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S1 Controlled releases

S1.1 Hyperspectral methane detection

Kairos Aerospace (henceforth “Kairos”) produces LeakSurveyor, a methane imaging sys-

tem typically mounted on a light aircraft flown at standard general aviation altitudes of

900 meters (3,000 feet) above ground. The LeakSurveyor system produces a geo-referenced,

false-colored plume image based on the detected excess methane concentration between the

airplane and the ground (Figure 1a). The system contains a hyperspectral infrared spec-

trometer to detect methane, an optical imaging system to create an optical surface map of

the surveyed region, and a GPS and inertial measurement unit to record the instrument’s

precise position and orientation.18

The infrared spectrometer measures the absorption of wavelengths at which methane

molecules absorb strongly and other molecules do not.18 As indicated in Kairos’ technical

white paper, absorption of methane molecules can be distinctive in the spectral range of

1500 nm to 3750 nm.18 The spectral resolution of LeakSurveyor’s hyperspectral infrared

spectrometer is “typically around 0.5 nm or better/finer,” suggesting a spectral resolution

in this range for the Kairos system.19

The emission quantification method is described in Kairos technical paper on quan-

tification and summarized below.20 Kairos first uses its proprietary algorithm to compute

pixel-level estimates of methane enhancement column density between the airplane and the

ground. Then, Kairos designates plume pixels to be within a spatially contiguous region

with methane enhancement statistically distinguishable from the background concentration.

Next, Kairos estimates the wind direction based on the orientation of the vector between

the plume pixel of highest methane enhancement and the furthest designated plume pixel

from this pixel with maximum methane concentration. Then, a core segment of the plume is

defined to contain the maximum concentration pixel and roughly 50% of plume’s full length

along the estimated wind direction. Next, Kairos estimates total excess methane in the
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plume using Equation S1.

M =
∑
i

Di × Ai (S1)

Where M (unit: kg) is the total excess methane in the plume, Di (unit: kg/m2) is the

excess column methane density of plume pixel i, and Ai (unit: m2) is the area of plume pixel

i.

The total excess methane mass (M) is then used to compute wind-independent emission

rate using Equation S2, assuming constant emission, constant wind speed, and slow methane

diffusion compared to wind speed.

RWI =
M

L
× 3600 seconds

1 hour
(S2)

Where RWI (unit: kg of methane per hour per meter per second of wind, kgh/mps) is the

wind-independent methane emission rate, and L (unit: m) is the length of the core segment

of the plume.

Thus, Kairos calculates wind-independent methane rates in kgh/mps by integrating the

measured methane concentration enhancement over a cross section of a detected plume in

the downwind direction.20 Measured methane rates can then be calculated by multiplying

this value by surface wind speed (Equation S3).

RMethane = RWI ×W (S3)

Where RMethane (unit: kg of methane per hour, kg/h) is the methane emission rate, and

W (unit: meter per second of wind, m/s) is the surface wind speed. More details of the

selection of W is available in Section S1.3.2.

As detailed in Sherwin, Chen et al., methane plume identification “involves both auto-

mated signal processing and human review.”22 Sometimes multiple plumes can be seen from

a single image,22 in which case the plume closest to the potential emission source is used
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for quantification purposes. More technical details of the technology can be found in Kairos

technical white papers and patent documentation.18–20

S1.2 Controlled release experiments

See Sherwin, Chen et al.22 for more details on the controlled release experiment.

Sherwin, Chen et al. conducted a single-blind controlled methane release in San Joaquin

County, California to test the LeakSurveyor detection limit and quantification accuracy in

October 2019.22 The controlled release trials were partially motivated by the 2018 Mobile

Monitoring Challenge (MMC) organized by the Stanford Natural Gas Initiative and the

Environmental Defense Fund (EDF). For the MMC, ten methane detection technologies were

tested through single-blind controlled releases. Kairos was one of the 12 teams originally

selected for the MMC, but was unable to participate because rice fields surrounding the MMC

test site were flooded at the time of the MMC, which blocked the Kairos spectrometer’s ability

to sense infrared radiation in the spectral region of interest, rendering the testing scenario

out of design scope of the technology. The 2019 controlled release study by Sherwin, Chen

et al. used a different test site than the 2018 MMC study, but used the same releasing

apparatus and the same gas operator, Rawhide Leasing, and was conducted specifically to

assess Kairos’ LeakSurveyor technology.

Figure S1 shows (a) confidence in methane presence and (b) methane enhancement of

one plume from the 2019 single-blind controlled releases.

Unlike the MMC, whose largest release was approximately 29 kg/h(CH4), the 2019 Sher-

win, Chen et al. controlled release had its largest release reach over 1,000 kg/h(CH4).
22,25

Results of the 2019 single-blind controlled release are reproduced in Figure S2(a-d) with

adjustments described in Section S1.3. In the Sherwin, Chen et al. controlled release test,

the wind-independent methane rates reported by Kairos were multiplied by (a) cup wind

meter-measured 1-minute gust wind speeds, (b) ultrasonic anemometer-measured 1-minute

gust wind speeds, (c) The Dark Sky Company, LLC (henceforth “Dark Sky”)-modeled 1-
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Figure S1: Confidence and enhancement map of a methane plume from the 2019 controlled
release test. The methane release rate is 87 kg/h and the ground-measured wind is 1.3 m/s.
Graphs adapted from Sherwin, Chen et al.22

minute gust wind speeds, and (d) NOAA’s High Resolution Refresh (HRRR) modeled hourly

surface gust speeds averaged across time and space (see Section S1.3.2 for details) in Figure

S2a-d. Note that the number of data points are different in these panels because of the data

exclusion criteria described in22 and the difference in wind data availability across the wind

data sources.

In addition to the Sherwin, Chen et al. single-blind tests, Kairos has conducted internal

controlled release trials and collected another 312 data points, including 276 releases and

36 negative controls (see Figure S2e-f). In this paper, these data points were added to the

single-blind test data set for a more comprehensive representation of performance.

S1.3 Data

S1.3.1 Releases

The flow-meter-measured release rate is treated as the actual methane release rate in the

controlled release trials (AMRCR) and the Kairos-estimated methane rate is denoted as

EMRCR. Note that Kairos reports wind-independent emission rate in the unit of kgh/mps.

The wind-independent rates are multiplied with the hourly surface wind speed in mps to

derive the estimated methane rate of the controlled releases, EMRCR.
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Figure S2: Scatter plots of actual and estimated methane rates in the single-blind con-
trolled release trials based on (a) cup wind meter-measured wind, (b) ultrasonic anemometer-
measured wind, (c) Dark Sky 1-minute gust wind, and (d) 27-average HRRR surface gust
wind (see description in Section S1.3.2). The two bottom panels (e-f) add data points from
Kairos internal field trials to the two middle panels (c-d). The false negatives are excluded
from the plots for reasons detailed in Section S1.3. X error bars are based on wind un-
certainties, described in Sherwin, Chen et al.22 Note that wind measurement uncertainty
in the ultrasonic anemometer is smaller than point size, while Dark Sky does not report
uncertainty. Y error bars, not visible, are based on observed flow variability and flow meter
error.22
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Data in Figure S2a-d differs from the previously published version in Sherwin, Chen et

al. in four respects. First, the axes are inverted because in this work our aim is to find

the actual methane rates (y-axis values in Figure S2) based on Kairos-estimated methane

rates (x-axis values), whereas Sherwin, Chen et al. controlled the actual flow rate data and

verified the accuracy of the technology. In other words, the calibration step in this work

(described in Section S1.5 and S5.1) is a inverse process to the verification performed by

Sherwin, Chen et al.22

Second, we exclude the false negatives from our calibration chart. The Kairos-estimated

wind-independent methane rates multiplied with cup wind meter, Dark Sky wind, HRRR

wind (Figure S2a, c, and d) have 18 false negative controlled release trials, and the ultra-

sonic anemometer case (Figure S2b) has 5 false negative data points because the ultrasonic

anemometer was not available for part of the field work.22 We exclude false negatives in the

quantification adjustment to avoid bias because false negatives cannot be recognized in the

Kairos New Mexico Permian campaigns.

Third, we do not introduce height adjustment to the wind retrieved from Dark Sky and

HRRR. In the field trial, the cup wind meter and the ultrasonic anemometer measured wind

at 2.5 meters above ground, whereas Dark Sky and HRRR report a 10-meter wind by default.

For a fair comparison, Sherwin, Chen et al. applied a height adjustment factor of 0.81 to

the Dark Sky and HRRR wind, assuming a vertical wind profile following a power law and

a surface roughness coefficient of 0.15.26 Given the height of the release stack at 2.5 meters,

this correction was appropriate. The vertical wind profile varies by topography and other

weather factors, and is therefore not likely to be the exact same at the controlled release test

site in San Joaquin County, California and at the emission sources found in the New Mexico

Permian Basin. In this work, the height adjustment is done implicitly in the curve fitting

process (Section S1.5).

The fourth difference is in the Dark Sky 1-minute gust wind speed. Our February 2020

and October 2020 retrievals of wind data from Dark Sky both differ from the Dark Sky wind
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data in Sherwin, Chen et al., which was retrieved in October 2019.22 Figure S4 compares the

two retrievals of this paper (February and October 2020). Dark Sky is a private company,

and their weather models and data sources are not extensively accessible. Two probable

reasons for the discrepancy in the two retrievals 9-month apart are that 1) Dark Sky made

changes to their weather models between the two retrievals, and 2) Dark Sky downgrades

the time resolution of historic data due to memory concerns. Therefore, we refer to the

February 2020 retrieval as “high time resolution retrieval” and the October 2020 retrieval as

“low time resolution retrieval” to reflect this change. Moreover, Dark Sky was acquired by

Apple Inc. in March 2020 and announced a planned termination of their API service by the

end of 2021.27 Considering Dark Sky’s lack of documentation and its approaching expiration

of data availability, we use NOAA’S HRRR hourly product for the base case here, despite

the resulting downgrade in spatial and temporal granularity. Sensitivity cases based on Dark

Sky winds are presented in the main text and Section S7.

Additionally, Figure S2e and S2f includes 202 data points of Kairos’ internal controlled

release trials, which Kairos conducted on eight distinct days, four of which focused exclusively

on smaller release rate ranges (<250 kg/h). 38 data points were collected at a test site in

Alberta, Canada on one test day, and the rest were collected at test sites in California on

seven test days. We do not include data from Kairos’ internal trials for the curve fitting

process. Instead, we use data from the single-blind trials due to the more independent data

generation process and the larger release rates tested.

S1.3.2 Wind

HRRR We use HRRRv3 surface gust wind, available as an hourly, 3 km grid product

from the HRRR archives at the University of Utah.28 We process the hourly data based

on a method developed by Duren et al. to account for the spatial and temporal variability

in HRRR wind fields. Duren et al. applied the processed HRRR wind to their Airborne

Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) measurements for
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identification of California’s methane super-emitters.23 The type of wind speed used to mul-

tiply with wind-independent measurements is the average of 27 HRRR winds from the spa-

tially 3×3 box centered on the plume source and from 3 time-steps (plume detection time

±1 hour).

Figure S3 shows four parity charts using different HRRR hourly winds. Figure S3a uses

the instant (at detection hour) wind at the HRRR grid point closest to the controlled release

site. Figure S3b represents the average of three hourly measurements (±1 hour) at the

closest grid point. Figure S3c uses the average of nine instant winds in the 3×3 box centered

on the plume source. Figure S3d uses the average of 27 HRRR wind from 9 grid points and

3 time steps. The 95% confidence interval error bar length of each data point is 1.96 times

the standard deviation of the measurements from the temporally and spatially neighboring

wind estimates.

As Figure S3 shows, the R2 values in the four panels are, respectively, 0.64, 0.64, 0.68,

and 0.70. We choose to use the 27-average HRRR wind as the base case in this study due

to its best performance in linear correlation, and also because it is an established method in

Duren et al.23

Dark Sky Proprietary wind reanalysis product from Dark Sky aggregates weather data

from a wide range of sources, including the NOAA’s Meteorological Assimilation Data Ingest

System (MADIS) and a network of proprietary wind stations.24 Dark Sky models hyper-local

weather conditions for each minute. As of this writing, Dark Sky has provided the best

temporal and spatial resolution for modeled wind speed among available weather reanalysis

products. However, when acquired by Apple Inc. in March 2020, Dark Sky announced a

planned termination of their API service by the end of 2021.27

Figure S4 compares the two retrievals of Dark Sky wind data in February 2020 and

October 2020. Both retrieve the 2019 California controlled release field trial wind data and

the 2018-2020 New Mexico Permian campaign wind data. Two probable reasons for the
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Figure S3: Choice of HRRR wind affects the evaluation of Kairos technology’s quantification
accuracy. (a) uses the instant (at detection hour) wind at the HRRR grid point closest to the
plume source. (b) uses the average of three (±1 hour) hourly measurements at the grid point.
(c) uses the average of nine instant winds in the 3×3 box centered on the plume source. (d)
uses the average of 27 HRRR wind from 9 grid points and 3 time-steps. The difference in
the number of data points is due to the “plume formation time sufficiency” data exclusion
criteria detailed in the SI of.22 The lengths of the error bars on the x-axes represent Kairos-
reported wind-independent methane rates multiplied by 1.96 times the standard deviation
of wind estimates from temporally and spatially neighboring HRRR wind estimates. The
point estimates in (a) do not have associated error bars because the HRRR archive at the
University of Utah does not provide estimates of uncertainty in point estimates.28
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discrepancy in the two retrievals 9-month apart are that 1) Dark Sky made changes to their

weather models between the two retrievals, and 2) Dark Sky downgrades the time resolution

of historic data due to memory concerns. Therefore, we refer to the February 2020 retrieval

as “high time resolution retrieval” and the October 2020 retrieval as “low time resolution

retrieval” to reflect this change.

