx L_p$), both R_g and R_p contribute to overall pore resistance (R_{pore}), whereas for lower aspect ratio or nanoscale sites ($r_p > L_p$), $R_{pore} \approx R_a$.

 R_{ct} is the charge transfer resistance (or activation resistance), which scales inversely with the heterogeneous electron-transfer rate constant associated with the Faradaic charge-transfer reaction taking place at the Pt WE [*e.g.*, oxygen reduction reaction (ORR), HER *etc.*]. R_{ct} is in parallel with C_{dl} , which is the double layer capacitance, arising from the charging of the electrical double layer on the macroscopic Pt WE.³ Note that because the Ag/AgCl process is kinetically facile, and the potential of the QRCE is fixed during measurement,¹⁶ R_{ct} and C_{dl} on the Ag/AgCl QRCEs (not shown in Scheme 1) can be neglected.³

In principle, the pore geometry (*i.e.*, r_p) can be estimated if R_{pore} is known, *i.e.*, rearranging Eq. (S11) gives:

$$r_{\rm p} = \frac{\pi \rho + \sqrt{\pi^2 \rho^2 + 16\pi \cdot R_{\rm pore} \cdot \rho \cdot L_{\rm p}}}{4\pi \cdot R_{\rm pore}}$$
(S12)

In practice, R_{pore} can only be estimated simply from the series resistance (R_{series}) under conditions where the contributions from C_{dl} and R_{ct} are negligible (i.e., $R_{series} \approx R_{tip} + R_{pore}$; see Figure S6). By applying a potential-step (*e.g.*, main text, Figure 4) waveform, rather than a potential-sweep (*e.g.*, main text, Figures 2 and 3), the capacitive contribution to the measured surface current (i_{surf}) can be effectively neglected after a time of 3τ (*i.e.*, where the double layer charging current drops to 5% of its initial value³), which is >6 seconds, assuming $\tau = 2$ s (*vide supra*). R_{ct} can be effectively neglected under conditions of facile electron-transfer, which can be readily achieved herein by only considering the kinetically facile HER (rather than the kinetically sluggish ORR) at a strongly driving overpotential (η). Indeed, it is the rapid electron-transfer kinetics of the H⁺/H₂ process at Pt electrodes that enables them to be used in conventional electrochemical hydrogen pump cells to quantify (bulk) proton transport in proton exchange membrane fuel cells.¹⁷ Thus, during a potential-step experiment at t > 6 s and a strong driving (over)potential of $\eta = 0.2 \text{ V}$ (*ca.* -0.5 V *vs.* Ag/AgCl, calculation detailed above), R_{series} reduces to:

$$R_{\text{series}} \approx R_{\text{tip}} + R_{\text{pore}} \approx \frac{\eta}{i_{\text{surf}}}$$
 (S13)

and rearranging for R_{pore}:

$$R_{\text{pore}} \approx \frac{\eta}{i_{\text{surf}}} - R_{\text{tip}}$$
 (S14)

Thus, as discussed in the main text, R_{pore} can be readily estimated from i_{surf} and R_{tip} [Eq. (S7)], allowing the pore geometry (r_p) to be estimated.

As noted above, in the derivation of Eq. (S11), was assumed that $\rho_t = \rho_n = \rho_p = \rho$. While the bulk conductivities of 0.1 M HCl (≈ 0.04 S cm⁻¹, Ref 18) and Nafion ($\approx 0.02 - 0.06$ S cm⁻¹, Ref 19) are comparable (*i.e.*, $\rho_t = \rho_n$), the local conductivity of the latter is structure-dependent on the nanoscale (*e.g.*, see Figure S2) and the environment inside the pore (*i.e.*, ρ_p) is also likely to be significantly different to the surrounding solutions. Given this, along a number of other assumptions [*e.g.*, assuming continuum ion transport and ignoring the effects of ion dehydration, interactions with surface charge(s) within the pore and structural fluctuations (flexibility) in the membrane¹⁰], the pore geometries (r_p) estimated in the main text from Eq. (S12) should be taken *cum grano salis*.

