Supporting Information

Adsorption of Transition Metal Clusters on Graphene and N doped Graphene: A DFT Study

Chengkai Jin¹, Lihong Cheng², Gang Feng^{1,*}, Runping Ye¹, Zhang-Hui Lu³, Rongbin Zhang¹, Xiaohu Yu^{4,*}

Affiliation:

1 Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, College of Chemistry, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, P. R. China

2 Key Laboratory of Surface Engineering of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang 330031, P. R. China

3 Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China

4 Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, P. R. China

Corresponding authors:

Gang Feng Tel: +86 13177857101; Email: <u>fenggang@ncu.edu.cn</u>

Xiaohu Yu Tel: +86 18739700918; Email: yuxiaohu@snut.edu.cn

are marked in red lines)										
3	4	5	6	7	8	9	10	11	12	
21 Sc	22 Ti	23 V	24 Cr	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 Zn	
144	136	125	127	139	125	126	121	138	131	
$3d^14s^2$	$3d^24s^2$	$3d^34s^2$	$3d^54s^1$	$3d^54s^2$	$3d^64s^2$	$3d^74s^2$	$3d^84s^2$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	
39 Y	40 Zr	41 Nb	42Mo	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>Ag</u>	48 Cd	
162	148	137	145	156	126	135	131	153	148	
$4d^15s^2$	$4d^25s^2$	$4d^45s^1$	$4d^55s^1$	$4d^55s^2$	$4d^75s^1$	$4d^85s^1$	$4d^{10}$	$4d^{10}5s^1$	$4d^{10}5s^2$	
57~71	72 Hf	73 Ta	74 W	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 Hg	
La~Lu	150	138	146	159	128	137	128	144	149	
	$5d^26s^2$	$5d^36s^2$	$5d^46s^2$	$5d^56s^2$	$5d^66s^2$	$5d^76s^2$	$5d^96s^1$	5d ¹⁰ 6s ¹	$5d^{10}6s^2$	

Table S1. Part of 3d/4d/5d TM elements in Periodic Table, associated covalent radius(pm), and configuration of extra-nuclear electron (The elements we selected to calculate

		Gr	N-Gr			
clusters	E_{ads} -D3	$E_{\rm ads}$ without D3	$E_{\rm ads}$ -D3	$E_{\rm ads}$ without D3		
Mn ₁	-0.50	-0.28	-0.42	-0.19		
Mn ₂	-1.10	-0.75	-1.08	-0.73		
Mn ₃	-1.98	-1.35	-2.18	-1.66		
Mn_4	-1.97	-1.37	-2.06	-1.46		
Tc ₁	-1.58	-1.21	-1.92	-1.56		
Tc ₂	-1.27	-0.73	-1.57	-0.81		
Tc ₃	-2.80	-1.84	-2.99	-1.21		
Tc ₄	-2.56	-1.19	-2.95	-2.19		
Re ₁	-1.70	-1.40	-2.06	-1.36		
Re ₂	-1.75	-1.29	-2.03	-1.77		
Re ₃	-2.42	-1.59	-2.65	-1.83		
Re ₄	-1.64	-0.55	-2.21	-0.87		
Fe ₁	-1.04	-0.87	-1.18	-1.01		
Fe ₂	-1.11	-0.79	-1.19	-0.75		
Fe ₃	-1.90	-1.37	-1.93	-1.39		
Fe ₄	-2.14	-1.34	-2.10	-1.32		
Ru ₁	-2.67	-2.40	-2.92	-2.66		
Ru ₂	-1.71	-1.11	-2.05	-1.44		
Ru ₃	-1.89	-1.14	-2.60	-1.80		
Ru_4	-2.11	-1.05	-2.61	-1.37		
Os ₁	-1.37	-1.10	-1.76	-1.49		
Os ₂	-2.02	-1.67	-2.15	-1.80		
Os ₃	-2.52	-2.01	-2.78	-2.27		
Os ₄	-1.99	-1.33	-2.47	-1.55		
Co1	-1.29	-1.15	-1.43	-1.30		
Co ₂	-1.44	-1.19	-1.57	-1.35		
Co ₃	-2.13	-1.77	-2.31	-1.94		
Co ₄	-2.07	-1.39	-2.10	-1.43		
Rh_1	-2.17	-1.98	-2.60	-2.36		
Rh_2	-1.70	-1.25	-2.10	-1.65		
Rh ₃	-1.86	-1.19	-2.32	-1.63		
Rh_4	-2.19	-1.37	-2.72	-1.86		
Ir_1	-1.64	-1.35	-2.25	-1.98		
Ir_2	-2.08	-1.72	-2.54	-2.01		
Ir ₃	-2.04	-1.52	-2.55	-1.84		
Ir ₄	-1.52	-0.89	-2.36	-1.44		
Niı	-1.60	-1.47	-1.59	-1.37		
Ni ₂	-1.19	-0.95	-1.48	-1.05		
Ni ₃	-2.19	-1.66	-2.36	-1.81		
Ni ₄	-2.57	-1.93	-2.76	-2.12		
Pd_1	-1.39	-1.12	-1.44	-1.16		
Pd_2	-2.00	-1.48	-2.20	-1.68		
Pd ₃	-1.67	-0.88	-2.21	-1.39		
Pd_4	-1.66	-0.92	-2.14	-1.23		

