Supporting Information for: Dual Role of Strigolactone Receptor Signaling Partner in Inhibiting Substrate Hydrolysis

Briana L. Sobecks,[†] Jiming Chen,[†] and Diwakar Shukla^{*,†,‡,¶,§,||}

†Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801

‡Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801

¶National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801

§Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801

||NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801

E-mail: diwakar@illinois.edu

Details of adaptive sampling protocol

Round	Sampling Metrics	Selection Criteria
	Sampling Methes	
1	-	Initial structure
2	A223-D3 N-terminus distance	4 random clusters, 25 points per cluster
	A223-D3 C-terminus distance	
3	A223-D3 N-terminus distance	4 random clusters, 25 points per cluster
	A223-C-terminus distance	
4-9	A223-D3 N-terminus distance	100 clusters,
	A223-D3 C-terminus distance	5 points each from 20 least populated
	D3 orientation relative to D14	
10-12	A223-D3 N-terminus distance	100 clusters,
	A223-D3 C-terminus distance	5 points each from 20 least populated
	D3 orientation relative to D14	
	Distance between CTH terminals	
13-14	TICA coordinate 1	25 points each from 4 undersampled regions
	TICA coordinate 2	
15	TICA coordinate 3	25 points each from 4 undersampled regions
	TICA coordinate 5	

Table S1: Adaptive sampling metrics and selection criteria for *apo* system.

Round	Parallel Trajectories	Trajectory length (ns)	Aggregate (μs)	
1	1	130	0.130	
2	100	130	12.9	
3	100	130	13.0	
4	100	130	13.0	
5	100	130	13.0	
6	100	130	13.0	
7	100	130	13.0	
8	100	130	13.0	
9	100	130	12.6	
10	100	130	13.0	
11	100	130	13.0	
12	100	130	13.0	
13	100	130	12.2	
14	100	130	13.0	
15	100	130	12.7	
		Total (μs)	180.5	

Table S2: Summary of adaptive rounds for apo system

Round	Sampling Metrics	Selection Criteria
1	_	Initial structure
2	I120-D3 N-terminus distance	4 random clusters, 25 points per cluster
	D-ring-S97 distance	
3	A223-D3 N-terminus distance	100 clusters,
	D-ring-S97 distance	5 points each from 20 least populated
	A-ring-S97 distance	and D-ring-S97 distance < 3 nm
4	A223-D3 N-terminus distance	100 clusters,
	D-ring-S97 distance	5 points each from 20 least populated
	B-ring-L283 distance	and D-ring-S97 distance < 3 nm
5-6	A223-D3 N-terminus distance	100 clusters,
	D-ring-S97 distance	5 points each from 20 least populated
	B-ring-L283 distance	and D-ring-S97 distance < 3 nm
	K230-A279	
7-8	A223-D3 N-terminus distance	100 clusters,
	D-ring-S97 distance	5 points each from 20 least populated
	B-ring-L283 distance	and D-ring-S97 distance < 3 nm
	K230-A279	
9	A223-D3 N-terminus distance	200 clusters,
	D-ring-S97 distance	5 points each from 40 least populated
	B-ring-L283 distance	
	K230-A279	
	CTH helical content	
10	TICA coordinate 1	50 points each from 4 undersampled regions
	TICA coordinate 3	
11	S220-H247 distance	200 points from undersampled region
	TICA coordinate 4	
12	TICA coordinate 1	200 points from undersampled region
	TICA coordinate 3	

Table S3: Adaptive sampling metrics and selection criteria for holo system.

Round	Parallel Trajectories	Trajectory length (ns)	Aggregate (μs)		
1	1	120	0.120		
2	100	120	12.0		
3	100	120	12.0		
4	100	120	12.0		
5	100	120	12.0		
6	100	120	12.0		
7	100	120	12.0		
8	200	120	12.0		
9	200	120	24.0		
10	200	120	23.6		
11	200	120	24.0		
12	200	120	23.3		
13	200	120	23.3		
		Total (μs)	202.3		

Table S4: Summary of adaptive rounds for holo system

Markov state model construction and validation

MSM Features

To construct our Markov state models, we first calculated a set of inter-residue distance and helical content features from our simulation data. The full set of features used for MSM construction is shown in Table S5.

Table S5: Featurizations used for MSM construction. C- α distances were used for all interresidue distances.

