Supporting Information

Synergistic Effect of Au-PdO Modified Cu-doped K₂W₄O₁₃ Nanowires for Dual Selectivity High Performance Gas Sensing

Shah Zeb,^{a,b,c} Yu Cui,^c Heng Zhao,^c Ying Sui,^c Zhen Yang,^c Zia Ullah Khan,^d Shah Masood

Ahmad,^d Muhammad Ikram,^{a,b} Yongxiang Gao,^{a*} and Xuchuan Jiang^{c*}

^aInstitute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen518060, PR

China.

^bCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060,

PR China.

^cSchool of Chemistry and Chemical Engineering, Institute for Smart Materials and Engineering, University of Jinan, No. 336 Nanxinzhuang West Road, 250022, Jinan, PR China.

1

^dNational Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan

Corresponding Author

* Y. Gao (E-mail: <u>yongxiang.gao@szu.edu.cn)</u> * X. Jiang (E-mail: <u>ism_jiangxc@ujn.edu.cn</u>)

S1. MATERIALS

Sodium tungstate dihydrate (Na₂WO₄·2H₂O, 99.5%), palladium (II) chloride (PdCl₂ (\geq 99.9%) Sigma Aldrich), hydrogen tetrachloroaurate (III) trihydrate (HAuCl₄·3H₂O (\geq 99.9%) Sigma Aldrich), potassium sulfate (K₂SO₄, 99%), copper (II) chloride dehydrate (CuCl₂.2H₂O), nickel chloride (NiCl₂), ferric chloride hexahydrate (FeCl₃.6H₂O), hydrochloric acid (HCl, 37%), ethanol absolute (C₂H₅OH, 99.8%) were purchased from Macklin, and used. All solutions were carefully prepared in deionized-distilled water (DDI), and during experiments, glassware (Pyrex) was properly washed with aqua regia.

S2. Synthesis of Doped K₂W₄O₁₃ Nanowires

Cu-doped $K_2W_4O_{13}$ nanowires were synthesized by hydrothermal method, as follows "1.65 g of Na_2WO_4 ·2H₂O was dissolved in 40 mL of distilled water-ethanol mixtures, and the water/ethanol volume ratio was kept 7:1. Then, a 3 M HCl aqueous solution was added dropwise to the tungsten solution under continuous stirring until pH to 2. After that, different amounts of CuCl₂·2H₂O (1.0 wt%, 2.0 wt%, and 3.0 wt%, Cu/W) were added (**Table S1**) into the W-precursor solution. 2.6 g of K₂SO₄ was mixed into the above clear solution and stirred for 30 min. The white turbid solution was then poured slowly into the

Teflon-lined stainless-steel autoclave for hydrothermal treatment at 180 °C for 20 h. Finally, Cu-doped $K_2W_4O_{13}$ samples (WOC) were collected by centrifugation and dried at 60 °C. Similar procedures were carried for Ni-doped $K_2W_4O_{13}$ and Fe-doped $K_2W_4O_{13}$, instead of without NiCl₂ and ferric chloride (FeCl₃.6H₂O) as resources of Ni and Fe, and either of them. Water/Ethanol co-solvent volume ratio (40:0, 19:1, 7:1, 3:1, & 1:1) was adjusted by varying the volume of ethanol, keeping the total volume at 40 mL.

S3. Preparation of AuPdO Modified Cu-doped K₂W₄O₁₃ Nanowires

The PdO, Au, and Au-PdO nanoparticles were decorated onto the WOC by impregnation¹ and *in-situ* reduction². The first step was to prepare PdO decorated WOC;100 mg of WOC sample was dispersed in 10 mL of ethanol and stirred for an hour, then 240 μ L PdCl₂ (0.05 M) was dropped, and the resultant suspension quaked for 8 h. Thus, PdO-WOC composite (0.96wt%) was recovered after washing and drying, named PWOC. Similarly, 0.05 to 0.5wt% PdO decorated WOC were also prepared by variation of PdCl₂ solution in the range of 80-480 μ L. The ultrathin K₂W₄O₁₃ nanowires have high surface energy, which is further improved by Cudoping. Ethanol solvent provides weak reducing media, leading to the formation of PdO-WOC nanocomposites.