 Table S2. The comparison of standard DFT and DFT-D3 method

\mathbf{Pt}_1	-1.92	-1.63	-2.28	-1.99
Pt_2	-1.34	-0.96	-2.05	-1.46
Pt ₃	-2.13	-1.45	-2.73	-2.03
Pt ₄	-2.32	-1.48	-3.10	-2.08
Cu ₁	-0.55	-0.34	-0.77	-0.55
Cu ₂	-0.88	-0.59	-0.86	-0.58
Cu ₃	-1.49	-0.98	-1.46	-0.95
Cu ₄	-1.15	-0.55	-1.16	-0.56
Ag_1	-0.28	0.01	-0.38	-0.10
Ag ₂	-0.43	-0.12	-0.44	-0.13
Ag ₃	-0.99	-0.57	-0.95	-0.36
Ag_4	-0.85	-0.24	-0.83	-0.21
Au_1	-0.42	-0.15	-1.02	-0.74
Au ₂	-0.82	-0.48	-0.90	-0.56
Au ₃	-1.06	-0.35	-1.61	-0.91
Au ₄	-1.22	-0.50	-1.34	-0.61

	cubic supercell (pm)										
cluster	1000	1200	1300	1400	1500	1600	1700	1800			
Mn ₄	-25.420	-25.471	-25.474	-25.476	-25.476	-25.475	-25.475	-25.475			
Tc ₄	-27.395	-27.460	-27.462	-27.462	-27.461	-27.460	-27.460	-27.459			
Re ₄	-33.079	-33.069	-33.066	-33.065	-33.065	-33.064	-33.064	-33.064			
Fe ₄	-22.377	-22.405	-22.405	-22.406	-22.406	-22.405	-22.405	-22.405			
Ru ₄	-22.719	-22.697	-22.695	-22.695	-22.695	-22.695	-22.695	-22.696			
Os ₄	-27.907	-27.913	-27.913	-27.914	-27.914	-27.913	-27.913	-27.914			
Co ₄	-17.300	-17.315	-17.316	-17.316	-17.316	-17.315	-17.315	-17.315			
Rh ₄	-17.363	-17.336	-17.332	-17.331	-17.331	-17.330	-17.330	-17.330			
Ir ₄	-20.836	-20.854	-20.855	-20.854	-20.854	-20.854	-20.854	-20.853			
Ni4	-12.129	-12.136	-12.135	-12.136	-12.135	-12.135	-12.134	-12.135			
Pd ₄	-12.887	-12.863	-12.859	-12.859	-12.858	-12.857	-12.856	-12.857			
Pt ₄	-13.344	-13.349	-13.349	-13.348	-13.347	-13.347	-13.347	-13.347			
Cu ₄	-7.463	-7.466	-7.465	-7.466	-7.465	-7.464	-7.464	-7.465			
Ag ₄	-6.119	-6.123	-6.126	-6.128	-6.127	-6.127	-6.126	-6.127			
Au ₄	-7.434	-7.426	-7.424	-7.422	-7.422	-7.421	-7.421	-7.421			

Table S3. The convergence test for TM4 cluster within different cubic supercell

Figure S1. Bond lengths (pm), E_{ads} (eV), and Bader charges (*e*) for the most stable configurations of TM_n clusters (TM = Mn, Tc and Re; n = 1–4) adsorption on Gr and N-Gr surfaces. Mn, Tc and Re atoms are shown in violet, pink, and green balls; C and N in black and deep blue balls for all figures.

Figure S2. Bond lengths (pm), E_{ads} (eV), and Bader charges (*e*) for the most stable configuration of TM_n clusters (TM = Fe, Ru and Os; n = 1–4) adsorption on Gr and N-Gr surfaces. Fe, Ru and Os atoms are shown in purple, grey, and deep green balls, respectively.

Figure S3. Bond lengths (pm), E_{ads} (eV), and Bader charges (*e*) for the most stable configurations of TM_n clusters (TM = Co, Rh and Ir; n = 1–4) adsorption on Gr and N-Gr surfaces. Co, Rh and Ir atoms are shown in light green, deep green, and brown balls, respectively.