	Apo	Holo		
CTH Dissociation	A223-D3 N-terminus	A223-D3 N-terminus		
	A223-D3 C-terminus	A223-D3 C-terminus		
	K230-A279	K230-A279		
	A223-E276			
	L283-A223			
	R284-K230			
CTH-T1 distance	G149-R284	-		
CTH-T4 distance	F195-D3 N Terminus	-		
CTH-D14 Contacts	R267-D3 N-terminus	D131-D3 C-terminus		
	T238-D3 C-terminus			
	Y132-T275			
	E240-L283			
CTH Structure	Helical Content	Helical Content		
	N-C Terminal Distance	N-C Terminal Distances		
D-loop contacts	T216-H247	T216-H247		
	R217-H247	R216-H247		
	D218-H247	D217-H247		
	V219-H247	I218-H247		
	S220-H247	M219-H247		
	V221-H247	V220-H247		
	P222-H247	P221-H247		
Ligand - catalytic triad	-	A-ring-S97		
	-	D-ring-S97		
Ligand - D14	-	A-ring-A223		
	-	D-ring-A223		
	-	D-ring-F195		
Ligand - CTH	-	D-ring-G285		
	-	B-ring-L283		

MSM hyperparameter selection

To select lag times for our MSMs, we plotted implied timescales for models estimated at a series of lag times and chose a lag time at which the implied timescale stopped changing with increasing lag time. Implied timescale plots are shown in Fig. S1.

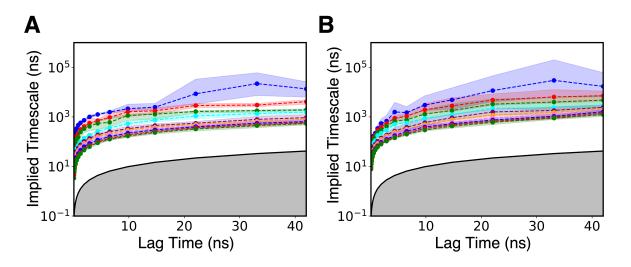


Figure S1: Implied timescale plots for the *apo* (A) and *holo* (B) systems. Lag time was chosen as 15 ns for both systems.

To select number of TICA components and number of clusters to discretize our simulation data for MSM construction, we performed a grid search in which we calculated a cross-validation score for MSMs calculated with different parameter sets. Cross-validation scores for different parameter sets are shown in Fig. S2. Final parameters used for MSM construction are shown in Table S6.

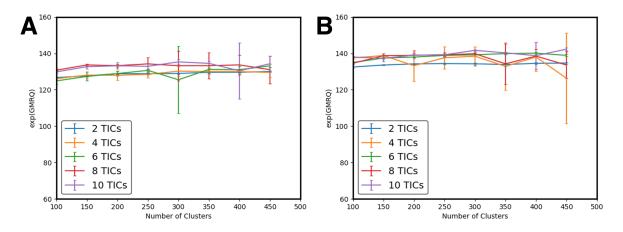


Figure S2: Cross-validation scores calculated with different hyperparameter sets for the apo (A) and holo (B) systems.

	Apo	Holo
Lag time (ns)	15	15
Number of TICA components	10	6
Number of clusters	350	400

Chapman-Kolmogorov validation

To validate our MSMs, we employed the Chapman-Kolmogorov test. Briefly, if a system exhibits Markovian behavior, the *n*th power of a transition matrix estimated at lag time τ should equal the transition matrix estimated at lag time $n\tau$. Results of the Chapman-Kolmogorov test are shown in Fig. S3.

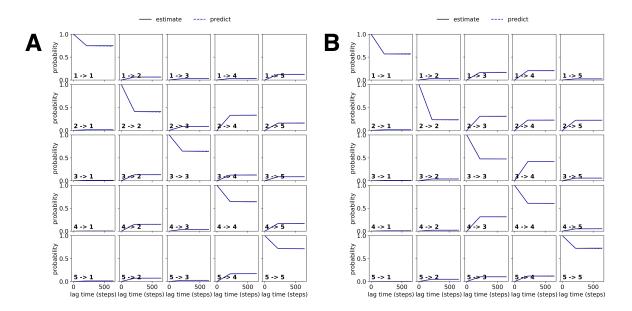


Figure S3: Chapman-Kolmogorov tests for the *apo* (A) and *holo* (B) systems. The test shows good agreement between estimated and predicted MSMs, indicating that the models follow the Markov property.