As noted above, we use HRRR for our base case in favor of HRRR’s replicability and

availability. Nevertheless, we present two sensitivity cases based on two retrievals of Dark

Sky winds in Section S7. Note that each of the two sensitivity cases are based on their own

fitted curves from the controlled release results.

Figure S4: Comparison of Dark Sky 1-minute gust wind speed of (a) the controlled release
field trial and (b) the plume incidences detected in New Mexico Permian from high-time-
resolution (February 2020) and low-time-resolution (October 2020) data retrievals.

Modeled vs measured wind Figure S5 reveals that Dark Sky-modeled wind shows a

better linear correlation with the cup wind meter-measured wind at the controlled release

sites (the San Joaquin site in the single-blind trials as well as other sites for Kairos internal

trials) due to its advantage in spatial and temporal resolution over HRRR. Regardless, we

use HRRR wind for our base case in favor of HRRR’s accessibility and replicability.
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Figure S5 also demonstrates the challenge of accurately modeling wind speed with reanal-

ysis products such as HRRR and Dark Sky. The errors in release rate quantification depends

both on the uncertainties in the Kairos-reported wind-independent release rates and on the

uncertainties in the modeled wind speeds in mps. In fact, the release rate quantification

error can be largely attributable to wind errors. Use of improved wind reanalysis products

in future studies has a large potential to improve emission quantification accuracy.

Figure S5: Cup wind meter-measured minutely gust wind from controlled release trials (38
data points from Alberta, Canada and 508 from California test sites) plotted against (a)
HRRR 27-average wind gust and (b) Dark Sky-modeled 1-minute wind gust. The black
dashed lines show 95% confidence intervals of the regression line fits. Due to its finer spatial
and temporal resolution, Dark Sky-modeled wind shows a smaller spread around the parity
line and the regression fit.

S1.4 Detection limit

We find the partial detection range (PDR) of the technology by finding the minimum release

rate that the technology can detect with some nonzero probability and the rate above which

all controlled releases are detected. The PDR is assessed with wind-independent release

rate in the unit of kgh/mps, because wind dissipates the released methane and is a common
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factor to incorporate in PDR characterization of many methane detection technologies.25,29

The single-blind field trial was primarily set up to test the accuracy of the technology

at medium- to large- methane rates, with limited resources devoted to characterizing the

PDR of the Kairos technology.22 Therefore, data collected from both single-blind trials and

Kairos internal trials are combined in this study to better characterize Kairos instrument’s

detection limit. Single-blind trials contribute 221 valid data points, including 200 positive

releases and 21 negative control trials. No false positives were detected for the 21 negative

control trials.

Kairos internal trials, which were conducted on eight different days ranging from October

2017 to September 2020, include 312 valid data points, including 276 positive releases and

36 negative controls. No false positives were detected for these 36 Kairos-internal negative

control trials.

Therefore, in this study, we assume that all detected plumes in the New Mexico Permian

are valid emissions. The observed distribution of emissions falls off rapidly in the partial

detection range of (4,14] kgh/mps (see Section S1.4). Given that false positives would likely

fall in this smaller range, this suggests that to the extent they exist in the dataset, false

positives likely play a small role.

We define the cup wind meter-measured wind-independent release rates as the actual

wind-independent methane rates (AMRWN
CR = AMRCR

Windcup
).

Among the 476 valid releases from both the single-blind trials and the Kairos internal

trials, 192 releases have AMRWN
CR < 20 kgh/mps. Figure S6a shows binary detection results

as black circles on the upper and lower end of the graphs. These binary results are grouped

into bins with widths of 2 kgh/mps and the detection probability of each bin is represented as

a fraction x/y, where x is the number of detected releases and y is the number of all releases

in the bin. The 5%, 50%, and 95% detection probabilities according to the sigmoid fit in

Figure S6a occur at 4.5, 9.5, and 14.6 kgh/mps. For simplicity, the wind-independent PDR

is determined to be (5,15] kgh/mps. The estimated 50% detection threshold of 9.5 kgh/mps
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is close to Kairos’ self-reported a 50% probability detection threshold at 9.8 kgh/mps.18

The PDR identified using data from both the single-blind and the Kairos internal controlled

releases is the same as the PDR of (5,15] kgh/mps identified using only the single-blind trial

data in Sherwin, Chen et al.22

In real field applications, actual cup-based wind measurements on the ground are not

available for each plume. For this reason, modeled wind sources such as HRRR have to be

used. Modeled wind introduces errors to the analysis (Figure S6b). When we switch the

denominator in calculating AMRWN
CR from cup wind meter-measured wind speed to HRRR

modeled-wind, the proportion detected does not grow smoothly with release rates due to the

errors in modeled wind.

Using HRRR synthetic wind speed (WindHRRR) as the denominator, the number of data

points with wind-independent release rates below 30 kgh/mps is 206. Figure S6c shows 10

incidences of detection failure when the wind-independent release rate is above 15 kgh/mps.

This is caused by the noise in the synthetic HRRR wind (Figure S6b). Of these 10 data

points, 5 are from the single-blind trials and 5 are from Kairos internal trials. In all these

10 cases, the HRRR winds are significantly smaller than the cup wind meter measurements,

driving the wind-independent release rates larger.

Due to the challenge of modeling wind, the synthetic HRRR wind introduces noise to

characterizing the PDR. The 50% detection probabilities on the sigmoid fit is 10.8 kgh/mps,

which is close to the value based on measured winds and indicates that the synthetic wind

introduces noise but does not strongly affect the estimate of where 50% detection probability

occurs.

For the base case of study-area emission quantification presented in the main text, we

use 2 and 30 kgh/mps as the minimum and full detection limits (MDL and FDL) and

the detection probability of each bin in Figure S6c to characterize the partial detection

thresholds. Despite the noise introduced by using synthetic wind, the results based on

HRRR wind are more generalizable for interpreting New Mexico data given the absence of

S14



Figure S6: (a) Wind-independent partial detection range (PDR) is (4,14] kgh/mps based on
actual release rates and cup wind meter-measured wind speed. Binary results are plotted as
black circles on the upper and lower ends of the graph. The binary results are grouped into
bins with widths of 2 kgh/mps and the detection probability of each bin is represented as a
fraction x/y, where x is the number of detected releases and y is the number of all releases
in the bin. The height of each bar indicates the value of x/y. The error bars of each bin
indicate 95% confidence interval of detection probability assuming a binomial distribution.
(b) Figure S5a reproduced to demonstrate the errors introduced by modeled wind here.
(c) PDR characterization based on HRRR wind. Modeled wind introduces noise into the
detection probability of each bin of wind-independent methane release rate.
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ground wind measurements in the New Mexico emissions data set.

In the New Mexico survey, none of the 1985 plumes are associated with wind-independent

emission rates below 2 kgh/mps. 1112 are within the PDR of 2 to 30 kgh/mps. The remaining

873 plumes are above 30 kgh/mps. Despite the fact that over half of the plumes are found

below the FDL, due to the heavy-tailed emission size distribution, the contribution of total

emissions from these detected plumes within the PDR is less than 5% of total emissions of the

entire study area and therefore does not greatly affect the final quantification results. Section

S5.1 describes the contribution of emissions from the partial and the full detection ranges in

detail. We do not present a sensitivity case based on the partial detection characteristics in

Figure S6a because of the insignificant contribution to the total emissions from the smaller

leaks.

S1.5 Curve fitting

Data selection We exclude data points from Kairos’ internal trials in the quantification

curve fitting process, and preferentially use the data from the single-blind study in favor of

the data independence and the larger release rates tested in the single-blind trials.

We exclude undetected releases (EMRCR=0) in the curve fitting process, considering

that the New Mexico Permian campaign data does not indicate the probability of leakage

based on null observations and thus the inclusion of the undetected controlled releases would

introduce bias in quantification.

Curve type selection Sherwin, Chen et al. find a good linear fit of data when set-

ting actual methane rate (AMRCR) on the x-axis and estimated methane rate (EMRCR)

on the y-axis, despite some heteroscedasticity and noise introduced by HRRR wind.22

Therefore, as a starting point, we fit a conventional linear regression model (Figure S7)

to (EMRCR, AMRCR). The fitted relationship is as follows:
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ÂMRCR = 0.72EMRCR + 121.55 (S4)

Figure S7: (a) Conventional linear fit of single-blind controlled release trial data. The black
dashed lines show the edges of the 95% confidence intervals of the fit. The R2 value here
differs from the value presented in Figure S3d due to the exclusion of data from Kairos
internal trials. (b) Relative error (defined in Equation S6) first grows at small actual release
rates and declines at larger release rates. The black dotted line indicates the full detection
limit (FDL) assuming New Mexico Permian median 27-average HRRR wind speed from
HRRR at plume detections (see Section S1.3.2). (c) Histograms of relative errors for releases
above and below FDL. The two distributions differ and the distribution for releases below
FDL does not resemble a normal distribution.

The intercept of Equation S4 is 121.55±40.63 (95% CI), which is significantly larger than

the expected value of zero. The nonzero intercept will artificially increase low-end emissions,

while the fact that the line’s slope is below 1 will reduce the magnitude of emissions above the

intersection with the parity line at ∼500 kg/h. To address the possibility that the nonzero

intercept could introduce upward bias into the calibration, we fit another regression line with

the intercept fixed at the origin, as presented in Figure S8 and Equation S5.

ÂMRCR = 0.93EMRCR (S5)

Compared to Sherwin Chen et al., flipping the axes to place estimated methane emissions

on the x-axis also exacerbates the non-uniformity in residuals.22 This is due in part to

boundary bias issues, described in Section S1.6. In Figure S7b, we plot the relative error δ
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Figure S8: (a) Linear regression with intercept fixed at the origin for single-blind controlled
release trial data. The black dashed lines show the edges of the confidence intervals of the
fit. Note that the R2 defined for linear regression with intercept fixed at the origin differs
from the R2 defined for ordinary least square fit presented in Figure S7. (b) Relative error
(defined in Equation S6) first grows at small actual release rates and declines at larger release
rates, likely due in part to boundary bias issues described in the Section S1.6. The black
dotted line indicates the full detection limit (FDL). (c) Histograms of relative errors for
releases above and below FDL. The two distributions differ and the distribution for releases
below FDL does not resemble a normal distribution, in part because it is not possible to
have relative error below -100%.

(defined in Equation S6) with respect to AMRCR and observe a downward trend in δ.

δ =
AMRCR − ÂMRCR

ÂMRCR

(S6)

The nonzero intercept and the non-uniform residual spread illustrate potential limitations

of the linear model. The downward trend in δ, in particular, suggests that the linear fit may

be over-estimating the leakage rate at high volumes. There are two main hypotheses for why

this may occur:

1. There is an underlying nonlinearity in the relationship between gas release volume and

Kairos’ quantification algorithm.

2. There is an experimental issue with boundary effects in the sample size driving errors

to be increasingly one-sided as we approach the largest release rates.

In the base case, we apply the first hypothesis and fit a sublinear curve to the data
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prompted by the inspection of downward-bending trend at large AMRCR values. The power

curve (Equation S7) is found by fitting a regression line to the log-transformed data. As

Figure S9b shows, the relative error δ of the sublinear fit stays relatively constant with

respect to AMRCR. The relative errors for releases below and above Kairos full detection

limit are not statistically different (Figure S9c). The relative error roughly follows a normal

distribution of mean 0.07 and standard deviation 0.40 (Equation S8).

ÂMRCR = 4.08EMR0.77
CR (S7)

δ =
AMRCR − ÂMRCR

ÂMRCR

∼ N(µδ = 0.07, σδ = 0.4) (S8)

Figure S9: (a) Sublinear fit of single-blind controlled release trial data. The black dashed
lines show the edges of the confidence intervals of the fits and the red dashed lines show the
edges of the prediction intervals of the fits. (b) Relative error does not show distinct trends
with respect to actual methane rate. (c) Distributions of relative error for data above and
below full detection limit (MDL) are not statistically different.