Figure S4. Bond lengths (pm), E_{ads} (eV), and Bader charges (*e*) for the most stable configurations of TM_n clusters (TM = Ni, Pd and Pt; n = 1–4) adsorption on Gr and N-Gr surfaces. Ni, Pd and Pt atoms are shown in blue, cyan, and grey balls, respectively.

Figure S5. Bond lengths (pm), E_{ads} (eV), and Bader charges (*e*) for the most stable configurations of TM_n clusters (TM = Cu, Ag and Au; n = 1–4) adsorption on Gr and N-Gr surfaces. Cu, Ag and Au atoms are shown in copper, light blue, and gold balls, respectively.

Figure S6. The sub-stable structures of Mn_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S7. The sub-stable structures of Tc_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S8. The sub-stable structures of Re_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S9. The sub-stable structures of Fe_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S10. The sub-stable structures of Ru_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S11. The sub-stable structures of Os_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S12. The sub-stable structures of Co_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S13. The sub-stable structures of Rh_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S14. The sub-stable structures of Ir_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S15. The sub-stable structures of Ni_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S16. The sub-stable structures of Pd_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S17. The sub-stable structures of Pt_n (n=1-4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S18. The sub-stable structures of Cu_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S19. The sub-stable structures of Ag_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S20. The sub-stable structures of Au_n (n=1–4) adsorption on Gr and N-Gr surfaces with relative energies ΔE (eV).

Figure S21. Summary for the adsorption of TM dimers on Gr (the top) and N-Gr (the bottom) surfaces with associated E_{ads} (eV).

Figure S22. Summary for the adsorption of TM trimers on Gr (the top) and N-Gr (the bottom) surfaces with associated E_{ads} (eV).

Figure S23. Summary for the adsorption of TM tetramers on Gr (the top) and N-Gr (the

bottom) surfaces with associated E_{ads} (eV).

Figure S24. The main and side view of the 3D charge density difference plots for Rh₁/N-Gr and Ir₁/N-Gr, respectively, where the isosurface value is set to be 0.005 $e/bohr^3$.

Table S4. Electronegativity and IP (eV) for each TM elements, and associated charge

	electron	ID/oV				Δq	[/e			
_	egativity	IF/ev		G	Fr			N-	Gr	
Mn	1.55	7.43	-0.58	-0.98	-1.47	-0.69	-0.49	-0.96	-0.97	-0.62
Tc	1.90	7.28	-0.60	-0.44	-0.72	-1.00	-0.54	-0.53	-0.72	-1.06
Re	1.90	7.88	-0.53	-0.55	-0.81	-0.58	-0.44	-0.56	-0.78	-1.12
Fe	1.83	7.88	-0.69	-0.42	-0.75	-0.99	-0.61	-0.62	-0.70	-0.93
Ru	2.20	7.37	-0.45	-0.44	-0.44	-0.70	-0.38	-0.39	-0.46	-0.78
Os	2.20	8.73	-0.37	-0.36	-0.38	-0.38	-0.25	-0.28	-0.28	-0.57
Co	1.88	7.86	-0.62	-0.35	-0.75	-0.83	-0.51	-0.29	-0.67	-0.73
Rh	2.28	7.46	-0.30	-0.33	-0.44	-0.42	-0.16	-0.24	-0.35	-0.38
Ir	2.20	9.22	-0.08	-0.12	-0.23	-0.30	-0.06	-0.10	-0.24	-0.41
Ni	1.91	7.64	-0.49	-0.22	-0.45	-0.70	-0.24	-0.32	-0.35	-0.56
Pd	2.20	8.33	-0.19	-0.27	-0.32	-0.18	-0.12	-0.16	-0.16	-0.13
Pt	2.28	8.96	-0.00	+0.06	-0.08	-0.16	+0.08	+0.05	+0.03	-0.06
Cu	1.90	7.73	-0.25	-0.12	-0.49	-0.38	-0.12	-0.09	-0.30	-0.18
Ag	1.93	7.58	-0.11	-0.02	-0.34	-0.19	+0.06	-0.02	+0.21	-0.06
Au	2.54	9.22	+0.13	+0.08	+0.32	+0.08	+0.18	+0.10	+0.46	+0.17

transfer $(\Delta q/e)$ (positive values represent clusters getting electron)

Figure S25. Plots of electronegativity and IP versus charge transfer for dimers, trimers, and tetramers on Gr (the left) and N-Gr (the right) surfaces.

