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1 Theoretical Background

In general, interactions between molecules and photons inside an optical cavity can be de-

scribed by the Pauli-Fierz Hamiltonian.1–3 We include the optical cavity by coupling the

electronic system to a single photon mode. We further employ the dipole approximation,

since the wavelength of the photon mode is much larger than the extent of our molecu-

lar system and the length gauge,4,5 where the electric displacement field is coupled to the

dipole moment of the system. Additionally we choose the coherent state basis.6 Under these

assumptions, the Hamiltonian reads as follows (using atomic units unless otherwise stated)

Ĥ = hp
qa

q
p +

1

2
gpqrsa

rs
pq + ωcavb

†b−
√

ωcav

2
(λ · ∆d)(b† + b) +

1

2
(λ · ∆d)2 (S1)

We note that extensions to multi-mode setups, cavity losses,7 and correlation effects of nu-

clei8,9 are also possible. The first two terms constitute the electronic Hamiltonian within the

Born-Oppenheimer approximation expressed in terms of the second-quantized electronic ex-

citation operators aq1q2...qnp1p2...pn
= a†q1a

†
q2
...a†qnapn ...ap2ap1 that are defined as a string of fermionic

creation and annihilation (a† and a, respectively) operators. Furthermore, hp
q = ⟨q|ĥe|p⟩

and gpqrs = ⟨rs|pq⟩ denote a matrix element of the core electronic Hamiltonian ĥe and a

two-electron repulsion tensor element, respectively. The indices p, q, r, s, ... denote general

electronic spin orbitals, whereas indices i, j, k, l, ... and a, b, c, d, ... denote occupied and unoc-

cupied electronic spin orbitals, respectively. The third term in this Hamiltonian denotes the

photonic Hamiltonian for a single cavity mode with fundamental frequency ωcav expressed

in terms of bosonic creation/annihilation (b†/b) operators. The fourth term describes the

dipolar coupling between the electrons and the photonic degrees of freedom. In this term, λ

is the coupling strength vector that is connected to the field strength of the photon mode4,10

and depends, e.g., on the dielectric constant of the material inside the optical cavity and the

quantization volume. The dipole fluctuation operator ∆d = d − ⟨d⟩ denotes the change of

the dipole operator with respect to its expectation value. Note that the expectation value
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of the dipole moment operator in the QED-CC approach is calculated at the QED-HF level,

whereas we replace the dipole fluctuation operator by the dipole operator for the case of

QEDFT. The molecular dipole operator d = de + dnuc includes electronic and nuclear com-

ponents. Finally, the last term in Eq. (S1) describes the dipole self energy arising in the

length gauge.11

In analogy to conventional electronic structure methods, there are two main ways for solv-

ing the Schrödinger equation that describes strong light-matter interaction, namely wave

function and density functional based formalisms. In the following, we discuss the QED

Hartree-Fock and coupled cluster methods, as well as the optimized-effective potential ap-

proach (OEP) for QEDFT in more detail.

In the quantum electrodynamics Hartree-Fock (QED-HF) method,6,12 the wave function

ansatz is given as a direct product between an electronic Slater determinant |0e⟩ and a

photon-number state |0ph⟩ as

|0e0ph⟩ = |0e⟩ ⊗ |0ph⟩ (S2)

where the superscripts e and ph denote electrons and photons, respectively. Due to the choice

of the Hamiltonian in the coherent state basis, only the electronic orbitals are variationally

optimized, and there is no need to further optimize the coherent photon state basis as

described in detail in Ref. 6. Although the QED-HF method treats the electrons and photons

as uncorrelated particles, it is a useful starting point for correlated methods. Among different

approaches, in the QED-CC method6 the correlation effects between quantum particles