Note that the sublinear power law fit (Equation S7) is conservative in estimating large

emissions and is even more so for estimating some emissions found in the New Mexico

Permian Basin that are larger than the largest controlled release (1025 kg/h).

Note that in both the linear and the sublinear cases, there is potential upward bias

from emissions below ∼400 kg/h. However, on average we would expect this power curve
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to introduce a downward bias into the results due to scale bias issues related to the fact

that the mean of a lognormal distribution is greater than the exponentiated mean of the

logarithm of the underlying data points. This is discussed further in a report by Eastern

Research Group.30

In Section S5.1, for the base case we first apply Equation S7 to the estimated emission

rates and then use a Monte Carlo approach to incorporate the measurement error. We do

this by rearranging Equation S6 and assuming that the distribution of δ is the same for the

controlled releases and in the New Mexico Permian Basin:

AMRCR = (1 + δ)ÂMRCR, where δ ∼ N(µδ = 0.07, σδ = 0.4) (S9)

S1.6 Boundary bias correction

Alternatively, hypothesis 2 asserts that the nonlinearity results from an experimental issue

with boundary effects. The largest actual methane rate (AMRCR) in the single-blind field

trial was 1025 kg/h, which indicates that all Kairos-estimated methane rates (EMRCR)

above that value can only be overestimates of AMRCR. The inclusion of these estimates

with asymmetric error bars in the curve fitting process could introduce an downward bias in

the slope coefficient.

To demonstrate this phenomenon, we carry out a simulation using the following steps:

1. Suppose that the true (EMRCR, AMRCR) relationship can be described by the parity

line (ÂMRCR = EMRCR) in Figure S10.

2. Apply a normally distributed relative error δ with µδ=0 and σδ=0.39 (39%) to ÂMRCR

values on the parity line to generate the data for simulation. Assume these are the

true values of AMRCR. In this simulation practice, the value of σδ=0.39 is taken as

that of the relative errors from fitting the controlled releases data with a linear line

(Equation S4). This assumption is made for the purpose of demonstration.
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3. Leave out the data points with AMRCR > AMRmax
CR .

4. Refit a regression line to EMRCR and the remaining AMRCR <= AMRmax
CR . Denoted

the new line fit as ÂMR
′
CR = α′ EMR + β′.

5. Repeated steps 2-4 one hundred times.

Figure S10 shows the results of the simulation. The black scattered points show (EMRCR, AMRCR)

from one of the 100 simulation realizations. The data points with simulated AMRCR >

AMRmax
CR are shown as crosses and are excluded in the refitting processes. These data points

are the ones “missing” from the field trial because the actual release rate never exceeded

1025 kg/h. Without these data points, linear regression produces a biased estimate of the

relationship. We refer to this as the “boundary bias effect.”

This problem does not occur in Sherwin, Chen et al., where the plots are presented with

EMRCR on the y-axis and AMRCR on the x-axis, because a vertical cutoff threshold of

data points does not bias the linear fit. However, in this study we present AMRCR on the

y-axis and EMRCR on the x-axis for calibration purposes. Consequently, a horizontal cutoff

threshold would bias the linear fit slope low, as the simulations in Figure S10 show. The refit

slopes α′ from the 100 simulations have a mean of 0.81±0.14 (95% CI), which is significantly

lower than the true slope of 1.

The simulated slope of 0.81±0.14 by taking into account the boundary effect demonstrates

that Hypothesis 2 can be one major cause of the non-linearity in the data and drives the

slope (0.72±0.09) in Equation S4 below 1, as shown in Figure S10. Note that 0.72 is within

the confidence interval of the simulated mean (0.81±0.14).

To address the boundary bias problem, we leave out data points with large EMRCR

values from the curve fitting process, as we believe that smaller EMRCR are less affected

by the boundary bias effect. By setting a vertical cutoff threshold and fit curves exclusively

to data points left of the threshold, we can reduce the boundary bias. The criterion for

determining the cutoff threshold (EMRcutoff
CR ) is:
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Figure S10: Simulations for demonstrating the boundary bias effect. Light blue lines repre-
sent linear fits to 100 simulated datasets assuming perfect 1:1 agreement between estimated
and actual emissions with normally distributed percent error. The light blue lines are fit
only to all simulated data points below the maximum emission rate of 1025 kg/h observed
in controlled releases (dashed red line).22 This simulates the effect on the linear fit slope of
limiting the size of the maximum methane release used for calibration. Gray dots represent
one realization of simulated data, with high-emission points excluded from the fit marked
with an ”x.” The simulations assume a percent error standard deviation of 39% based on
the observed error distribution to the linear fit for observed data (solid red line). Note that
the slope of the red line, fit to actual data, is within the confidence interval of the simulated
datasets.

(1 + σδ)EMRcutoff
CR <= AMRmax

CR (S10)

We also show a more stringent case of the following criteria:

(1 + 2σδ)EMRcutoff
CR <= AMRmax

CR (S11)

In Equation S10 and S11, the values of σδ are based on the distributions of relative

errors from linear fittings to data with EMRCR < EMRcutoff
CR . Therefore, the values of

EMRcutoff
CR cannot be obtained explicitly. Hence, we test EMRcutoff

CR at 10 kg/h increments

(Table S1) and find EMRcutoff
CR of 750 kg/h that is one σδ below AMRmax

CR and 590 kg/h

to be 2σδ below AMRmax
CR . Note that the δ used here is the δ (fitted normal distribution
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of methane emissions percent errors) based on emissions larger than the full detection limit

(FDL), because releases size above FDL are more relevant for finding the cutoff threshold

and the prospect of partial detection introduces non-normal errors.

Table S1: Selection of the upper boundary cutoff threshold for estimated methane rate using
Equation S10 and S11. By testing EMRcutoff

CR at 10 kg/h increments, the one σδ cutoff
threshold is 750 kg/h and the 2σδ cutoff threshold is 590 kg/h. Note that by a cutoff of 750
kg/h, the slope is within 10% of perfect 1:1 agreement.

EMRcutoff
CR N Slope Intercept µδ σδ (1+σδ)EMRcutoff

CR (1+2σδ)EMRcutoff
CR

1320 172 0.719 121.545 4.5% 39.0% 1834 2348
1310 171 0.759 109.714 4.0% 38.3% 1812 2314

. . . ...
760 155 0.939 64.976 2.4% 36.9% 1040 1320
750 154 0.955 61.488 2.2% 36.7% 1025 1300
740 153 0.945 63.727 2.4% 36.9% 1013 1286

. . . ...
600 139 1.031 47.328 1.6% 36.4% 819 1037
590 139 1.031 47.328 1.6% 36.4% 805 1020
580 137 1.023 48.505 1.7% 36.8% 794 1007

. . . ...

Figure S11 shows three sets of regression results based on (a) all single-blind controlled

release data, (b) estimated releases below 750 kg/h, and (c) estimated releases below 590

kg/h. Cases b and c, respectively, correspond to cutting off thresholds of one and two σδ

below the maximum release rate. The exclusion of data points of large EMRCR values brings

the slope up, as the data points used in the line fitting processes are less affected by the

boundary bias effect.

In the base case presented in the paper, we apply hypothesis 1 and do not apply this data

exclusion criterion. Section S7 presents a case assuming hypothesis 2 that employs Equation

S10 as the cutoff threshold criteria. The resulting linear fit following hypothesis 2 is:

ÂMRCR = 0.96EMRCR + 61.49 (S12)

Note that this slope of 0.96 is approaching perfect agreement (1.00), indicating that
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Figure S11: Linear regression based on data points vertically cutoff at different thresholds.
The top panels present a case with no cut off. The middle panels present the base case of
excluding data points that are within σδ below AMRmax

CR . The bottom panels show the other
sensitivity case when data points within 2σδ below AMRmax

CR were excluded. Note that the
σδ values here are individually computed for each regression case (see the three panels on
the right) and the σδ for data points above full detection threshold is applied.
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boundary bias effects may be a major cause of the lower-than-parity slope in the fit using

the full dataset.

The intercept in Equation S12 is 61.49 (±40.06), which is still larger than zero. This is

expected due to the exclusion of undetected controlled releases (EMRCR=0) in the fitting

process.

S2 New Mexico Permian survey

S2.1 Survey

Kairos’ technology is capable of surveying approximately 390 km2 (150 sq. mi.) of land per

day.18 At this speed, Kairos was able to survey the entire population of oil and gas (O&G)

assets multiple times in the New Mexico Permian Basin from October 2018 to January 2020.

The campaign covered 35,923 km2 (13,870 sq. mi.) and 26,292 active wells, or 91.2% of all

active wells in the covered region.

Table S3 details of the numbers of wells, pipelines, compressor stations, storage tanks,

gas processing plants, and other/ambiguous sources in the region. Note that there are no

comprehensive datasets for storage tanks, compressor stations, and gathering lines, and thus

the counts of these assets in Table S3 are not as reliable as the well and the gas processing

plant counts. The compressor station count includes both some large compressor stations

documented by the EIA and some smaller-scale compressors that were found with emis-

sions during the campaign. Kairos do not provide a storage tank count, and the Stanford-

determined tank counts is the number of storage tank sites found with emissions. See Section

S4.2 for the asset type determination process.

Each covered facility could be seen on more than one flight because repeated measure-

ments were taken on different days, and overlap of areas surveyed also occurred during

different passes on the same day. Each facility was imaged an average of four times over the

course of the campaign.
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Table S2: Number of production assets grouped by well status.

Well status Nregional total Ncovered %Covered

Active 28,839 26,292 91.2%
Cancelled 11 6 54.5%
Completed 85 81 95.3%
Drilled 125 108 86.4%
Drilling 1 1 100.0%
Drilled and uncompleted 22 19 86.4%
Inactive 2,430 1,952 80.3%
Plugged and abandoned 598 528 88.3%
Permitted 1 1 100%
Temporarily abandoned 73 65 89.0%
Unknown* 650 630 96.9%

Total 32835 29683 90.4%

Note: * The well status “unknown” is a category in Enverus well dataset. Detected emissions in the New
Mexico Permian from a site with an “unknown” well is defined as emissions from asset type “well site” (see

Section S4.2).

Table S3: Number of covered assets by asset type.

Asset type NKairos−provided
covered NStanford−decided

covered

Well 29,683 29,683
Gas processing plant 39 39
Compressor station 187 263
Storage tank* N/A 59
Pipeline 18,614 18,614
Other/ambiguous 382 53

Note: * Storage tank sites found with emissions during the campaign.

Over roughly the same period of time, the Environmental Defense Fund (EDF) initiated

the Permian Methane Analysis Project (PermianMAP) to publish emission data collected

from sensors on satellites, helicopters, aircraft, vehicles, and towers.31 PermianMAP’s study

area straddles New Mexico and Texas and overlaps partially with Kairos’ study area. Using

the aircraft- and tower-based measurements in PermianMap along with inverse modeling,

Lyon et al. estimated methane emissions for a 100 km × 100 km study area within the

Permian Basin.8 Note that the aerial measurements used in Lyon et al. are regional atmo-

spheric boundary layer methane concentration for inverse modeling, and are different from
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the hyperspectral imaging data of this study.

In addition, NASA’s Jet Propulsion Lab (JPL) also flew over the Permian Basin for

methane leakage detection with aerial surveys using the Airborne Visible-Infrared Imaging

Spectrometer - Next Generation (AVIRIS-NG) and Global Airborne Observatory (GAO) sys-

tems.12 Satellite systems such as the TROPOspheric Monitoring Instrument (TROPOMI),

GHGSat, and the Greenhouse Gases Observing Satellite (GOSAT) were also able to monitor

the same region for methane concentration changes.32–34 Robertson et al. carried out ground

campaigns to measure site-level emissions in the Permian Basin using OTM-33A method.9

Table S4 compiles studies of Permian Basin methane emissions with other instruments.

Note that the temporal scope of these studies vary. Permian Basin natural gas and oil

production follows a growth trend (Figure S12). Oil stays as the primary product in the

region, with its product value far exceeding the value of gas. Regardless of the natural gas

production growth, the total product value based on Henry Hub spot price stays relatively

stationary.4
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Figure S12: Oil value far exceeds gas value in the Kairos survey area, making oil the primary
product in oil and gas (O&G) production. The product values of oil and gas are respectively
calculated with monthly average WTI crude oil spot prices and Henry Hub natural gas spot
prices.4 O&G production in the Kairos survey area grew from January 2018 to January
2021.35 Gas production is converted to barrel-of-oil equivalent (boe) per day.
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The emissions data provided by Kairos provides unique empirical insights due to its

extensive coverage. Surveying over 90% of production assets in a large region is challenging

and costly, and is viable only through aerial surveys if the goal is to complete the effort

within a reasonably short time frame.