Ator		$\mu(\mu_{\rm B})$	<i>p</i> (D)	$\Phi(eV)$	$\mu(\mu_{\rm B})$	<i>p</i> (D)	$\Phi(eV)$
Atom II	n		Gr			N-Gr	
Slab		0.00	0.00	4.27	0.00	0.00	3.39
	1	5.44	0.13	4.31	4.65	-0.14	3.48
Ma	2	8.45	0.10	3.37	7.58	-0.28	3.50
IVIII	3	11.44	0.68	3.44	2.26	0.79	3.27
	4	13.70	1.44	4.04	14.31	0.95	3.59
	1	0.56	2.06	3.94	0.83	1.62	3.89
m	2	1.90	-0.63	4.05	0.88	-0.25	3.99
Tc	3	2.55	0.42	3.69	1.87	0.27	3 41
	4	2.33	0.57	3.66	0.99	0.01	4.03
	1	3 51	0.47	4 43	1 18	_0.29	3.82
_	2	1.56	0.65	3.85	0.83	0.11	3.98
Re	3	2.56	0.05	3.03	2.19	_0.28	3.70
	4	2.30	0.35	3.86	0.13	-0.23	5.42
	1	0.42	-0.55	5.80 4.10	-0.13	-0.17	2.67
	2	6.42	0.60	4.10	5.44	0.05	2.69
Fe	2	0.42	0.00	4.10	7.09	0.03	2.51
	3	0.44	1.02	3.00	7.98	0.44	2.00
	4	10.44	1.03	3.34	9.40	0.00	5.28 2.71
	1	1.56	1.37	4.02	1.20	1.05	3./1
Ru	2	3.98	-0.46	4.04	3.24	-0.17	3.58
	3	6.00	-0.30	3.99	4.99	-0.91	3.89
	4	1.58	-0.38	3.73	3.63	-0.31	3.32
	1	1.66	0.51	3.98	1.87	-0.66	4.08
Os	2	2.43	0.16	3.79	2.29	-0.54	3.58
	3	3.91	0.20	4.00	4.36	-0.50	3.74
	4	2.43	-0.04	3.65	0.95	-0.31	3.86
	1	1.43	1.68	3.82	1.27	1.07	3.49
Co	2	4.01	-0.16	4.02	3.45	-0.55	3.51
	3	5.42	0.24	3.94	4.44	-0.23	3.62
	4	6.44	0.69	3.71	5.45	0.07	3.26
	1	0.56	0.84	4.07	0.00	0.96	3.86
Rh	2	1.79	1.26	4.05	0.99	0.92	3.73
	3	2.61	0.93	4.01	3.96	0.77	4.14
	4	3.52	-0.43	4.02	1.14	-0.07	4.00
	1	0.95	0.30	4.19	0.00	0.35	3.93
Ir	2	0.44	-1.33	4.42	0.97	-1.12	4.55
	3	1.92	-0.49	3.96	0.00	-0.95	4.93
	4	0.44	-0.20	3.92	1.23	-0.06	4.15
	1	0.00	1.12	3.85	0.52	0.49	3.49
Ni	2	2.02	-0.83	4.54	1.44	-0.39	3.94
	3	1.02	0.24	3.86	1.42	-0.15	3.99
	4	2.41	0.59	3.73	1.44	-0.17	3.52
	1	0.00	1.25	4.11	0.00	0.61	3.39
Pd	2	0.00	1.31	4.03	0.55	0.06	4.02
	3	0.01	0.75	3.92	0.00	-0.23	3.95
	4	1.60	-0.55	4.08	1.40	-0.86	3.94
	1	0.00	0.27	4.09	0.55	-0.63	4.12
D+	2	1.57	-2.04	4.93	1.11	-1.20	4.82
rι	3	0.39	-1.40	4.57	1.18	-1.81	4.46
	4	1.92	-0.54	4.05	1.07	-0.84	4.78
	1	0.63	0.03	4.04	0.00	-0.30	4.22
Cu	2	0.00	-0.97	4.45	0.00	-1.25	3.73
	-	0.46	0.71	3 15	0.00	0.56	2.62

Table S5. magnetic moment (μ/μ_B), z axis electric-dipole moment (p/D), and work

function (Φ/eV) for the total system

	4	0.00	-0.39	4.13	0.00	-0.78	3.58
	1	0.90	-0.28	4.17	0.45	-1.34	3.87
Δσ	2	0.00	-1.19	4.36	0.00	-1.22	3.59
115	3	0.56	1.57	3.90	0.00	-2.78	4.47
	4	0.00	0.20	4.02	0.00	-0.91	3.44
	1	0.80	-1.56	4.86	0.00	-1.65	4.77
Au	2	0.00	-1.83	4.71	0.00	-2.24	4.17
	3	0.00	-3.51	6.02	0.00	-4.29	5.93
	4	0.00	-1.74	4.71	0.00	-2.30	4.39

Graphene

N doped Graphene

Figure S26. Comparison of 3D growth mode and 2D growth mode for tetramers on Gr and N-Gr surfaces with relative energies (eV).