RMSD Calculations

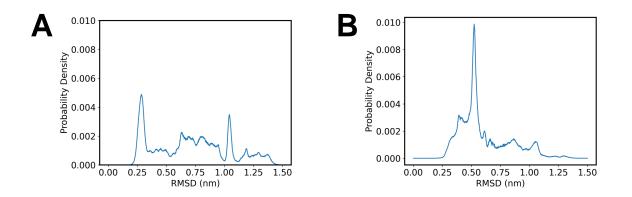


Figure S4: Probability density as a function of RMSD *apo* (A) and *holo* (B) systems. The peak at 0.25 nm for the *apo* system reflects the narrow free energy well and limited number of stable positions for the associated state. The peak at 0.50 nm for the *holo* system also corresponds to the associated state, demonstrating the larger flexibility in position compared to the *apo* state.

Transition path theory

During transition path theory calculation for the *holo*, we coarse-grained our data by assigning MSM clusters to a set of eleven macrostates defined by positions of the GR24 ligand and CTH. Definitions for different ligand and CTH positions are shown in Table S7 and macrostates are shown in Table S8. All calculated fluxes between the eleven macrostates are shown in Table S9.

State	Parameters
GR24 Bound	Minimum D-ring-S97 distance < 0.6 nm
	AND
	Mean A-ring-S97 distance $>$ Mean D-ring-S97 distance
	AND
	Not included in $T1/T4$ associated state
GR24 Inversely Bound	Mean A-ring-S97 distance < 1.5 nm
	AND
	Mean D-ring-S97 distance < 1.5 nm
	AND
	Not included in $T1/T4$ associated state
GR24-T1/T4 Association	Minimum A-ring-E138 distance $< 1 \text{ nm}$
	AND
	D-ring-F196 distance < 1.3 nm
GR24-CTH Association	Minimum B-ring-A279 distance < 0.9 nm
	AND
	B-ring-L283 distance < 0.9 nm
GR24 Unbound	Not included in any other GR24 state
CTH-D14 Association	Minimum N-term-A223 distance < 2.0 nm
	AND
	Minimum C-Term-K230 distance < 1.4 nm
	AND
	Minimum C-term-V239 distance < 1.9 nm
	AND
	Minimum A279-A223 distance < 1.2 nm
CTH-D14 Dissociation	Not included in CTH-D14 associated state

State Number	Definition
1	GR24 Bound
	CTH Associated
2	GR24 Inverse
	CTH Associated
3	GR24+T1/T4
	CTH Associated
4	GR24+CTH
	CTH Associated
5	GR24 Unbound
	CTH Associated
6	GR24 Bound
	CTH Dissociated
7	GR24 Inverse
	CTH Dissociated
8	GR24+T1/T4+CTH
	CTH Dissociated
9	GR24+T1/T4
	CTH Dissociated
10	GR24+CTH
	CTH Dissociated
11	GR24 Unbound
	CTH Dissociated

Table S8: Definitions of the eleven macrostates used for TPT calculation

Table S9: Rate constants of flux between TPT states (µs⁻¹)

	1	2	3	4	5	6	7	8	9	10	11
1	-	0.27	1.25	0.82	5.61	0.18	0.26	0.36	0.80	1.30	2.30
2	0.32	-	1.02	0.83	1.45	0.18	0.26	0.42	0.63	0.90	1.65
3	0.43	0.31	-	1.58	6.89	0.22	0.35	0.57	1.49	2.68	5.52
4	0.41	0.32	3.02	-	5.61	0.20	0.33	0.56	1.48	2.42	6.32
5	1.06	0.33	2.94	1.62	-	0.22	0.35	0.64	1.49	2.34	4.98
6	0.42	0.28	4.42	1.45	7.52	-	0.32	0.51	1.28	2.96	10.24
7	0.42	0.30	4.56	1.72	8.42	0.21	-	0.54	1.26	3.12	6.58
8	0.39	0.32	2.99	1.61	6.85	0.21	0.33	-	1.23	2.32	6.02
9	0.43	0.28	2.84	1.45	6.14	0.19	0.29	0.48	-	2.43	5.16
10	0.45	0.29	2.74	1.50	6.39	0.21	0.33	0.52	1.30	-	4.94
11	0.42	0.36	2.93	1.73	5.20	0.22	0.33	0.59	1.42	2.38	-