Unlike conventional bottom-up studies which cover a small subset of all assets in the

study area, our study is better characterized as a basin-wide study that covers >90% of

production assets in the study region. With a much larger dataset, more super-emitter

observations are available to us, enabling us to better quantify the emissions that follow a

heavy-tailed distribution.

Kairos conducted the vast majority of the surveys from 9 am to 4 pm local time to ensure

adequate illumination for hyperspectral remote sensing. On each flight day, Kairos flew to a

predetermined polygon. The sizes of these polygons vary, but cover on the order of 400 km2

imaged per day. These polygons can overlap with each other, resulting in revisits to some

assets on different days.

Figure S13 shows the flight passes over a predetermined polygon. At a flight height of

roughly 900 meters above ground, a single flight pass can image a strip of area along the flight

line. After covering one stripe of the polygon, Kairos turns around the airplane and covers a

partially overlapping area, with design overlap of 50%. Due to this coverage pattern, same-

day revisits are common. If an asset is located at point A in Figure S13, the time between

consecutive visits to point A is on the magnitude of one hour, depending on the length of

the stripe. For example, an asset located at point B in Figure S13 may experience revisits

that are minutes apart.

S2.2 Data anonymization measures

To comply with the confidential terms with their clients, Kairos anonymized the emissions

data prior to sharing it with the Stanford team. Kairos provided 2076 measured methane

plumes from 968 distinct emission sources. Each plume is associated with location infor-
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Figure S13: Kairos flight coverage pattern. The black rectangle indicates the predetermined
polygon for a certain flight day. The lines with arrows are the flight lines. The blue semi-
transparent rectangles are the stripes of survey area covered with the flights on the center
lines of the rectangles. Strips covered by forward and backward flights may partially overlap,
resulting in a darker shade of blue indicating double coverage in the figure. Point A and B
are the locations of two production assets that are covered twice on a single day because
they are within overlapping stripes covered by forward and backward overflights.

mation truncated to the second decimal place of longitude and latitude, as well as a flight

overpass timestamp accurate to the second. 91 of the 2076 plumes are left out of the analysis

due to either being designated as a “blowoff” of a larger plume found concurrently or due to

having been found outside of New Mexico. See Section S2.3 for details of the plume screening

process. The 1985 remaining plumes are associated with 958 emission sources.

Kairos associates plume detections to assets identified in optical aerial images and labeled

asset data to allow identification of the sources of the plumes. More details on the association

process are described in Section S4.2.

We retrieved well characteristics and production data from Enverus. To reduce the

potential for de-anonymizing the Kairos data by creating one-to-one association of assets in

Kairos dataset with assets documented by Enverus, we took the measures summarized in

Table S5 when sharing data. Spatial coordinates of assets, detected plumes, and emission

sources were truncated to two decimal places. Each distinct truncated latitude and longitude

S31



pair is associated with 4.8 assets on average. Operator IDs in the Kairos dataset were

replaced with pseudo IDs to mask operator information. Well characteristics, including

depth, production type, well status, producing entity count, completion date, drill type,

peak oil, peak gas, cumulative oil, cumulative gas, and cumulative water, were binned to

lower precision levels so that each characteristic level could be associated with over 100

assets, with the sole exception that there are only 87 wells with a production type identified

as “water” in the study area, according to Enverus. Monthly well production of oil, gas, and

water are encoded with a reversible monotonic nonlinear transformation as an additional

anonymization measure.

Table S5: Data shared with Stanford team by Kairos and measures of data anonymization

Data Anonymization measure

Location Longitudes and latitudes truncated to two decimal places
Operator ID Pseudo-ID created to mask operator information

Well characteristics Each characteristic was binned so that each bin has >100 wells*
Well production Monotonic transformation applied to monthly production data

Note: * One exception is that there are only 87 wells with deemed production type “water” in the study
area.

S2.3 Data screening

Blowoff plumes During the field campaign, when two or more plumes from the same

emission source were recorded from the same flight pass, it was either because there were

multiple emission sources (at the same site) emitting at the same time, or there was only

one leak source but non-uniform dissipation had caused small “blowoff” plumes to detach

from the main body of the plume.

In the first case, Kairos analysts treated the multiple emission sources as one, since the

spatial precision of Kairos technology renders its emission attribution capacity to be the

closest to site-level. There are also cases when plumes from multiple leak points at one site

merged into one large plume. Under this circumstance, Kairos recorded one plume incidence
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and performed quantification for the combined plume.

In the second case, blowoff plumes are excluded from the analysis because blowoff plumes

are in most cases an order of magnitude smaller than the main plume in terms of wind-

independent emission rate (ERWN
plume). The inclusion of blowoff plumes in the quantification

process would bias the estimate low because the small blowoff plumes would enter the plume

selection process (see Section S5.1) for the corresponding emission sources as candidates and

reduce the chance of selecting the larger, main-body plumes for these emission sources.

To exclude the blowoff plumes, we identify concurrently observed plumes associated with

the same emission source and keep the largest plume in terms of ERWN
plume in the dataset.

We identify 36 blowoff plumes from the 2076 plume records provided by Kairos and exclude

them from the analysis.

Plumes outside of the study area The plume records shared by Kairos contain 56

plumes located in Texas. Some of these plumes are on the Texas side of the New Mex-

ico/Texas border and the rest are close to the Midland Airport, where Kairos airplanes

were based during the campaign. The locations of these plumes are shown in Figure S14.

These plumes are excluded from the analysis, leaving the final 1985 plumes from 958 distinct

emission sources for analysis.

S3 Emission intermittency

Our method estimates total emissions from the New Mexico Permian Basin based on mea-

surements from an aerial campaign conducted over more than a year. As shown in Figure 1c

in the main text, some assets were covered more times than others. In many cases, emissions

from a given emission source are intermittent, with the airplane detecting emissions at some

times and not others. Thus, our statistical approach to estimating basin-wide emissions must

produce an unbiased estimate from a dataset with different levels of coverage for different

assets.
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Figure S14: Plumes outside of the study area.

Fortunately, the sampling approach taken by Kairos during the aerial survey allows us to

produce such an unbiased estimate even with an uneven coverage profile. The mathematical

framework is described below.

S3.1 Treatment of intermittency

In Section S5.1, we define the number of plumes associated with emission source i as Ji and

the number of coverages for the emission source as Ci. The vast majority of the emission

sources have multiple coverages (Ci > 1), and some have multiple plume observations (Ji >

1) during different coverages. We define Pi = Ji
Ci

as the probability of emission detection

at emission source i. Whether emission source i is active at any given time thus follows a

Bernoulli distribution of parameter Pi. We then model intermittency explicitly, using Pi as

the probability with which a given emission source will emit in a given Monte Carlo iteration

(choosing at random from plumes identified at that emission source in instances in which

that source is emitting).
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As discussed in Section S2.1, time intervals between revisits vary from minutes to months.

We treat each visit as independent regardless of the varying time period since the previous

visit.

S3.2 Notation and key concepts

The following illustrates why the above approach produces an unbiased estimate of basin-

wide emissions.

Suppose assets are divided into three categories (subsets):

• X = Always-leakers

• Y = Intermittent leakers

• Z = Never-leakers

with Nx, Ny, and Nz being the number of assets in each category in the study area.

Then,

Nx +Ny +Nz = N (S13)

where N is the total number of assets in the study area. Note that Nx +Ny is roughly equal

to the number of emission sources 958, with a few edge cases of long pipeline assets possibly

having multiple emission sources.

Let x ∈ X, y ∈ Y, z ∈ Z be assets within X, Y, Z. Let assets be indexed by i. By

definition of Pi in Equation S19:

• Px = 1 ∀x ∈ X

• 0 < Py < 1 ∀y ∈ Y

• Pz = 0 ∀z ∈ Z
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Suppose the yi ∈ Y emits natural gas at a given time with probability P (yi|`i = 1) ∈ (0, 1)

with some emission flux ρ(yi), where `i is a binary variable indicating whether asset i is an

emitter (whether or not it is emitting at a detectable level at a given point in time).

S3.3 Characterizing cases

Assume some subset of all assets in a basin are covered by an emissions detection and quan-

tification technology. As long as the asset selection is plausibly random, quantified emissions

can be scaled up to basin-wide emissions to produce an unbiased estimate. As over 90% of

assets were covered in our study, assumptions surrounding statistical representativeness of

the remaining 10% of assets have a relatively small effect on estimated basin-wide emissions.

S3.3.1 A single snapshot

Suppose all assets in the population are covered once , Ci = 1 ∀i. We call this a “snapshot”.

Assuming the intermittency profile is itself stationary over time. i.e., that intermittent

sources are equally likely to be emitting at any time of day or hour of the year, and that

the emissions profile does not change over the duration of the measurement campaign, this

is functionally equivalent to sampling all assets simultaneously.

No intermittency If there is no intermittency (Y=∅), then all observed plumes in this

snapshot are always-leakers and the total emissions from the snapshot are thus an unbiased

estimate of total emissions from the study area.

Pervasive intermittency If all leaking assets observed in the snapshot are intermittent,

then the snapshot is also trivially an unbiased estimate of total emissions over time (again,

assuming the intermittency profile is stationary over time. The mean of random sample from

a population is an unbiased estimate of the mean of the population).
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Partial intermittency If some fraction of leaking assets observed are intermittent and

some are persistent, the snapshot is also an unbiased estimate of persistent emissions. If we

remove these emissions from the analysis, the problem then becomes the case of pervasive

intermittency for the remaining emitting assets. Thus, a single snapshot over the full study

area results in an unbiased estimate of total emissions regardless of the intermittency profile

of the emissions sources (unless the profile varies over time).

S3.3.2 Multiple snapshots

The above analysis generalizes trivially to the case of multiple snapshots (Ci = k > 1 ∀i).

Each individual snapshot yields an unbiased estimate of total emissions from the Ci = 1 ∀i

case and the average of unbiased estimates of a number is itself an unbiased estimate of that

number.

Thus, if Ci is the same for all assets, we can account for intermittency by taking the

average of emissions in each snapshot across the entire population and averaging across

those snapshots. For the Ci = 1 ∀i case, this is the same as assuming all emissions observed

are persistent.

For Ci > 1 ∀i, one way to compute overall emissions is by first averaging across each

individual snapshot separately and then averaging over total emissions from all snapshots.

If the sample size, Ci, is the same for all assets, then we will get the same answer by first

averaging over all emissions estimates for each asset i, and then summing these emissions

over all assets.

S3.3.3 Uneven coverage counts

Suppose the survey sampled some assets more than others. In this case, the problem reduces

to a series of cases of multiple snapshots with Ci = Fj ∀i ∈ Fj, where Fj is the set of emission

sources, i, which have coverage count j = 1, 2, 3, ....

By the logic above, the sum of emissions over all assets in Fj produces an unbiased
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estimate of emissions in Fj. As a result, the sum of emissions from all Fj will produce an

unbiased estimate of total emissions, because the union of the Fj is equal to the surveyed

population of assets.

As a result, the sum of average emissions estimated for each emission source is an unbiased

estimate of basin-wide emissions even in a case with oversampling of some assets.

The above logic only holds if the number of times an asset is covered does not depend

on whether emissions are detected there in previous coverages. In our survey, the presence

or absence of emissions in prior overflights did not affect decisions related to future coverage.

As a result, our analysis should produce an unbiased estimate of total basin-wide emissions

over the covered areas.

To qualitatively illustrate this, if there are intermittent emission sources in a basin, a given

overflight may or may not find an emission. For every emission source it finds, there is a

corresponding number of intermittent sources a survey will miss in a given set of overflights.

The proportion of missed intermittent emission sources will depend on the intermittency

profile of the assets in question. Similarly, for every intermittent source that a given set of

overflights misses, it will find others. The result is an unbiased estimate of average emissions

across the survey area.

S3.4 Survey time

The above analysis assumes no variation in seasonal and diurnal emissions profiles, which

may not be the case in practice. Kairos surveys were primarily conducted between 9am to

4pm (Figure S15), and more flight days are possible in summer than in winter because the

summer sun angle means that more hours in the day are available for the campaign. Thus,

it is possible that diurnal or seasonal variation in emissions affected our results. Figure S15

illustrates our results by time of day. The average time of point-asset coverage is 11:18am

and the overall fraction of point-asset emitting is 1.42±0.07%, suggesting a 1.42% chance

that a point asset is emitting at a given overpass.
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We define the fraction of point assets emitting at the time of inspection as

Fraction of point assets emitting =
Point asset plume count

Point asset coverage count
(S14)

The fraction of point assets emitting value of 9-10 am and that of 1-2 pm shown in Fig-

ure S15b are respectively 1.79±0.20% and 1.25±0.17%, indicating that a set of surveys done

exclusively between 9 am and 10 am would see 26% more emissions than this study, and a

study comprised only of surveys done between 1 pm and 2 pm would see 12% fewer emis-

sions than that of this study on an incidence basis. The time-dependence of emissions may

introduce bias to emission estimates based on measurements from satellites with constant

overhead times.