(electrons and photons) are incorporated via the exponentiated cluster operator

T̂ =
∑
µ,n

tµ,na
µ(b†)n (S3)

that acts on the reference QED-HF wave function as

|ΨQED-CC⟩ = eT̂ |0e0ph⟩ (S4)
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In Eq. (S3), the amplitudes tµ,n are unknown parameters that are determined by solving a

set of nonlinear equations6,13,14

⟨0e0ph|aµ(b)ne−T̂ ĤeT̂ |0e0ph⟩ = σµ,n (S5)

Moreover, aµ = a†µ = {aai , aabij , ...} is the electronic excitation operator, the index µ is the

electronic excitation rank, and n denotes the number of photons. We also note that other

choices of orbitals are possible, such as Kohn-Sham and Brueckner orbitals.15

The truncation of the cluster operator at a certain excitation rank µ and number of

photons n establishes the QED-CC hierarchy. Truncation of the cluster operator to include

up to single and double electronic excitations along with their interactions with a single

photon is expressed as

T̂ = ti,0a aai + t0,1b† +
1

4
tij,0ab aabij + ti,1a aai b

† +
1

4
tij,1ab aabij b

† (S6)

and defines the QED-CCSD-21 method introduced in Ref. 6. Note that the -mn notation

utilized throughout this paper denotes the highest degree of interactions of m electrons with

n photons. We note here that at the onset of strong light-matter coupling, in Eq. (S6) the

amplitude ti,1a contributes the most. An extension of the cluster operator defined in Eq. (S6)

to include up to two photons and their interactions with up to two electrons is expressed as

T̂ = ti,0a aai + t0,1b† +
1

4
tij,0ab aabij + ti,1a aai b

† +
1

4
tij,1ab aabij b

† + t0,2b†b† + ti,2a aai b
†b† +

1

4
tij,2ab aabij b

†b†

(S7)

and defines the QED-CCSD-22 method introduced in Ref. 16. Lastly, truncation of the

cluster operator to include interactions between only one electron with up to two photons is

expressed as

T̂ = ti,0a aai + t0,1b† +
1

4
tij,0ab aabij + ti,1a aai b

† + t0,2b†b† + ti,2a aai b
†b† (S8)
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and defines the QED-CCSD-12 method first introduced in Ref. 17 in the context of the

description of the electron-phonon interaction. Because the computational cost of the QED-

CCSD-mn methods is determined by the number of tij,nab amplitude equations that need

to be solved, the computational cost of the QED-CCSD-21 and QED-CCSD-22 methods

are roughly two and three times higher, respectively, than the computational cost of the

QED-CCSD-12 method.

Next, we briefly discuss the optimized-effective potential approach10,18 to QEDFT. In

contrast to the wave function based methods, such as QED-HF and QED-CC, the QEDFT

method obtains solutions to the Schrödinger equation including quantized light-matter inter-

actions in Eq. (S1) in terms of reduced quantities (internal variables). In the length-gauge and

dipole approximations, convenient choices for these internal variables are the electron den-

sity n(r) and the photon displacement coordinate q =
√

ℏ
2ωcav

(
b† + b

)
.1,2 Although QEDFT

is in principle exact, for practical calculations approximations to the so-called exchange-

correlation (xc) potential need to be specified. For QEDFT, these xc potentials must capture

not only the correlated nature of the electron-electron interaction as in regular DFT, but also

the correlated nature of the quantized electron-photon interaction. So far only a few approx-

imations are available, either in terms of orbital functionals10,18 or density functionals.19,20

In this work, we choose the optimized-effective potential approximation, which was the first

xc potential introduced for QEDFT and is the most established xc potential for problems

in QEDFT. This approach is based on the following exchange-correlation energy,10,18 which

reads for a single photon mode as follows:

E(OEP )
xc = −1

2

∑
i,a

| ⟨φi|λ · ∆d |φa⟩ |2
(

ωcav

ϵa − ϵi + ωcav

− 1

)
(S9)

where ϵi and ϵa denote occupied and unoccupied Kohn-Sham orbital energies, respectively.