The Au nanoparticles were also loaded in which 80 μ l of HAuCl₄·3H₂O solution (0.05 M) was dropped into a water suspension containing 80 mg of well-dispersed PdO-WOC sample. 200 μ L of NaBH₄ (0.05 M) drop-wise added and then quaked for 6 h. The product Au-PWOC with (0.96wt% Pd & 2.40wt% Au) was collected. Finally, the recovered 3wt% Au-PWOC samples named APWOC were then kept to calcination at 380 °C for 4 h. For comparison, sample 1.5wt% and 5wt% APWOC samples were also prepared in which the HAuCl₄·3H₂O solution concentrations varied from 80-360 μ L.

S4. Materials Characterization

The shape and size of the sensor samples were studied by field emission scanning electron microscope (FESEM, Quanta FEG250, facilitated with energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM, JEOL, JEM-1400), and high-resolution TEM (HRTEM, JEOL 2100 F). The X-ray photoelectron spectroscopy (XPS) was studied by SmartLabSE, Rigaku with the Cu K α , h \not =284.6 eV. The composition and samples crystallinity were studied by X-ray diffraction spectroscopy (XRD, SmartLabSE, Rigaku) with Cu-K α radiation ($\lambda = 1.5418$ Å). Nitrogen adsorption and desorption processes were studied by Kubu X1000. The Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) schemes were used to measure the specific surface area (S_{BET}) and the pore size distribution. Before BET experiments, sample batches were properly heated under vacuum at 200 °C for 6 h. UV-vis diffuse reflection spectroscopy (DRS) was obtained on a Shimadzu UV-3600 spectrophotometer in BaSO₄ as a reference standard.

S5. Sensing Measurements

The sensing properties of the fabricated sensors were examined with CGS-MT Mini, Multifunctional Probe Station (Beijing Sino Aggtech Co. Ltd., China), following a static gas-sensing procedure.² A proper amount of pristine, doped, and surface-modified samples were mixed with ethanol which was then drop-casted on the Ag-Pd printed alumina substrate with a microsyringe to form a thin layer as the sensor material. After coating, the sensors were dried at 60 $^{\circ}$ C on a heating plate, followed by sintering for 2 h at elevated temperature of 200 °C in the sealed chamber of the sensor system to remove aqueous impurities. During the measurements, the fabricated sensors were heated to the working temperatures ranging from 50 to 300 °C to achieve a stable resistance in air (R_a) . The volume of liquids for testing target gases was measured in microliters (μ L) and was injected through a microsyringe into the test chamber for gas detection. The following formula was used to calculate the concentration of gas;

$$Q = (V \times C \times M) / (22.4 \times d \times \rho) \times 10^{-6} \times (273 + T_R) / (273 + T_B)$$
(1)

Where,

Q is the volume of the liquid to be taken (μ L); V is the volume of the test bottle (mL); M is the molecular weight of the substance (g); d is the purity of the liquid; C is the concentration of the

gas to be formulated (ppm); ρ is the density of the liquid (g/cm³); T_R is the test ambient temperature (°C); T_B is the temperature inside the test bottle (°C).

Here, liquid 3H-2B, TEA and some other VOCs were injected through a microsyringe into the testing chamber and heated above their boiling points for the preparation of gases, which led to a new steady resistance, known as sensor's resistance in the test gas (R_g). The NH₃ gas tested in this work is wet due to trace water. To investigate the effect of H₂O molecules during the NH₃ sensing, control experiments of pure water were conducted and we found negligible influence under the reported conditions. The sensitivity of the sensors was assessed by the parameter $S=R_a/R_g$. All the gas sensing measurements were conducted in a clean room at 25 °C and a relative humidity (RH) of 18%. After optimization, the operating temperature was set to 120 °C for 3H-2B and 200 °C for TEA at a controlled RH value of 12%.