Without emission data from the night hours, we assume that the emission rates are the

same during the daytime hours during which data were collected. In addition, as shown in

Figure S16, the fraction of point assets emitting varies by month but does not show a strong

seasonal trend. We therefore assume a stationary emissions profile over time of day and

season.

S3.5 Shrinking persistence with more frequent sampling in time

Persistence is defined as being equivalent to detection probability Py in this study. The

average persistence of all 958 emission sources is 0.51 (+0.49/-0.34). Note that this average

persistence value is defined specifically for the 958 emission sources. If Kairos sampled more

frequently in time, they would observe more less-frequent emitters and include them in the

pool of emission sources. The newly-added emission sources will typically have persistence

values lower than the current average persistence of 0.51. In other words, the mean of Py will

decrease because the newly entered y ∈ Y have lower-than-average emission probabilities, as

shown in Figure S17. Figure S18 shows average persistence as a function of coverage count

and also demonstrates shrinking persistence with more frequent sampling in time.
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Figure S15: (a) Histogram of asset coverage records and plume detection records distributed
in each hour. Note that pipeline coverage and emission records are excluded in this plot due
to the low confidence in pipeline coverage counts. There exist seven point asset coverages
and no plume recorded after 5pm. We do not show these seven data points considering the
data scarcity of this hour. (b) Fraction of point assets emitting of each hour. The error bars
show 95% confidence intervals.

In an ideal world where constant monitoring instruments with equivalent sensitivity levels

are installed for all production assets in the study area, the persistence value would be

significantly lower than 0.51 due to the chances of observing less-frequent emitters.

When quantifying basin-total emissions, the decrease in Py will be offset by the increase

in Ny, and the quantification remains unbiased regardless of the sampling frequency.
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Figure S16: (a) Histogram of asset coverage records and plume detection records distributed
in each survey month. Note that pipeline coverage and emission records are excluded in this
plot due to the low confidence in pipeline coverage counts. (b) Monthly variation in fraction
of point assets emitting of each month. The error bars show 95% confidence intervals.

S3.6 An unbiased estimate of total emissions

Thus, our method gives an unbiased estimate of overall emissions in our study area for emis-

sions larger than the instrument’s 100% detection threshold under the following assumptions:

1. The decision to collect more samples or discontinue data collection at any given site is

not dependent on whether emissions were previously detected or not detected at that

site.

2. The assets surveyed are representative of the assets in the full survey area.
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Figure S17: Average persistence decreases with exclusion of emission sources with low cov-
erage counts.

3. The distribution of emissions is stationary over time of day and season.

Condition 1 holds. Kairos’ sampling strategy was not informed by whether or not emis-

sions had been seen in a given area.

Given that over 90% of all production assets were surveyed, any potential violations of

Condition 2 are unlikely to have a large effect on our results.

For Condition 3, the emissions distribution does change somewhat over time and space.

As a result, our estimate likely holds for emissions during the survey time frame of roughly

10am-4pm. Further research is needed to more closely characterize the distribution of emis-

sions at night and in the early morning and evening, as well as seasonal variation.

Note that our method gives an unbiased estimate of overall emissions under the three as-

sumptions above. For a single intermittent emission source, it is very likely that its temporal

variation follows a heavy-tailed distribution, in which case as discussed in the main text, a

small number of observations cannot fully characterize its variation in time, thus potentially
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Figure S18: Average persistence decreases as number of coverages increases.

biasing the estimate for that single source. For basin-wide emission estimates, however, we

take advantage of the ergodicity demonstrated in the dataset (assuming the distribution is

stationary over time). A dataset is termed “ergodic” if it is representative of the population

from which it was collected, which is likely the case for a dataset such as ours, which samples

90% of the population.

Thus, the distribution of methane emissions from a single source over time is assumed to

be the same as the distribution of emissions from a large number of emission sources measured

at one time (or in this study’s case, four times on average). Therefore, the ensemble result is

an unbiased estimate of average emissions across the survey area during the daytime hours

suitable for aerial observations.
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S4 Emission attribution

S4.1 Asset types

In Figure 3, we present emissions from six asset types: well site, gas processing plant,

compressor station, storage tank, pipeline, and other/ambiguous. In this paper, these asset

types are defined as:

• Well site is defined as the ensemble of all assets found on a congruent gravel or concrete

ground with at least one well, which can include gathering lines, storage tanks, and

compressor stations.

• Gas processing plant is defined as a site with gas processing plants and supporting

facilities on site such as gathering lines, storage tanks, and compressor stations.

• Compressor station is a site with at least one compressor and does not contain wells

or gas processing plants, but may contain gathering lines and storage tanks.

• Storage tank refers to a site that may only contain storage tanks and gathering lines.

• Pipeline emissions must come from a segment of the pipeline that is at least 200

meters (typical well pad diameter) away from any well sites, gas processing plant sites,

compressor station sites, and storage tank sites.

• Other/ambiguous sources are associated with emissions that cannot be clearly at-

tributed to above-mentioned asset types (see Section S4.2).

We aggregate the assets at the site-level due to the challenge of sub-site emission attribu-

tion with aerial surveys, although in cases when assets are situated far apart from each other

on a site, component-level attribution is possible from imagery. Many such cases suggest

that well site emissions are from gathering lines, compressor stations, and storage tanks,

rather than directly from the well itself. Figure 1a, for example, is a site that contains
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compressors and storage tanks and is thus defined as a compressor station site in this paper.

Although the methane plume most likely arises from the storage tanks in the optical image,

we characterize this emission incidence as a compressor station emission.

The site-level data are actionable for the operators who subscribe to Kairos’ service to

find and fix leaks. In some cases, companies derive significant revenues from fixing identified

leaks. Triple Crown Resources, one of Kairos’ clients, published a preprint that states the

deployment of Kairos aerial surveys for their assets resulted in a payout period of 18.7 days

and a cumulative cash-on-cash profit over $90,000 over 4 months.36

Figure 3 displays emissions by asset type. In Figure 3a, 79±46 of the 153 t/h of measured

emissions (ÊMeasured) comes from well sites; 4±2 t/h are from gas processing plants; 26±16

t/h are from compressor stations; 9±6 are from stand-alone storage tanks; 29±20 are from

pipelines, and the rest 7±4 are from other/ambiguous assets. See section S4.2 for the asset

attribution method.

Although even the smallest methane plume detected by the airborne sensor (13 kg/h after

calibration) could be considered a super-emitter in a typical ground-based study (Section

S6), the emissions detected in this study follow a heavy-tailed distribution, as shown in

Figure 3b. Regardless of the asset type of the emission source, the size distribution of the

detected super-emitters is as heavy or heavier than a log-normal distribution. Overall, the

top 5% of the observed sources account for 32% of ÊMeasured.

Table S6: Number of emission sources and emissions by asset type. The emissions reported
here are measured source-averaged emission rates accounting for intermittency (ÊMeasured).
NES denotes number of emission sources.

Asset type NES %NES Total emissions (t/h) Emission contribution

Well site 543 57% 79 52%
Gas processing plant 15 2% 4 2%
Compressor station 113 12% 26 17%

Storage tank 59 6% 9 6%
Pipeline 175 18% 29 19%

Other/ambiguous 53 6% 7 4%

Total 958 100% 153 100%
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S4.2 Plume-asset association

Associating plumes to emitting assets is a two-step process. Multiple inspections of an

emitting asset can record multiple plumes from that asset. Therefore, the first step of the

association process is to find all plumes that appear to be from the same source and generate

an emission source for that group of plumes. Regularly during the campaign, Kairos compiles

plume observations and uses a clustering algorithm to group together plumes that are likely

to be from the same emission source.

The second step is to associate the emission sources to emitting assets. This is done

internally by Kairos, using simultaneously-collected optical imagery to identify the asset

from which a detected plume is emitting. With the rapid development of O&G infrastructure

throughout the basin, having this up-to-date optical image is critical for determining the

source of a detected plume. Assets in the optical imagery are labeled using data from external

O&G asset datasets ingested from Enverus and IHS Markit. These datasets are updated

regularly and document the locations of wells and pipelines. Kairos also obtains compressor

station and gas processing plant location data from Energy Information Administration

(EIA).

Of the 1985 eligible plumes, the Kairos-internal association process (henceforth “Kairos

association”) is able to associate 1184 plumes to 576 assets in the datasets mentioned above.

The remaining 801 plumes are reported to be from 382 distinct “unknown” sources that

cannot be associated to the documented assets. The association failure can occur under the

following circumstances:

1. Newly built assets are not included in the datasets mentioned above at the time of the

association process.

2. Datasets mentioned above do not contain certain assets, such as small-scale compres-

sors, small gathering stations, and stand-alone storage facilities.

3. The plume is roughly equally close to two distinct assets, making the association am-
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biguous.

To address the unknown plume-asset associations, the Stanford authors conducted an

independent manual association (henceforth “Stanford association”) for the 382 “unknown”

emission sources with the most up-to-date asset data.

The Stanford association process is presented in Figure S19. The stopping criteria of

the Stanford association process is “unique asset type,” meaning that if the plume can be

associated with a group of assets of the same asset type, then the association stops, because

the main goal of this association exercise is to attribute emissions to a certain asset type,

not to an exact asset.

As shown in Figure S19, we associate emissions to the close-by assets based on the

following:

• Proximity: Assets within 200 meters of the plume cluster center are candidates for

association. We also tested 100 meters and 500 meters as the radius, finding that 200

meters presents the best balance between plume migration potential (many plumes can

have lengths exceeding 100 meters) and attribution efficacy (too many assets entering

as candidates).

• Wind direction: Dark Sky wind direction is extracted by Kairos for each detection. If

the proximity test fails, then we use the wind direction test to screen out assets that

are not within a 120◦ cone upwind of the plume cluster center.

• Prioritization of point sources over pipelines: Pipelines are connected to point sources

such as wells and compressor stations. If a pipeline asset is contiguous with, for exam-

ple, a compressor station, and both assets are potentially responsible for the methane

plume observed, then we chose compressor station as the source because it is a more

important feature of the site compared to the pipeline.

This Stanford association process for the 382 unknown emission sources shows that cir-

cumstance 1 is the most common association failure and can often be resolved with the
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Figure S19: Flow chart of Stanford association of emission sources to assets.
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updated asset dataset. However, there are 53 emission sources without any candidate asset

in the 1) up-to-date asset dataset, 2) optical imagery taken by Kairos simultaneous to plume

detections, or 3) satellite images. The associations for these sources therefore remain as

unknown. Possible explanations for these remaining unknown emissions include false posi-

tives, leaks from underground structures, and plumes from equipment not associated with

gas production. Of these 53 unknown emission sources, 9 are from visible structures that

appear unrelated to gas operations and 33 are not associated with any visible structures.

Note that these unassociated plumes have small emission rates on the lower extreme of the

emission size distribution of all observations, and therefore have very little impact on the

quantification of the regional total. The final 11 emission sources are “ambiguous” sources

with multiple asset types possibly contributing to the associated plumes detected.

Total persistence-averaged emissions from these other/ambiguous-typed emission sources

are respectively 1.0, 3.5, and 2.0 t/h for other, unassociated, and ambiguous sources, or 0.6%,

2.3%, and 1.3% of 153 t/h of ÊMeasured.

Table S7: Number of emission sources by asset type.

Asset type Kairos-determined Stanford-determined

Well site 409 543
Gas processing plant 15 15
Compressor station 37 113

Storage tank N/A 59
Pipeline 115 175

Other/ambiguous 382 53

When circumstance 2 occurs, we use visual inspection to select the asset associated with

the plume following the process shown in Figure S19. The vast majority of these undocu-

mented assets are determined to be small gathering and compressor stations, gathering lines,

or storage tanks. These types of infrastructure are in most cases sited in close proximity to

producing wells. As described in Section S4.1, the set of possible asset types in the Stan-

ford association is well site, gas processing plant, compressor station, storage tank, pipeline,
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other/ambiguous.

When circumstance 3 occurs, and if all possible responsible assets fall in the same asset

type (e.g., plume between two well sites), we randomly select one of the assets to be the

emitting asset, as this will not affect our emission quantification or attribution. If the possible

responsible assets have more than one asset type (e.g., compressor station site and well site),

then we keep the association as “ambiguous”. See Figure S19 for the plume-asset association

criteria and process.

After the Stanford association of the 382 “unknown” sources, 134 more sources are cat-

egorized as well sites, 76 more as compressor stations, 59 more as storage tanks, 60 more as

pipelines, and 53 emission sources remain “other/ambiguous” sources.