We note that the energy expression in Eq. (S9) includes occupied and unoccupied orbitals,

but an efficient reformulation in terms of only occupied orbitals is also possible.18 This
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approximation, which is referred to as one-photon OEP, explicitly accounts for one-photon

absorption and emission effects and has been shown to be accurate in the weak and strong

light-matter coupling regimes.10,18,21 For more details on the one-photon OEP approach, we

refer the reader to Refs. 10,18,21–23.
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2 Computational Details

The QED-CCSD-mn methods have been implemented in an in-house developmental version

of the Psi4NumPy quantum chemistry software.24 The implemented QED-CCSD-mn meth-

ods, along with the QEDFT method, were used to calculate the reaction energy diagrams

for proton transfer in malonaldehyde and aminopropenal. All calculations were performed

on the geometries optimized at the conventional electronic CCSD/cc-pVDZ25 level using the

Gaussian quantum chemistry software,26 and the optimized geometries are provided below.

The geometry optimizations were performed using the standard optimization procedures27,28

with default parameters as implemented in Gaussian 16.26 The characters of the stationary

structures on the potential energy surface (i.e., reactants, transition states, and products)

were confirmed by performing the harmonic frequency analysis. We note however, that the

stationary points can be different between HF, CCSD, and DFT. The QED-HF and the

QED-CCSD-mn calculations were performed by employing the cc-pVDZ basis set.25

The QEDFT calculations were performed using the Octopus code22 with the single-

photon OEP implementation described in Refs. 18,22. This formulation describes both the

electron-electron interaction and the electron-photon interaction consistently within the OEP

approach. If no electron-photon coupling is present, this approach reduces to the electronic

OEP framework.29 In all calculations with the Octopus code, we used a real-space grid with

spheres of 6 Å around each atom and a grid spacing of 0.15 Å to be consistent with previous

work,19,21 as well as Troullier-Martins pseudopotentials30 to describe the core electrons.
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3 Estimation of the Molecular Volume

Figure S1: Spread of the electron density for the (a) malonaldehyde and (b) aminopropenal
molecules in an OEP calculation at the reactant geometry

. The orthogonal axes have been traced out for each direction.

In this section, we estimate the volume occupied by the molecule via the spread of the

ground-state electron density. In Fig. S1, we visualize the electron density of the malon-

aldehyde and aminopropenal molecules in the reactant geometry for an OEP calculation

outside an optical cavity. In the figure, we show the electron density along the x, y, and

z axes, where the orthogonal axes have been traced out for each direction. The arrows in

the figure specify the spread of the electron density, such that ∼99% of the electron den-

sity falls inside the area specified by the arrow. Using this methodology, we can estimate a

volume of Vmol = 0.070 nm3 for the malonaldehyde molecule and Vmol = 0.081 nm3 for the

aminopropenal molecule.
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4 Rabi Splitting for Different Electron-photon Cou-

pling Strengths

Figure S2: Excitation energies of the upper polariton (UP) (red) and lower polariton (blue)
(LP) for the (a) malonaldehyde and (b) aminopropenal molecules as a function of the cou-
pling strength λ = [0, 0, λ] a.u. The calculations employ a cavity frequency of ωcav = 3.51
eV and ωcav = 3.43 eV in resonance with their respective HOMO-LUMO excitation energy
of the malonaldehyde and aminopropenal molecules.

In this section, we calculate the Rabi splitting for malonaldehyde and aminopropenal,

since the ratio of the Rabi splitting to the cavity frequency is routinely used as a measure of

the strong coupling regime.31 Figure S2 shows the energy of the lower and upper polariton as

a function of the coupling strength for the malonaldehyde and the aminopropenal molecules.