Sensor	Na ₂ WO ₄ ·2H ₂ O	$CuCl_2 \cdot 2H_2O$	Water/Ethanol	K_2SO_4	Temperature	Time
materials	(mg)	(mg)	(7:1 Volume)	(mg)	(°C)	(h)
K ₂ W ₄ O ₁₃	1.65	0				
1% Cu-	1.65	0.007				
$K_2W_4O_{13}$						
2%Cu-	1.65	0.017	35 mL+5 mL	2.6	180	20
$K_2W_4O_{13}$						
3% Cu-	1.65	0.025				
$K_2W_4O_{13}$						

Table S1 Preparation of different contents of $Cu-K_2W_4O_{13}$ materials;

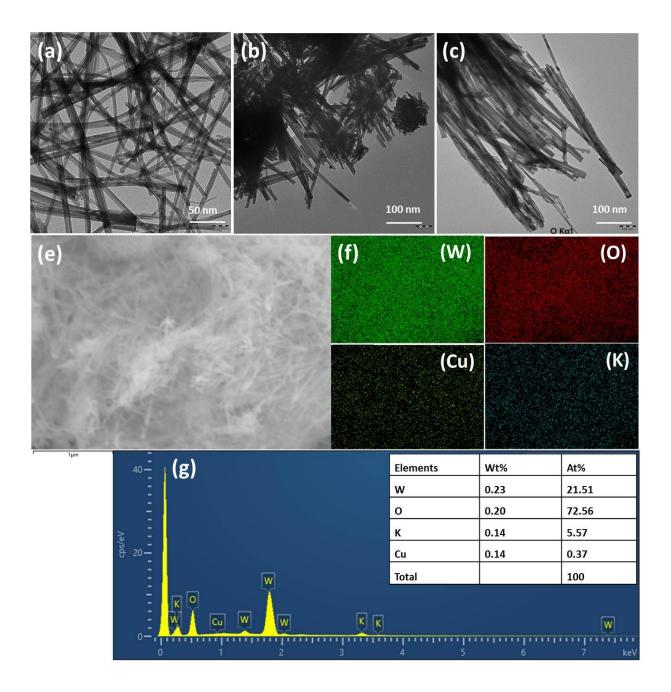
Table S2. Preparation parameters of PdO modified Cu-doped $K_2W_4O_{13}$ composite

Samples	WOC	H ₂ O	PdCl ₂	NaBH ₄	Pd ICP	Pd
	(mg)	(mL)	(µL)	(0.05 M)	(Wt%)	Wt%
2 wt% Cu doped	60	20	-		-	
$K_2W_4O_{13}$						
0.05 wt% Pd-WO ₃	60	20	80	50	0.053	0.12
0.5 wt% Pd-WO ₃	60	20	160	50	0.09	0.26
1 wt% Pd-WO ₃	60	20	240	50	0.198	0.96

Samples	WOC	H ₂ O	HAuCl ₄	NaBH ₄	Au ICP	Au
	(mg)	(mL)	(µL)	(0.05 M)	(Wt%)	Wt%
2 wt% Cu doped	60	20	-		-	
$K_2W_4O_{13}$						
0.05 wt% Pd-WO ₃	60	20	80	150	0.197	0.12
0.5 wt% Pd-WO ₃	60	20	120	350	0.28	2.26
1 wt% Pd-WO ₃	60	20	240	350	0.465	4.96

Table S3. Preparation parameters of Au modified Cu–doped $K_2W_4O_{13}$ composite

Table S4. Preparation parameters of bimetals Au-PdO modified Cu-doped K₂W₄O₁₃ composites


Samples	1 wt.%	H ₂ O	HAuCl ₄	(0.05 M)	ICP	Wt %
	PdO-WOC	(mL)	(µL)	NaBH ₄	Wt%	Au
	(mg)			(µL)	Au	
2 wt% AuPd-WO ₃	50	20	40	150	0.129	1.56
3 wt% AuPd-WO ₃	50	20	80	300	0.224	2.40
5 wt% AuPd-WO ₃	50	20	160	450	0.455	4.12