For the 576 emission sources with Kairos-provided association to known asset types, the

Stanford team randomly select 50 of them (responsible for 106 methane plumes detected)

and conduct the Stanford association process to verify source attribution. Our independent

verification confirms that 1) the clustering algorithm is valid, and 2) Kairos associations

are in general agreement with Stanford associations, with the exceptions that two Kairos-

determined pipeline emissions are categorized as well site emissions in Stanford association

process. These two pipeline segments are sited on the edges of the two well sites and are

closer to the methane plumes than the wells on the well sites.

S5 Basin-wide emission quantification method

Plumes detected by Kairos are analyzed and aggregated using the diagram shown in Figure

1e in the main text (reproduced as Figure S20) to determine the total emissions in the survey

area. The following sections describe each node in the diagram in detail.
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Figure S20: Figure 2 reproduced. Process flow for study area total upstream and midstream
oil and gas methane emissions quantification.

S5.1 Quantification method

S5.1.1 Inputs

The Kairos plume dataset contains 1985 eligible plumes from 958 distinct emission sources.

For each plume, Kairos reports a wind-independent emission rate (ERWN
plume) in kgh/mps.

The plume-level emission rate was then computed with Equation S15, where ERplume is the

methane emission rate of each plume, and WindHRRRplume is the HRRR wind speed in mps at

the time and place of the plume imaging.

ERplume = ERWN
plume × WindHRRRplume (S15)

In absence of hyper-localized wind measurements at each methane plume detected in New

Mexico, we use HRRR surface wind (WindHRRRplume ). HRRR provides hourly weather data of

3 km ×3 km spatial resolution.37

We pull WindHRRRplume values at plume source coordinates and at plume observation times-

tamps. The HRRR wind used is the average value from three time steps (±1 hour) and

nine surrounding locations (3×3 grid points of HRRR). We select the 27-average HRRR

wind (3×3 grid × 3 time steps) as WindHRRRplume because this is an established method used in

quantifying super-emitters using data from AVIRIS-NG.23 Note that the plume coordinates

were truncated to two decimal places for anonymization purposes. However, in New Mexico,

the ground distance between two locations of 0.01 degree difference in either longitude and

latitude is close to 1 km, which indicates that the truncation will not affect the retrieval

accuracy of wind data at the HRRR spatial resolution of 3 km.
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Although the relevant timescale for wind variations in plume formation is on the order

of tens of minutes or less (see22 supplementary information for more discussion on “full

plume development”), we select the wind averaged over three hours due to the challenge of

accurately modeling sub-hourly level wind speed with reanalysis products such as HRRR.

In contrast, the private company Dark Sky provides surface wind speed (WindDark Sky
plume )

at a much finer temporal and spatial resolution than HRRR. More importantly,22 shows that

the one-minute Dark Sky wind gust speed gives rise to an R2 value closer to 1 than HRRR

27-average wind does. However, as noted above, due to Dark Sky’s expiring availability

and nontransparent model details, we choose HRRR as the default wind data source and

presented a sensitivity case using Dark Sky data in Table 1 and Section S7.

Note that this wind speed may be an overestimate of the relevant winds becauseWindHRRRplume

in Equation S15 is wind speed measured at 10 meters above ground. The height of methane

leak sources can vary, from 1-4 meters for pumpjacks or compressors, to >8 meters for a

standard 15,000 bbl oilfield tank. Given that wind speed diminishes closer to the ground

surface due to friction,26 we may expect the 10-meter HRRR wind estimate to be on the

high side (resulting in high CH4 emissions estimates) before calibration. However, because

we calibrate the proportionality between estimated and actual releases based on the same

dataset, these effects should be “built in” to the resulting calibration.

S5.1.2 Calibration based on controlled releases

To adjust for the bias and uncertainty in ERplume, both from wind speed deviation as well

as other systematic problems, we use Equation S16 to compute a calibrated estimate for

emission rate (ÊRplume).

ÊRplume = α(ERplume)
β (S16)

To account for the uncertainties in the fit, we apply an error term to the calibrated

emission rate (ÊRplume) using Equation S17, noting that that error is observed to grow
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linearly with the magnitude of ERplume as shown in Figure S16. We discuss the fitting

process and the residuals in Section S1.5.

ẼRplume = (1 + δ)ÊRplume (S17)

δ in Equation S17 is defined in Equation S6. δ is essentially a relative error term and is

modeled to follow a normal distribution. See Equation S8 and Figure S9 for the distribution

of δ.

For the base case, we find fitted values of α=4.08 and β=0.77 from Equation S7 and

estimate from the residuals that δ follows a normal distribution with mean 0.07 and standard

deviation 0.4 (Equation S8).

Using a Monte Carlo (MC) approach, we draw from the δ distribution 1000 times to

evaluate the resulting uncertainties in ẼRplume. This uncertainty is carried over in subsequent

steps.

S5.1.3 Plume selection for each emission source

Because of the Kairos survey pattern described in Section S2, an emission source leaking at

different times during repeated visits can have more than one methane plume observation

associated with it. Note that an emission source is defined as any point in an asset that is

determined to be responsible for emissions. A long pipeline, for example, can potentially

have multiple emission sources.

We define ESi as the set of all plumes associated with emission source i. For each emission

source i, the number of plumes associated is Ji and the associated plumes are denoted as

plumei,j ∈ ESi.

If there are multiple plume records associated with a given emission source i (Ji > 1), we

randomly draw one plume from the set ESi for each MC realization and use the emission

rate of the selected plume as that of the emission source i. Thus, each plume in the set

has equal probability 1/Ji of being selected. Note that we do this before accounting for
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intermittency of each emission source.

ERESi

uniformly random draw←−−−−−−−−−−−−−− ẼRplumei,j , where plumei,j ∈ ESi (S18)

We follow an MC approach and repeat the random selection process 1000 times for each

emission source to quantify the uncertainties of emissions. The selected plumes in the MC

realizations have calibrated emission rates applied with a normally distributed relative error

(ẼRplume).

S5.1.4 Accounting for intermittency

If all emissions were persistent, then once an emitting site was first identified and the emission

rates stays above the detection limit, Kairos would always detect plumes at this site in

subsequent visits. However, this is not true in the context of methane emissions from the

O&G sector for several reasons: 1) some leaks can be detected and fixed, 2) leaks can be

sporadic due to intermittent events such as separator dump events, and 3) intentional venting

due to emergency conditions is usually of short duration.

Hence, Kairos found that most emission sources are intermittent, emitting at some times

but not others. The probability of emissions detection for emission source i is computed

with Equation S19, where Ji denotes the number of plumes found at emission source i, and

Ci is the number of flight passes over emission source i.

Pi =
Ji
Ci

(S19)

At each instant, whether emission source i is actively emitting is assumed to follow

a Bernoulli distribution of probability Pi. The emission rate of emission source i after

accounting for intermittency (ERITMT
ESi

) is thus:

ERITMT
ESi

= XiERESi
, where Xi ∼ Bernoulli(Pi) (S20)
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Again, Xi is drawn 1000 times for each emission source i following an MC approach.

Uncertainties from previous steps are carried over in this MC step. Note that the previous

step, plume selection for each emission source, does not take into account the intermittency

information. For example, if an emission source was covered 10 times with three detected

emissions, the plume selection step would randomly choose one of the three emissions each

iteration. The intermittency step would choose whether that emission source was emitting

(probability 3/10) or not (probability 7/10) in that iteration.

The sum of the emission rates of the intermittent emission sources (
∑

iER
ITMT
ESi

) is an

unbiased estimate of the total measured emissions from a snapshot of all covered assets for

reasons detailed in Section S3. In the main text, the total measured emissions is defined as:

ÊMeasured =
∑
i

ERITMT
ESi

(S21)

The probability of emission detection at emission source i (Pi) can also be interpreted as

the emission persistence of emission source i.

S5.1.5 Extrapolation to partial detection range

Figure S6 shows that within the PDR of 2 and 30 kgh/mps, plumes have a less-than-one

probability of being detected by Kairos. For example, if the detection probability within (10,

12] kgh/mps is 50%, then for each plume detected in this range in the survey, we would expect

that there is one other similar-sized plume that is missed. The detection probability grows

with the wind-independent emission rate. Figure S6 presents the detection probabilities for

emissions within the PDR using a bin size of 2 kgh/mps.

The values of ERITMT
ESi

from the previous step vary in the 1000 MC realizations and hence

the number of plumes within the PDR varies. For each MC realization, we identified the

undetected emissions in the PDR with a bootstrapping approach:

1. Find ERITMT
ESi

∈ (2,30] kgh/mps ∀i and put them into 2 kgh/mps-sized bins indexed
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by k.

2. For each bin k, denote the number of plumes detected within that partial detection

bin as ND
k and the probability of detection of that bin as PD

k . See Figure S6 for the

values of PD
k found in the controlled release trials.

3. The number of plumes undetected in that bin is thus NUD
k =

(1−PD
k )ND

k

PD
k

.

4. For each bin k, sample with replacement NUD
k times from the ND

k detected plumes of

known emission sizes in that partial detection bin.

5. The undetected emissions in the partial detection bin k is the sum of sampled emissions.

Denote this sum as ERUD
k .

6. Sum up the undetected emissions of all partial detection bins to derive the total emis-

sions in the PDR that are missing from the Kairos observations.

Total emissions after extrapolation to the PDR is then as follows:

ER>MDL =
∑
i

ERITMT
ESi

+
∑
k

ERUD
k (S22)

S5.1.6 Extrapolation to all assets in the region

In the absence of whole-population data for pipelines and compressor stations, well assets

are used to estimate the extent of coverage in the survey region. The Enverus dataset has

32,835 wells in the region. Kairos’ survey covers 29,683 of the wells, or 90.4% of the total.

Figure S21 shows the locations and the types of covered and uncovered wells. Many of

the uncovered wells are in the Northern part of the study area. Despite the differences in

spatial distribution, the distributions of the types of wells covered and uncovered are similar.

For this reason, the uncovered wells were assumed to have the same leak characteristics

and magnitude as the covered assets. Total emissions were thus multiplied by a factor of

32,835/29,683 = 1.106 to spatially extrapolate to all assets in the study region. By doing
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this, we effectively assume that midstream emissions scale linearly as a function of upstream

well counts.

(a) 29,683 covered wells (b) 3,152 uncovered wells

Figure S21: (a) Covered and (b) uncovered wells colored by status. The “new” wells refer
to all drilling, drilled, drilled but uncompleted, and completed (but not yet producing as
of March 2020) wells by Enverus category.35 “Other” wells include cancelled, plugged and
abandoned, permitted, temporarily abandoned, and unknown wells by Enverus category.

After spatial extrapolation, the total emission estimate is 1.106(
∑

iER
ITMT
ESi

+
∑

k ER
UD
k ),

.

ERSpacial scale−up = 1.106ER>MDL (S23)

S5.1.7 Extrapolation to leaks below minimum detection

Kairos technology is designed to find medium- to large-sized leaks over a large geographic

area at a fast pace. Section S5.1.5 describes procedures we followed to add to our emission

estimate the undetected emissions within the PDR. To reach a total emission estimate, we

need to include emissions that were below MDL as well.

Without data about the Permian emissions below the Kairos MDL, we first assume that

this portion of the emissions is some fraction of the national-average NG loss rate of 2.2%
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(+0.4%,-0.3%, 95% CI), which is the for upstream and midstream NG loss rate estimated

by Alvarez et al.13 To determine what fraction of the national loss rate would be entirely

undetectable, we assess what fraction of leaks from prior national-scale studies would have

– in theory – been undetectable by a Kairos survey under New Mexico-like wind conditions.

To do this, we use the Omara et al. dataset of 1009 site-level emission measurements

from 9 field campaigns across the US.15 This dataset formed the basis for the Alvarez et al.

meta-analysis. We synthetically place these emissions in our study region by first generating

wind-independent emission rates using the HRRR wind data from our New Mexico Permian

survey area. The resulting distribution of these wind-independent leaks is shown in Figure

S22c, showing skew in the leak sizes.

To simulate the test environment in alignment with the actual New Mexico campaign, we

pull 10,000 wind records from HRRR with 100 timestamps and 100 asset locations randomly

drawn from Kairos’ asset coverage records. Figure S22b shows the distribution of these

10,000 wind records. Figure S23 shows the 100 randomly selected asset locations and Figure

S24 shows the seasonal and diurnal distributions of the 100 selected timestamps, as well as

those of all point asset visits (pipeline visits excluded).

To address the uncertainties in wind, 1000 MC realizations are performed to associate

Omara site emissions with New Mexico winds, as shown in Figure S22c. Approximately 79

of the 1009 emission sites would be detectable by Kairos at MDL of 2 kgh/mps. Because of

the skewed distribution of emission size in Figure S22a, these 8% of Omara et al. emissions

are responsible for 67±3% of total emissions. Figure S22d shows the range of the fraction

of emissions in the Omara et al. dataset that could possibly be detected by Kairos in this

simulation.
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Figure S23: Locations of the 100 selected sites for drawing New Mexico wind for generating
synthetic wind-independent Omara et al. emissions.