MACROSCOPIC AREAL CONDUCTIVITY OF GRAPHENE MEMBRANES

G/A (S cm ⁻²)	Preparation method / ≈membrane area	Reference	Equivalent defect density (defects μm ⁻²) [†]
0.003	Exfoliated graphene / ≈µm²	20	0.005
0.004	CVD graphene / ≈µm²	21	0.007
≈0.09	CVD graphene-on-Nafion / ≈cm ²	22	≈0.2
≈0.6	H_2 plasma-treated graphene / $\approx \mu m^2$	21	≈1
≈1	Disordered graphene / ≈µm²	23	≈2
≈1	CVD graphene-on-Nafion / ≈cm ²	24	≈2
≈30	CVD graphene-on-Nafion / ≈cm ²	25	≈50

Table S1. Reported areal conductivity values of graphene membranes

⁺defects μ m⁻² = areal conductivity (S cm⁻²) · 170·10⁶ (Ω · defect) / 10⁸ (cm² μ m⁻²)

ELECTRON MICROSCOPY IMAGES OF SECCM PROBES

(b) Main text, Figure 5

100 nm

200 nm

Figure S7. Representative electron microscopy images of the pipet probes used in (a) main text, Figures 2 – 4; (b) main text, Figure 5 and; (c) SI, Figure S1. (a) was taken in scanning electron microscopy (SEM) mode, and (b)/(c) were taken in scanning transmission electron microscopy (STEM) mode on a GeminiSEM 500 system.

Figure S8. X-ray photoelectron spectroscopy (XPS) spectra obtained from Nafion [(a) survey and (b) C1s] and graphene | Nafion [(c) survey and (d) C1s] membranes.

Table S2. Atomic composition of Nafion and graphene | Nafion membranes, quantified by XPS.

alamant	atomic %		
element	Nafion	graphene Nafion	
F1s	57.7	33	
C1s	33.8	58	
O1s	7.5	8	
S2p	1	0.9	

SI REFERENCES

1. Snowden, M. E.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O'Connell, M. A.; Colburn, A. W.; Unwin, P. R., Scanning Electrochemical Cell Microscopy: Theory and Experiment for Quantitative High Resolution Spatially-Resolved Voltammetry and Simultaneous Ion-Conductance Measurements. *Anal. Chem.* **2012**, *84* (5), 2483-2491.

2. Ebejer, N.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Snowden, M. E.; Unwin, P. R., Scanning Electrochemical Cell Microscopy: A Versatile Technique for Nanoscale Electrochemistry and Functional Imaging. *Annu. Rev. Anal. Chem.* **2013**, *6*, 329-351.

3. Bard, A. J.; Faulkner, L. R., *Electrochemical Methods : Fundamentals and Applications*. 2nd ed.; Wiley: New York, 2001; p 833.

4. Daviddi, E.; Chen, Z.; Massani, B. B.; Lee, J.; Bentley, C. L.; Unwin, P. R.; Ratcliff, E. L., Nanoscale Visualization and Multiscale Electrochemical Analysis of Conductive Polymer Electrodes. *ACS Nano* **2019**, *13* (11), 13271-13284.

5. Güell, A. G.; Cuharuc, A. S.; Kim, Y.-R.; Zhang, G.; Tan, S.-y.; Ebejer, N.; Unwin, P. R., Redox-Dependent Spatially Resolved Electrochemistry at Graphene and Graphite Step Edges. *ACS Nano* **2015**, *9* (4), 3558-3571.

6. Umeda, M.; Sayama, K.; Maruta, T.; Inoue, M., Proton Activity of Nafion 117 Membrane Measured from Potential Difference of Hydrogen Electrodes. *Ionics* **2013**, *19* (4), 623-627.

7. Spry, D. B.; Fayer, M. D., Proton Transfer and Proton Concentrations in Protonated Nafion Fuel Cell Membranes. *J. Phys. Chem. B* **2009**, *113* (30), 10210-10221.

8. Seger, B.; Vinodgopal, K.; Kamat, P. V., Proton Activity in Nafion Films: Probing Exchangeable Protons with Methylene Blue. *Langmuir* **2007**, *23* (10), 5471-5476.

Shkirskiy, V.; Kang, M.; McPherson, I. J.; Bentley, C. L.; Wahab, O. J.; Daviddi, E.; Colburn, A.
W.; Unwin, P. R., Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy. *Anal. Chem.* 2020, *92* (18), 12509-12517.