S6. XRD, Optical Absorption and BET Surface Area Analysis

The as-prepared K₂W₄O₁₃, doped WOC, WON, WOF, and surface decorated samples, i.e., PWOC and APWOC were investigated by XRD as shown in Figure 3a. The pure $K_2W_4O_{13}$ sample (Figure 1a) indexed typical hexagonal $K_2W_4O_{13}$ (JCPDS # 20-0942) with preferential crystal growth at <001> and <002> planes, corresponding to substructure reported for nonstoichiometric WO_{3-x} and consistent with our reported work.³ No obvious peaks and phase change of tungsten oxide was detected because of the low impurity Cu/Fe doping atoms (Figure **3aii,iii)**; however, WON produced certain peaks as shown in Figure 3iv. Compared to $K_2W_4O_{13}$ the diffraction peaks of WOC, WOF, and WON samples show a slight shift to a high angle, suggesting the successful incorporation of impurity atoms into the lattice of tungsten oxide. Furthermore, the XRD patterns of PWOC and APWOC hybrid composite samples calcined at 380 °C for 4 h are shown in **Figure 3v,vi.** There is no obvious Pd/PdO nanoparticles peak on the WOC sample; because the PdO has low-density distribution and small atomic size, making peak strength indiscernible. The Au-PdO nanoparticles loaded to the WOC appeared wide diffraction peaks at 28.28° and 44.54°, correspond to <111> and <200> planes, describe the gold nanoparticles in (JCPDS # 04-0784) as shown in Figure 3vi. The PdO and Au contents were analyzed by EDS elemental mapping and ICP-AES experiments which highlighted the actual amount of PdO and Au on the PWOC and Au-PdO-WOC nanowires, which were closer to the theoretical values.

The UV-vis DRS spectra of the doped and surface modified samples are shown in **Figure 3b.** The smooth absorption curves with no observable hump demonstrate the homogeneous incorporation of metals into the $K_2W_4O_{13}$ lattices, consistent with the XRD results. Moreover, the WOC, WON, and WOF have lowered absorptivity in the visible region (500–700 nm)

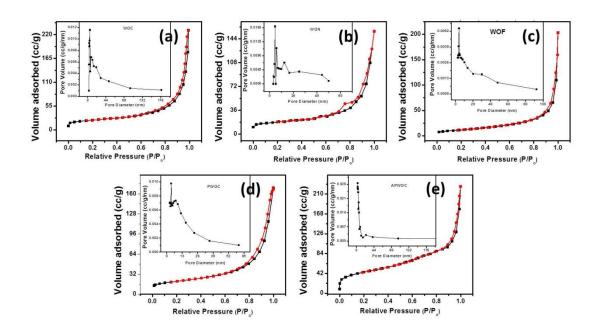

compared to $K_2W_4O_{13}$. The intrinsic absorptivity of the WOC sample was maintained with the loading of PdO, Au, and Au-PdO nanoparticles, and the absorption edge is extended toward a higher wavelength. Moreover, due to the LSPR effect of Au nanoparticles, a new band appears around 450-650 nm, particularly for the AWOC sample. The bandgap energy (Eg) was estimated from the equation, $(\propto h_V)^{1/2} = A(hv - Eg)$, where h is the Planck's constant (1.69x10⁻¹⁹), v is the light frequency, A is the dimensional constant, α is the absorption coefficient, and n is for direct/indirect transition. The estimated Eg values are 2.98, 2.73, 2.83, 2.75, 2.6, 2.61, and 2.5 eV for K₂W₄O₁₃, WOC, WOF, WON, AWOC, PWOC, and APWOC, respectively. Thus, it can be seen that metal incorporation gradually reduces the bandgap energy of tungsten oxide. The oxidation reaction and growth of PdO/Au nanoparticles occur on the surface of WOC. Either surface decoration/fusion of the Cu, PdO, and AuPdO atoms can substitute the W atoms and may occupy the surface lattice sites, thus changing the bandgap energy, specific surface area, and conductivity of the material.² The specific surface area (S_{BET}) of doped and loaded samples is provided in Figure S2. The S_{BET} derived for WOC, WON, WOF, PWOC, AWOC and APWOC are 70.218, 62.417, 58.757, 72.423, 78.725 and 70.641 m²/g, respectively. The S_{BET} of doped nanostructures is higher than that of WO₃ previously reported.^{3, 4} The pore size is around 10 nm, demonstrating the mesoporous nature of the particles. Moreover, Pd/PdO, Au, and AuPdO loadings can further increase the surface area. It is noteworthy that loadings of larger-sized noble metals have decreased the S_{BET} , which may be due to the nanoparticle agglomeration.¹ Generally, the increased S_{BET} is highly conducive in gas sensing performance.