Given the estimated sensitivity, 37±3% of emissions are smaller than the MDL and

are expected to be missed by Kairos under New Mexico Permian conditions. Assuming

the national average loss rate of 2.2%, these 37% undetectable emissions correspond to

37%× 2.2% = 0.8%(±0.1%) of the additional loss rate below Kairos MDL. Note that this

assumes that the Permian emissions below Kairos MDL are distributed similarly to those

from the Omara et al. dataset (this in principle is unknowable with our measurements).

We denote this loss rate below MDL as %Loss<MDL and add to the sum of emissions

from the last step %Loss<MDL multiplied with the methane production rate (PRCH4) in

kg/h of the survey area to reach a regional total methane emissions of:

ERTotal = ERSpacial scale−up + %Loss<MDLPRCH4 (S24)

Note that the ERTotal here is equivalent to ÊTotal in the main text. Calculation of PRCH4

is described in Section S5.1.8.
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Figure S24: (a) Month and (b) hour distributions of the 100 sampled site visit times for
drawing New Mexico wind for generating synthetic wind-independent Omara et al. emissions
are plotted in red. The overall month and hour distributions of all 119,393 point asset visits
(pipeline visits excluded) are plotted in teal.

S5.1.8 Loss rate calculation

We convert the CH4 emission rates into NG emission rates based on the methane content in

NG within different segments of the NG supply chain. NG from well sites, compressor sta-

tions, and storage tanks is assumed to have a mean volumetric methane content of 78.8%.38

NG in pipelines and gas processing plants is assumed to have a mean methane content of

90.3%.38 Other/ambiguous emission sources are also assumed to have a methane content of

78.8%. For an MC run indexed by m, let Um be the set of active emission sources associated

to assets that are well site, compressor station, storage tank, or other/ambiguous types. Let

Vm be the set of active emission sources associated with pipelines or gas processing plants.

Wm = Um ∪ Vm is the set of all active emission sources of the mth MC run. The mean the

asset-type weighted mean methane content from emissions of the mth MC run is:

(%CH4)m =
78.8%

∑
i∈Um

ERITMT
ESi

+ 90.3%
∑

i∈Vm ER
ITMT
ESi∑

i∈Wm
ERITMT

ESi

(S25)
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The asset-type weighted mean methane content from active emission sources of the 1000

MC runs is 81.2% (+0.9%/-0.5%).

Figure S25: Number of survey days (left axis) of each month during the survey time. Monthly
oil and gas production volume (right axis) in the survey region. Data from January 2018 to
September 2018 are included to demonstrate the trend in production growth. Gas production
is converted to barrel-of-oil equivalent (boe) per day.

In sum, our results show that O&G production in the survey region grew over time

(see Figure S25). The NG production rate (PRNG) of the survey area used in this study

is a survey-time weighted average NG volume of 3.198 billion cubic feet per day (bcfd).

The weights are the number of survey days of each month, as shown by the bars in Figure

S25. Using the same assumption for methane content of 78.8% from wells,38 the methane

production rate in the survey area is:
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PRCH4 = 78.8%PRNG (S26)

The loss rate of NG above MDL is computed by Equation S27.

%Loss>MDL =
1.106(

∑
iER

ITMT
ESi

+
∑

k ER
UD
k )

%CH4 PRNG

(S27)

The method for finding undetected methane losses below MDL is described in section

S5.1.7.

In addition, the NG production loss based on measured emissions (ÊMeasured) is:

%LossMeasured =

∑
iER

ITMT
ESi

%CH4 PRNG

=
ÊMeasured

%CH4 PRNG

(S28)

The total loss rate of NG in the survey area is:

%LossTotal = %Loss>MDL + %Loss<MDL (S29)

S5.2 Emission estimates by stage

Table S8 shows emission estimates from each quantification stage described in Section S5.1.

All 1985 plumes sum up to a point estimate of 679 metric tonnes per hour (t/h) before

calibration based on controlled releases. The sublinear calibration relationship (Equation

S7) reduces total plume-level emission to 640 t/h. Randomly selecting one plume for each

emission source brings down the mean of the total emissions estimate to 293 (+130/-131)

t/h. After accounting for emission intermittency, the total emissions fall to 153 (+71/-70)

t/h, or approximately half of the emissions before accounting for intermittency. This is the

estimated methane rate that Kairos is able to detect at each snapshot of time of the entire

survey region and is denoted as ÊMeasured in the main text.

The extrapolated emissions are shown in Figure 1a. Extrapolation to PDR adds an
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additional 7 (+14/-6) t/h to the emission-source-level total, suggesting a less significant role

for the smaller sources in the PDR compared to the hyper-emitters found in the survey area.

Extrapolation to the total survey area, assuming that assets that are not covered by Kairos

emit at the same rate as the assets covered, yields a regional total emission of 177 (+74/-68)

t/h that are above the Kairos MDL. The last extrapolation we perform is adding emissions

below minimum detection limit. This is done by finding the 0.8% NG production loss rate

below minimum detection (%Loss<MDL) and multiplying it with gross methane production

in the area. The total estimated methane emissions (ÊTotal) is thus 194 (+72/-68) t/h.

Using monthly production data from Enverus and flight records of each survey month

(Figure S25), the survey time-weighted NG production in the study area is 3.198 bcfd, indi-

cating a %NG production loss estimate of 7.4% (±3.4%) corresponding to measured emis-

sions, an above MDL %NG production loss estimate of 8.5% (+3.5%/-3.3%), and an overall

%NG production loss estimate of 9.4% (+3.5%/-3.3%) from all upstream and midstream

O&G assets in the survey area.

According to the MC simulations, the fifth percentile of the total NG production loss

rate is 6.1%, suggesting a small chance of loss rate being smaller than 6.1%. The estimated

loss rate here is significantly higher than the existing estimates in the literature listed in

Table S4, for reasons described in Section S6.

S6 Emission sizes

Even the largest datasets of site-level point source methane emissions from ground surveys

cover at most 1009 well sites.15

This comparison can be done in the other direction as well. Note that the overall incidence

of leaks in our study is 1083 well-site plumes from 98,000 well site visits, for a total per-

survey probability of well emission detection of 1.1%. Given 1009 samples in the Omara et

al. dataset, we would then expect a Kairos-like technology seeing a total of approximately
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Table S8: Total survey area emission quantification by stage (unit: t/h of methane if not
specified)

Stage Notation Mean Stddev 5th% 50th% 95th%

Raw plumes,including repeats ERplume 679 0 679 679 679

Controlled release calibration ẼRplume 640 170 360 639 929
One plume per source ERES 293 78 162 293 423

Intermittency ERITMT
ES (ÊMeasured) 153 43 83 152 224

Partial detection scale-up ER>MDL 160 39 98 158 225
Spatial scale-up ERSpacial scale−up 177 43 109 175 249

Total emissions ERTotal(ÊTotal) 194 43 126 192 266

%NG production loss measured %LossMeasured 7.4% 2.1% 4.0% 7.3% 10.8%
%NG production loss above MDL %Loss>MDL 8.5% 2.1% 5.2% 8.4% 12.0%
%NG production loss below MDL %Loss<MDL 0.8% 0.1% 0.7% 0.8% 0.9%

%NG production loss total %LossTotal 9.4% 2.1% 6.1% 9.3% 12.9%

Figure S26: Size distributions of site-level emissions in this study and 9 other studies sum-
marized in.15
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11 plumes, assuming that each well site in the Permian Basin has on average 1.2 wells on

site.9 Given that there are most certainly null ( 0) measurements without plumes that were

in the underlying studies but not reported into the Omara et al. dataset, we believe that

this value of 11 plumes aligns with the above value of 79 detections by Omara et al. above

Kairos’ MDL.

The Permian Basin could be an outlier in terms of its prevalence of emissions on the

scales of 100, 1000, and 10,000 kg/h. However, sample size and the detection limit likely

also play a role in the different distributions. The ground-based surveys of the Omara et

al. dataset are more sensitive to small-sized leaks than aerial surveys, yet the small sample

size achievable by ground surveys limits the detection of low-probability and high-impact

super-emitter events that are detectable by basin-wide aerial surveys.

As Figure 3c shows, 50% of total emissions are from 118 (∼12%) of the 958 sources

larger than 308 kg/h, indicating the importance of finding and fixing the less-frequent super

emitters.

The distribution of the plume emission rates is shifted to the left of the emission source

size distribution in Figure S27, because the emission source averages take into account null

observations. For both distributions, the heavy tail gets even heavier toward the high end

and contains a disproportionate presence of midstream assets.

Given the importance of the heavy tail and that there are over one million active O&G

wells in the US, with extensive supporting infrastructure, including gathering pipelines,

compressor stations, and processing plants, a ground-based approach may not be sufficient

to characterize total methane emissions in a producing region.

S7 Sensitivity cases

We perform a number of sensitivity tests in order to explore possible modeling variations

that may affect our results. These include fitting alternative models to the controlled release
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Figure S27: Size distributions of plumes and emission sources and their contribution to total
emissions. The round symbols indicate the 958 emission sources and the curve is the same as
the curve in Figure 4c in the main text. The triangular symbols indicate the 1985 detected
methane plumes. The distribution of the plume emission rates is placed to the left of the
emission source size distribution because the emission source averages take into account the
null observations.
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data, disabling extrapolation of controlled release results, excluding large plumes as possi-

ble outliers, excluding emissions below Kairos minimum detection threshold (MDL), and

applying alternative wind datasets. The following sections describes each sensitivity case

summarized in Table 1 in the main text and reproduced here as Table S9.

Table S9: Survey-area total methane emission rate and loss rate estimates, as a fraction of
total methane production, for the base case and seven sensitivity cases. The two alternative
calibration methods increase emissions relative to our base case. Using alternative wind
data results in comparable emission estimates. The last three sensitivity cases estimate the
emission lower-bound and show robustness of the base case emission estimates.

Cases ÊTotal (t/h) %NG production loss
Mean 5th% 95th% Mean 5th% 95th%

Base case 194 126 266 9.4% 6.1% 12.9%
Linear fit for calibration 212 136 296 10.2% 6.6% 14.3%

Linear fit forced through origin for calibration 228 131 335 11.0% 6.4% 16.0%
Cutoff at 1σ below max controlled release 216 137 301 10.4% 6.9% 14.6%

Dark Sky wind high time resolution 181 124 244 8.7% 6.1% 11.8%
Dark Sky wind low time resolution 217 142 301 10.4% 6.8% 14.3%

Disable extrapolation 167 119 220 8.1% 5.7% 10.6%
Exclude top 20 plumes 173 117 233 8.3% 5.5% 11.2%

No below minimum detection emissions 177 109 249 8.5% 5.2% 12.0%

S7.1 Linear fit for calibration

As an alternative modeling approach, we fit the controlled release data with a linear regres-

sion model instead of a sublinear fit in our base case. The fitting parameters are shown in

Equation S4. As discussed in S1.5, the linear model has its limitations of nonzero intercept

and nonuniform residuals, as well as boundary bias concerns discussed in Section S1.6. Nev-

ertheless, the resulting emission estimate gives insight into the impact of model selection on

emission quantification.

The NG production loss rate estimate based on a linear fit is 10.2% (+4.1%/-3.6%), which

is greater than the base case estimate because switching from a sublinear relationship to a

linear one brings up the calibrated emissions of the top-emitting plumes. This sensitivity
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case serves as an upper bound for the emission estimate.

S7.2 Linear fit forced through origin for calibration

The non-zero intercept of Equation S4 artificially increase low-end emissions and the below-

one slope of Equation S4 reduce the magnitude of emissions above the intersection with

the parity line at ∼500 kg/h. To address the possibility that the nonzero intercept could

introduce upward bias into the calibration, we fit another regression line with the intercept

fixed at the origin (Equation S5). The resulting %NG production loss estimate is 11.0%

(+5.0%/-4.6%).

S7.3 Cutoff at 1σ below max controlled release

Our base case assumes the overestimation tendency for larger releases is from an underlying

nonlinearity in the relationship between gas release volume and the appearance of the plume

in Kairos imagery following hypothesis 1. Alternatively, the nonlinearity can be caused

by the boundary effect introducing unbalanced errors in the data points of large release

estimates (hypothesis 2). Section S1.6 describes the criteria we use to exclude data points

in the calibration process to avoid biases caused by boundary effect.

If the cutoff threshold is chosen to be 750 kg/h, one σδ below AMRmax
CR (Equation S10),

then the calibration relationship becomes Equation S12. The residual distribution of this

fitting model is shown in Figure S11. This method brings the mean %NG production loss

estimate up to 10.4%.

S7.4 Dark Sky wind

We also explore the effect of wind speeds. Dark Sky provides wind speed estimates on a finer

temporal and spatial grid than NOAA’s HRRR. More details of Dark Sky can be found in

Section S1.3.2. As mentioned above, we retrieved Dark Sky wind data on two occasions for
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the same emission locations and timestamps: the first time in February 2020 and the second

time in October 2020. The resulting wind speeds from the two retrievals differ substantially

from each other (Figure S4), potentially due to the reduction in time resolution and model

changes between the two retrievals.