The energy difference between the lower and upper polariton yields the Rabi splitting. The
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cavity frequency of ωcav = 3.51 eV for the malonaldehyde molecule and ωcav = 3.43 eV for the

aminopropenal molecule are in resonance with their respective HOMO-LUMO excitations,

leading to hybrid light-matter (polariton) states in this energy range. The coupling strength

vector is chosen along the z direction (perpendicular to the molecular plane), i.e., λ = [0, 0, λ]

a.u., since the HOMO-LUMO excitations of both molecules have the highest transition dipole

moment in that direction. We find that for the coupling strength of λ = 0.1 a.u. the

ratio of the Rabi splitting to the cavity frequency is 11-12%, which is within the range

of experimentally observed values in the single-molecule32 and collective strong coupling33

limits. In this calculation of polaritonic excited states, we employ the linear response QEDFT

method34 together with the LDA exchange-correlation potential35,36 to describe the electron-

electron interactions using the reactant geometry. We employ 100 unoccupied states in the

linear-response calculation, and the calculation outside the optical cavity yields HOMO-

LUMO transition energies of 3.51 eV for malonaldehyde and 3.43 eV for aminopropenal. All

other parameters are chosen as described in the main manuscript.
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5 Change in the Reaction Energy Barrier for Proton

Transfer in Malonaldehyde inside an Optical Cavity

with Cavity Parameters λ = 0.1 a.u. and ω = 3 eV at

Geometry Optimized with Hartree-Fock

Table S1: Change in the Reaction Energy Barrier (TS) for Proton Transfer in Malonaldehyde
inside an Optical Cavity.a

method x direction y direction z direction

QED-HF 1.37 0.27 -0.05
QED-CCSD-12 1.12 0.15 -0.28
QED-CCSD-21 0.99 0.08 -0.28
QED-CCSD-22 0.94 0.06 -0.28
QEDFT(OEP) 0.87 0.05 0.01

aRelative energies are calculated as the difference between the reaction barrier obtained with the
QED method and the corresponding conventional electronic structure method (difference between

the QED and the non-QED calculation). Relative energies are given in kcal/mol.

Table S1 shows the changes in reaction barriers for the cavity mode polarized along the x,

y, and z directions calculated with all of the QED methods using the reactant and transition

state geometries optimized with the HF/cc-pVDZ method. By comparing Table S1 and

Table 1, it is evident that the trends of the cavity effects are not significantly influenced by

these geometrical differences.
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6 Energy Contributions Breakdown

Table S2: Energy Contributions to Reaction Energy Barrier (in kcal/mol) for Proton Transfer
Reaction in Malonaldehyde Obtained with Different QED-CCSD-mn Methods.

outside cavity x-direction y-direction z-direction

QED-CCSD-12
energy contributions 0 eV 0 eV 3 eV 0 eV 3 eV 0 eV 3 eV

electronic 5.19 5.68 5.67 5.43 5.42 5.16 5.17
dipole self energy 0.00 0.65 0.66 -0.08 -0.08 -0.21 -0.21
dipolar coupling 0.00 0.00 -0.14 0.00 -0.03 0.00 -0.01
QED-CCSD-12 5.19 6.33 6.20 5.35 5.31 4.96 4.94

QED-CCSD-21
energy contributions 0 eV 0 eV 3 eV 0 eV 3 eV 0 eV 3 eV

electronic 5.19 5.68 5.64 5.43 5.42 5.16 5.17
dipole self energy 0.00 0.65 0.66 -0.08 -0.08 -0.21 -0.21
dipolar coupling 0.00 0.00 -0.23 0.00 -0.10 0.00 -0.01
QED-CCSD-21 5.19 6.33 6.08 5.35 5.24 4.96 4.95

QED-CCSD-22
energy contributions 0 eV 0 eV 3 eV 0 eV 3 eV 0 eV 3 eV

electronic 5.19 5.68 5.64 5.43 5.42 5.16 5.17
dipole self energy 0.00 0.65 0.67 -0.08 -0.07 -0.21 -0.21
dipolar coupling 0.00 0.00 -0.29 0.00 -0.11 0.00 -0.01
QED-CCSD-22 5.19 6.33 6.01 5.35 5.23 4.96 4.95