Figure S1. TEM image of (a) pristine $K_2W_4O_{13}$, (b) Ni-doped $K_2W_4O_{13}$, (c) Fe-doped $K_2W_4O_{13}$, (d-g) EDS elemental mapping of Cu-doped $K_2W_4O_{13}$ sample showing the distribution of elements.

	10 -	Elements	Atomic%	Weight%
		W	7.05	0.31
	8 -	0	77.64	0.90
		Cu	13.37	0.19
(6	u-N	K	1.09	2.07
Count	6 -	Au	0.78	1.85
Intensity (kCounts)		Pd	0.07	0.94
Inten	4	Total	100	
	2 - Au- VN W-N Cu-L 0		W-Lα Au-Lα Cu-Kβ Cu-Kα W-Lβ Au-Lβ T 10 Energy (keV)	15 20

Figure S2. EDS elemental mapping showing the distribution of W, O, Cu, K, Pd, and Au elements

Figure S3. Nitrogen (N₂) adsorption–desorption curves of Cu-doped (a), Ni-doped (b), and Fedoped $K_2W_4O_{13}$ (c) and PdO modified Cu-doped $K_2W_4O_{13}(e)$, AuPdO modified Cu-doped $K_2W_4O_{13}(e)$. Inset figures show pore size distribution curves for different morphologies of WO₃ nanowires.

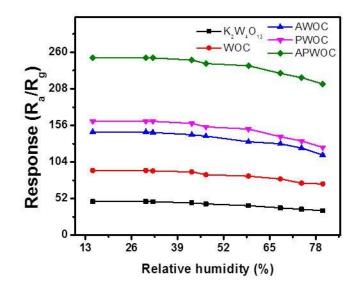


Figure S4. The sensor responses variation under relative humidity of 15, 30, 47, 62, 76%

RH with 10 ppm *3H-2B*.

References

- Shang, Y.; Shi, R.; Cui, Y.; Che, Q.; Wang, J.; Yang, P., Urchin-Like WO_{2.72} Microspheres Decorated With Au and Pdo Nanoparticles for The Selective Detection of Trimethylamine. *ACS Appl Nano Mater* 2020, 3 (6), 5554-5564.
- 2. Zeb, S.; Peng, X.; Shi, Y.; Su, J.; Sun, J.; Zhang, M.; Sun, G.; Nie, Y.; Cui, Y.; Jiang, X., Bimetal Au-Pd Decorated Hierarchical WO₃ Na/nowire Bundles for Gas Sensing Application. *Sens. Actuators B: Chem* **2021**, *334*, 129584.
- 3. Zeb, S.; Peng, X. J.; Yuan, G. Z.; Zhao, X. X.; Qin, C. Y.; Sun, G. X.; Nie, Y.; Cui, Y.; Jiang, X. C., Controllable Synthesis of Ultrathin WO₃ Nanotubes and Nanowires with Excellent Gas Sensing Performance. *Sensor Actuat B-Chem* **2020**, *305*, 127435.
- 4. Zeb, S.; Sun, G. X.; Nie, Y.; Cui, Y.; Jiang, X. C., Synthesis of Highly Oriented WO₃ Nanowire Bundles Decorated with Au for Gas Sensing Application. *Sens. Actuators B Chem.* **2020**, *321*, 128439.