We present two sensitivity cases in Table S9 based on the two Dark Sky wind data

retrievals. The high time resolution (February 2020) retrieval results in a loss rate estimate

of 8.7%(+3.1%/-2.6%), whereas the low time resolution (October 2020) retrieval leads to a

loss rate estimate of 10.4%(+3.9%/-3.6%). The confidence intervals of the two Dark Sky

cases and that of the base case largely overlap, indicating that errors from modeled wind,

although significant, do not negate the large emissions estimate of this study.

S7.5 Disallow extrapolation

The largest release tested in the field trial was 1025 kg/h.22 However, the largest emission

seen in the Permian campaign is 15,115 kg/h (after calibration with Equation S7). If we

disallow extrapolation of Equation S7 and limit all observed emissions larger than 1025 kg/h

to have an estimated emission size of 1025 kg/h, the resulting loss rate mean reduces to 8.1%

(+2.5%/-2.4%). Note that this is a highly conservative assumption and this estimate can be

interpreted as a lower-bound of the mean loss rate in the study area.

S7.6 Exclude top 20 plumes

If we treat the top 20 plumes (≈ 1% of plumes) as possible outliers and suppose that Kairos

did not encounter them in the survey, the mean loss rate would be 8.3% (+2.9%/-2.8%), or a

12% relative reduction from the base case. The sizable decline resulting from the removal of

the top 20 plumes is further illustration of the significant contribution of a few large sources

on overall basin emissions.
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S7.7 No below minimum detection emissions

We add 0.8±0.1% to our loss rate estimate to account for undetected emissions below min-

imum detection limit MDL (Equation S29). The loss rate below MDL is based on the

national average loss rate estimate by Alvarez et al. and the size distribution of site-level

emissions compiled by Omara et al.13,15 Removing %Loss<MDL=0.8% from our estimate

gives a total mean loss rate of 8.5% (+2.5%/-3.2%), which is also a lower-bound for the

mean %NG production loss in the study area.

S7.8 Conclusion

The sensitivity cases show that even the lower-bound estimates of the conservative scenarios

based on our method are larger than estimates from other Permian studies summarized in

Table S4.

S8 Comparison with Cusworth et al. 2021

Cusworth et al. conducted aerial surveys of the Permian Basin from September 2019 to

November 2019 with two remote sensing airborne platforms: the Next-Generation Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and the Global Airborne Observatory

(GAO).12 With repeated, “wall-to-wall” (full coverage) surveys in their study area (purple

polygons in Figure S28), Cusworth et al. detected 3067 methane plumes from 1756 emission

sources.

In the overlapping domain of this study and the Cusworth et al. study (see Figure S28),

Kairos detected 1874 methane plumes from 902 distinct emission sources, while Cusworth

et al. detected 1263 plumes from 612 distinct emission sources.

We apply the method described in Section S5.1 to the plumes from Cusworth et al.

(without applying calibration based on controlled releases, as we do not have sufficient

controlled release data to do so). After accounting for intermittency, we estimate measured
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Figure S28: Figure 1b in the main text reproduced with the addition of the Cusworth et al.
study area.12 The Cusworth et al. study area boundaries are obtained by digitizing Figure 1
in Cusworth et al.12 using WebPlotDigitizer.39 The purple-bordered polygons indicate that
the Cusworth et al. study area that was surveyed at least once by the Global Airborne
Observatory (GAO) instrument. Sites in the blue polygons were surveyed at least 7 times
by the Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) in-
strument. The purple polygons contain the blue polygons.

emissions from the JPL survey at 98(±12) t/h in the overlapping area of the black and the

purple polygons in Figure S28 (henceforth “overlapping domain”), which corresponds to a

NG production loss rate of 4.4%(±0.5%) assuming 3.41 bcfd of NG production, average of

September 2019 to November 2019 NG production in the overlapping domain reported by

Enverus.35

As for the Kairos dataset, after accounting for intermittency, the upstream and midstream

O&G sector in the overlapping domain emits methane at 145 (+19/-16) t/h (this value for

the entire Kairos study area has a mean of 153 t/h). Considering that Cusworth et al. had

a full coverage of O&G wells and Kairos covered 95% of the wells in the overlapping domain,

we apply a spatial extrapolation factor of 1/0.95 to Kairos estimates for a more direct com-

parison with emission estimates based on Cusworth et al. data. The spatially-extrapolated
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Kairos-measured methane emissions is thus 153 (+20/-17) t/h in the overlapping domain,

corresponding to a NG production loss rate of 7.6% (+1.0%/-0.8%), based on Kairos survey

time-averaged NG production of 3.09 bcfd in the overlapping domain.

Although the Cusworth et al. repeated, full-coverage aerial study of the Permian Basin

is similar to the Kairos New Mexico campaign, we need to make additional assumptions to

directly compare the two estimated NG production loss rates:

1. Stationary ground truth emissions distribution in the overlapping domain across the

study time periods

2. Consistent definitions of coverage counts (Ci) and plume counts (Ji) for individual

emission sources across both studies

3. Same detection limits and detection probabilities in the partial detection range for

Kairos technology, AVIRIS-NG, and GAO

4. Same exclusion criteria for unclear plume signals and artifacts

Evaluating the extent to which these assumptions hold, we can examine the divergence in

estimated NG production loss rates by comparing the distribution of methane plume sizes.

S8.1 Apparent difference in effective minimum detection thresh-

old

The final two assumptions, identical minimum detection capabilities and the same exclusion

criteria for the technologies in the two studies, appear not to entirely hold. The cumulative

distribution function of total plume-level emissions as a function of emission size, shown

in S29, is approximately a straight line in both cases, excluding the low and high tails.

This indicates a higher frequency of smaller plume size. The straight line behavior begins

to flatten on the low end between 100 and 150 kg/h for Kairos and 200 and 300 kg/h for
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Cusworth et al. Above this size, plume frequency begins to fall at smaller emission sizes

relative to the distribution established for larger emissions.

It is very unlikely that the decline in plume counts with smaller plume size is due to a

decline in ground-truth plumes to observe. As seen in Omara et al., ground surveys indicate

increasing likelihood of finding plumes with smaller plume sizes down to scales much smaller

(e.g., 1-10 kgh). Thus, the decrease in plume counts with smaller size, in both cases, is

almost certainly due to detection capabilities of the instruments and the methods used to

filter possible false positives.

Figure S29: Comparison of plume size distributions in the overlapping domain (intersection
of the black and the purple polygons in Figure S28) of this study and the Cusworth et al. 2020
Permian campaign.12 Of the 1985 Kairos-detected plumes, 1874 are within the overlapping
study area. Definitions of asset types from the two studies may vary. Note that extrapolating
the Cusworth et al. distribution to the point at which the Kairos distribution approaches
minimum detection capabilities increases total estimated emissions by 33%. Also, note that
the difference in slopes is largely due to the higher effective minimum detection threshold in
the Cusworth et al. study.

Both approaches are measuring the same area using a similar detection and quantification

method and survey design. As a result, we would expect both technologies to be sampling
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from the same underlying distribution. This suggests that the flattening of the Cusworth et

al. emissions distribution is likely due to a higher effective minimum detection threshold for

this survey.12 The alternative hypothesis that the true underlying distribution of emissions

falls off in this manner appears unlikely given that the Kairos survey continues to observe the

straight line behavior until plumes that reach its documented partial or minimum detection

threshold from.22

This higher effective minimum detection threshold is consistent with the plume selection

methods used in Cusworth et al.12 Controlled release testing of the AVIRIS-NG and GAO

instruments demonstrates the ability to detect emissions of 2.3 kg/h at a flight altitude likely

lower than 1 km. The altitude of the flights in the Permian survey was 8 km and 4.5 km

for AVIRIS-NG and GAO, respectively. This may increase the technical minimum detection

threshold of the instruments. More importantly, candidate plumes were filtered through a

human quality control process with relatively conservative exclusion criteria to reduce the

likelihood of false positives. As a result, the combination of instrument capabilities and

human review is a possible explanation for the relatively lower number of plumes identified

in the 100-300 kg/h range in Cusworth et al.

To determine the likely effects of this higher effective minimum detection threshold, we

extrapolate the straight line behavior from the Cusworth et al. distribution (see Figure

S29) to the point at which the Kairos distribution flattens, selected as 100 kg/h based on

the analysis described below in Section S8.4. The straight line is fit through the 75th and

25th percentiles of the Cusworth et al. emissions distribution (1276 kg/h and 391 kg/h,

respectively), between which the distribution appears linear. The slope of this line is -0.97

in the logarithmic space (although the slope of the distribution would of course be shallower

if the minimum detection limit were lower). This extrapolation suggests that if the process

used in Cusworth et al. had the same minimum detection level as the Kairos survey, overall

emissions would rise by 33%. This would increase the estimated fractional loss from 4.4% to

5.9%.
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S8.2 Differing loss rate estimates within and out of the AVIRIS-

NG repeated sampling area

Cusworth et al. covered the 55,000 km2 of study area in the Delaware and Midland Basin

(purple polygons in Figure S28) at least once by their GAO instrument.12 To evaluate in-

termittency, Cusworth et al. deployed AVIRIS-NG to sample a subregion (blue polygons

in Figure S28) of their study area with higher frequency. GAO was deployed at ∼4.5 km

altitude and AVIRIS-NG was deployed at 8 km altitude. Although the two systems have the

identical imaging spectrometers, each of which “has the same performance”,12 the difference

in altitude may result in differing minimum detection thresholds of the two systems.

The vast majority of methane plume and flight coverage records by AVIRIS-NG are

within the blue polygons in Figure S28. To roughly separate the detection results from

the two systems, we divide the overlapping domain into two parts: within and out of the

blue polygons. The NG production loss rate estimates based on Cusworth et al. data

are respectively 3.1% (+0.9%/-0.8%) and 5.6% (+0.7%/-0.6%) within and out of the blue

polygons, suggesting either a larger NG production loss out of the blue polygons, or a higher

sensitivity in the GAO instrument than the AVIRIS-NG instrument.

The NG production loss rate estimates in the two parts of the overlapping domain based

on Kairos data set are roughly the same.

S8.3 Differing definitions of coverage and plume counts

Our analysis treats each overflight over an asset as a coverage instance and each detected

plume at an emissions source as a separate plume. Cusworth et al. were focusing on emis-

sion intermittency across days. As a result, multiple coverage instances or multiple plume

detections in a given day are merged into single instances in both cases. For plumes, daily

emissions are the average of all detected emissions on that day. As a result, in instances in

which an asset was covered twice in a day but only one plume was detected, the dataset
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would present the detected emissions as that day’s emissions, which would increase emissions

relative to the coverage-level method used in this paper.

The survey design in Cusworth et al. did not systematically attempt to cover assets

multiple times in one day, although this did occur incidentally for a small number of docu-

mented emissions sources, potentially resulting in a modest correction to the overall emissions

estimate.

S8.4 Kairos plume counts by emission size

Table S10: Kairos-detected methane plumes in the domain overlapping with the Cusworth
et al. survey, grouped by one-quarter order of magnitude plume size bins.

Size tranches of Nplumes Average Nplumes per Emission
emissions (kg/h) plume size well visit contribution

<10 0 0 0.00% 0.00%
10 - 18 1 17 0.00% 0.00%
18 - 32 4 26 0.00% 0.02%
32 - 56 58 46 0.06% 0.44%
56 - 100 299 80 0.29% 3.90%
100 - 178 555 136 0.53% 12.38%
178 - 316 458 238 0.44% 17.88%
316 - 562 274 405 0.26% 18.21%

562 - 1,000 125 719 0.12% 14.75%
1,000 - 1,778 67 1,270 0.06% 13.96%
1,778 - 3,162 22 2,173 0.02% 7.84%
3,162 - 5,623 8 4,022 0.01% 5.28%
>5,623 3 10,833 0.00% 5.33%

Total 1,874 1.80% 100.00%

If we group the 1874 Kairos plumes in the overlapping domain by plume sizes and set

the bin width to be one quarter order of a magnitude, the majority of plume-level emissions

are contributed by plumes sized between 100 and 1778 kg/h (>10% emission contribution

in Table S10). This trend may begin to fall off in the 100-178 kg/h tranche (12.38% of total

emissions v. 13.96-18.21% of total emissions for the next four larger tranches). The trend

certainly falls off in the 56-100 kgh tranche, which constitutes only 3.90% of total emissions.
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As a result, we select 100 kg/h as the threshold where the Kairos distribution in Figure S29

starts to flatten. We use this 100 kg/h level at the endpoint for the extrapolation of the

Cusworth et al. emissions distribution in Figure S29.
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