Table S2 shows the energy contributions to the reaction energy barrier of the pro-

ton transfer reaction in the malonaldehyde molecule obtained with the different QED-

CCSD-mn (QED-HF + correlation) methods. The three energy contributions are elec-

tronic
(
⟨0e0ph| Ĥe |0e0ph⟩+ ḡabij × (0.25 · tij,0ab + 0.5 · ti,0a tj,0b )

)
, dipole self energy

(
⟨0e0ph| 1

2
(λ ·

∆d)2 |0e0ph⟩+ ((λ ·d)2)abij × (0.25 · tij,0ab + 0.5 · ti,0a tj,0b )
)

, and dipolar coupling
(

(λ ·d)ai × (ti,1a +

ti,0a t0,1)
)

. The calculations employ cavity parameters λ = 0.0 (outside cavity) and λ = 0.1

a.u. (inside cavity), with cavity frequency of 0 eV and 3 eV. Table S2 shows that for ωcav = 0

eV the dipolar coupling does not contribute to the total energy. Since the QED-CCSD-mn

methods are only different in how they treat the electron-photon interaction, they yield the

same value when ωcav = 0 eV. The dipolar coupling contributes to the total correlation

energy only for ωcav > 0 eV, which is where the different QED-CCSD-mn methods differ.
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7 Energy Barrier Dependence on the Cavity Frequency

with the Cavity Mode Polarized Along the x Direc-

tion
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Figure S3: Proton transfer reaction barrier for malonaldehyde as a function of cavity fre-
quency. Dotted lines correspond to calculations outside the cavity, whereas solid lines corre-
spond to calculations inside the cavity with the cavity mode polarized along the x direction
and with coupling strength 0.1 a.u. Reaction barriers calculated with the conventional CCSD
and DFT methods, along with their QED counterparts, are given in the left and right panels,
respectively.

Figure S3 shows the change in the reaction barrier for malonaldehyde calculated with

the CCSD methods (left panel) and the DFT methods (right panel) as the cavity frequency

is increased from 0 eV to 12 eV by 1 eV increments. The QED barriers (solid lines) were

calculated in a cavity with the mode polarized along the x direction with coupling strength 0.1

a.u. The reaction barrier energies calculated with the conventional CCSD and DFT methods

are depicted with the dotted black line and are independent of the cavity frequency. We find

that the QED-CCSD-21 method is in good agreement with the QED-CCSD-22 method for

all values of ωcav, whereas the QED-CCSD-12 method deviates more significantly relative to

the QED-CCSD-22 method. Thus, the QED-CCSD-12 method should be used with caution

in the case of large cavity frequencies.
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8 Cartesian Coordinates of the Optimized Geometries

Optimized with HF/cc-pVDZ method:

Malonaldehyde Reactant (Number of Imaginary Frequencies=0)

C 0.00000000 0.00000000 0.00000000

O 0.00000000 1.20455422 0.00000000

H 0.95734071 -0.54243020 0.00000000

C -1.20383213 -0.81852146 0.00000000

H -1.11979107 -1.89455068 0.00000000

C -2.42275525 -0.24888403 0.00000000

H -3.32308880 -0.85121280 0.00000000

O -2.67738957 1.03726336 0.00000000

H -1.84616630 1.51635779 0.00000000

Optimized with HF/cc-pVDZ method:

Malonaldehyde Transition State (Number of Imaginary Frequencies=1)

C 0.00000000 0.00000000 0.00000000

O 0.00000000 1.25379443 0.00000000

H 0.96967882 -0.49901661 0.00000000

C -1.18350394 -0.74049865 0.00000000

H -1.19360917 -1.81729824 0.00000000

C -2.35311485 0.02202151 0.00000000

H -3.33189033 -0.45893666 0.00000000

O -2.32977945 1.27553951 0.00000000

H -1.16257041 1.51073704 0.00000000
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Optimized with CCSD/cc-pVDZ method:

Malonaldehyde Reactant (Number of Imaginary Frequencies=0)

C 0.00000000 0.00000000 0.00000000

O 0.00000000 1.23456800 0.00000000

H 0.97075033 -0.54577032 0.00000000

C -1.21509881 -0.80991169 0.00000000

H -1.15288176 -1.89931439 0.00000000

C -2.43440063 -0.19144555 0.00000000

H -3.37262777 -0.75937214 0.00000000

O -2.62194056 1.12501165 0.00000000

H -1.71446384 1.51627790 0.00000000

Optimized with CCSD/cc-pVDZ method:

Malonaldehyde Transition State (Number of Imaginary Frequencies=1)

C 0.00000000 0.00000000 0.00000000

O 0.00000000 1.27847000 0.00000000

H 0.98371462 -0.50070158 0.00000000

C -1.19326902 -0.74784832 0.00000000

H -1.19970349 -1.83682931 0.00000000

C -2.37814431 0.01400581 0.00000000

H -3.36752991 -0.47550725 0.00000000

O -2.36325335 1.29201906 0.00000000

H -1.17975465 1.50752679 0.00000000

Optimized with CCSD/cc-pVDZ method:

Aminopropenal Reactant (Number of Imaginary Frequencies=0)

H 0.00000000 0.00000000 0.00000000

C 0.00000000 1.09163906 0.00000000
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C 1.26822472 1.80690645 0.00000000

N -1.33404678 3.10992888 0.00000000

O 1.39279087 3.03379031 0.00000000

H -0.48254004 3.66582880 0.00000000

H -2.24599052 3.54003736 0.00000000

C -1.19931821 1.76513995 0.00000000

H 2.18220599 1.16371496 0.00000000

H -2.14055701 1.20128576 0.00000000

Optimized with CCSD/cc-pVDZ method:

Aminopropenal Transition State (Number of Imaginary Frequencies=1)

H 0.00000000 0.00000000 0.00000000

C 0.00000000 1.08943910 0.00000000

C 1.19187861 1.82073020 0.00000000

N -1.15503519 3.15085322 0.00000000

O 1.23956085 3.10723950 0.00000000

H 0.06714025 3.42106531 0.00000000

H -2.03971004 3.65182794 0.00000000

C -1.21230682 1.83679656 0.00000000

H 2.16133262 1.29142618 0.00000000

H -2.18458586 1.32025952 0.00000000

Optimized with CCSD/cc-pVDZ method:

Aminopropenal Product (Number of Imaginary Frequencies=0)

H 0.00000000 0.00000000 0.00000000

C 0.00000000 1.09138840 0.00000000

C 1.19000326 1.75971354 0.00000000

N -1.29869978 3.11237163 0.00000000
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O 1.33369004 3.08569523 0.00000000

H 0.41141507 3.45367072 0.00000000

H -2.26092059 3.46346742 0.00000000

C -1.27014745 1.81619151 0.00000000

H 2.14625767 1.22260226 0.00000000

H -2.19412100 1.21051211 0.00000000
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Coupling Regime of the Jaynes-Cummings Model. Phys. Rev. Lett. 2010, 105, 263603.

(32) Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.;

Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule Strong Coupling

at Room Temperature in Plasmonic Nanocavities. Nature 2016, 535, 127–130.

(33) Hutchison, J. A.; Schwartz, T.; Genet, C.; Devaux, E.; Ebbesen, T. W. Modifying

Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem. 2012, 51, 1592–

1596.

(34) Flick, J.; Welakuh, D. M.; Ruggenthaler, M.; Appel, H.; Rubio, A. Light–Matter Re-

sponse in Nonrelativistic Quantum Electrodynamics. ACS Photonics 2019, 6, 2757–

2778.

(35) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864.

(36) Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approxima-

tions for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079.

S21