10. Sahu, S.; Zwolak, M., Colloquium: Ionic Phenomena in Nanoscale Pores through 2D Materials. *Rev. Mod. Phys.* **2019**, *91* (2), 021004.

11. Hyun, C.; Rollings, R.; Li, J., Probing Access Resistance of Solid-State Nanopores with a Scanning-Probe Microscope Tip. *Small* **2012**, *8* (3), 385-392.

12. Zhang, Z.-Y.; Deng, Y.-S.; Tian, H.-B.; Yan, H.; Cui, H.-L.; Wang, D.-Q., Noise Analysis of Monolayer Graphene Nanopores. *Int. J. Mol.* **2018**, *19* (9), 2639.

13. Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C., Modeling the Conductance and DNA Blockade of Solid-State Nanopores. *Nanotechnology* **2011**, *22* (31), 315101.

S18

14. Perry, D.; Momotenko, D.; Lazenby, R. A.; Kang, M.; Unwin, P. R., Characterization of Nanopipettes. *Anal. Chem.* **2016**, *88* (10), 5523-5530.

15. Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A., Graphene as a Subnanometre Trans-Electrode Membrane. *Nature* **2010**, *467* (7312), 190-3.

16. Bentley, C. L.; Perry, D.; Unwin, P. R., Stability and Placement of Ag/AgCl Quasi-Reference Counter Electrodes in Confined Electrochemical Cells. *Anal. Chem.* **2018**, *90* (12), 7700-7707.

17. Huth, A.; Schaar, B.; Oekermann, T., A "Proton Pump" Concept for the Investigation of Proton Transport and Anode Kinetics in Proton Exchange Membrane Fuel Cells. *Electrochim. Acta* **2009**, *54* (10), 2774-2780.

Creager, S., 3 - Solvents and Supporting Electrolytes. In *Handbook of Electrochemistry*, Zoski,
G., Ed. Elsevier: Amsterdam, 2007; pp 57-72.

Peron, J.; Mani, A.; Zhao, X.; Edwards, D.; Adachi, M.; Soboleva, T.; Shi, Z.; Xie, Z.; Navessin, T.;
Holdcroft, S., Properties of Nafion[®] NR-211 Membranes for PEMFCs. *J. Membr. Sci.* 2010, *356* (1-2),
44-51.

20. Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. W.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K., Proton Transport through One-Atom-Thick Crystals. *Nature* **2014**, *516*, 227.

21. Chaturvedi, P.; Vlassiouk, I. V.; Cullen, D. A.; Rondinone, A. J.; Lavrik, N. V.; Smirnov, S. N., Ionic Conductance through Graphene: Assessing Its Applicability as a Proton Selective Membrane. *ACS Nano* **2019**, *13* (10), 12109-12119.

22. Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K., Scalable and Efficient Separation of Hydrogen Isotopes Using Graphene-Based Electrochemical Pumping. *Nat. Comm.* **2017**, *8* (1), 15215.

23. Griffin, E.; Mogg, L.; Hao, G.-P.; Kalon, G.; Bacaksiz, C.; Lopez-Polin, G.; Zhou, T. Y.; Guarochico, V.; Cai, J.; Neumann, C.; Winter, A.; Mohn, M.; Lee, J. H.; Lin, J.; Kaiser, U.; Grigorieva, I. V.; Suenaga, K.; Özyilmaz, B.; Cheng, H.-M.; Ren, W., *et al.*, Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. *ACS Nano* **2020**, *14* (6), 7280-7286.

24. Bukola, S.; Beard, K.; Korzeniewski, C.; Harris, J. M.; Creager, S. E., Single-Layer Graphene Sandwiched between Proton-Exchange Membranes for Selective Proton Transmission. *ACS Appl. Nano Mater.* **2019**, *2* (2), 964-974.

25. Bukola, S.; Liang, Y.; Korzeniewski, C.; Harris, J.; Creager, S., Selective Proton/Deuteron Transport through Nafion|Graphene|Nafion Sandwich Structures at High Current Density. *J. Am. Chem. Soc.* **2018**, *140* (5), 1743-1752.

S19