Supporting Information

Manganese Oxide/iron Carbide Encapsulated in Nitrogen and Boron Co-doped Carbon Nanowire Networks as The Accelerated Alkaline Hydrogen Evolution and Oxygen Reduction Bi-functional Electrocatalysts

Zhuo Liu,^a Fei Guo, ^a Lina Han, ^b Jie Xiao, ^a Xiaoyuan Zeng, ^a Chengxu Zhang, ^a Peng Dong, ^a Mian Li,* ^a Yingjie Zhang,* ^{a,b}

^a National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China

^b Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

* Corresponding author.

E-mail addresses: mianzi2009@126.com, lim148@kmust.edu.cn (M. Li); zyjkmust@126.com (Y. Zhang)

1. Experimental Section

1.1. The detailed conditions for electrospinning.

For the electrospinning, all as-obtained precursor slurries were loaded into the plastic syringes with the inner diameter of pinhead is 0.80 mm. the voltage applied for electrospinning was 23 kV and the flow rates of precursor slurries are controlled as 1 mL h⁻¹ by using the pump. The stainless steel mesh was used to collect the precursor networks. The distance between the orifices and the stainless steel mesh electrodes were all controlled as ~15 cm. The as-electrospun precursor networks were then calcinated at different temperatures for 2 h in nitrogen atmosphere.

1.2. Synthesis of the precursor networks for Fe@BNPCFs-900 and Mn@BNPCFs-900 samples.

For comparison, the Fe@BNPCFs-900 and Mn@BNPCFs-900 samples have been prepared as well. 3.3 g of PVP powder and 1.0 g of HA were first dissolved into 40.0 mL DMF to produce the HA-PVP-DMF solution. Then, 1.40 g Fe(AC)₂·4H₂O or 1.52 g Mn(AC)₂·2H₂O were severally added into the as-prepared HA-PVP-DMF solutions. The obtained mixtures were further stirred for another 12 h to acquire the homogeneous precursor slurries [i.e., Fe(AC)₂-HA-PVP-DMF and Mn(AC)₂-HA-PVP-DMF]. Following closely, the electrospinning technique was utilized for weaving the Fe(AC)₂-HA-PVP-DMF and Mn(AC)₂-HA-PVP-DMF precursor slurries into the Fe(AC)₂/HA/PVP and Mn(AC)₂/HA/PVP precursor networks.

1.3. Physical characterization of precursor networks, FeMn@BNPCFs-T (T= 600, 700, 800, 900 and 1000 °C), Fe@BNPCFs-900 and Mn@BNPCFs-900 control samples.

The scanning electron microscopy (SEM) was performed using a Philips XL-30 ESEM equipped with an energy-dispersive X-ray spectroscopy (EDS) analyzer. The transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF) and scanning transmission electron microscopy (STEM) were performed on a high-resolution Hitachi JEM-2100 system equipped with an EDX analyzer. The wide-angle X-ray diffraction (XRD) patterns were obtained on an X-ray D/max-2200 vpc (Rigaku Corporation, Japan) instrument operated at 40 kV and 20 mA using Cu Ka radiation (k 0.15406 nm). The N₂ adsorption-desorption isotherms were performed on an ASAP 2020 (Micromeritics, USA). Before the measurements, the samples were degassed in vacuum at 120 °C for 5 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the BET specific surface area using adsorption data. The pore size distribution was derived from the adsorption branch by using the Barrett-Joyner-Halenda (BJH) model. The Raman spectroscopy patterns were obtained using a confocal microprobe Raman system (HR 800, JobinYvon). The surface analyses of catalysts were carried out by X-ray photoelectron spectroscopy (XPS) on an ESCA LAB spectrometer (USA) using a monochromatic Al K α source (*hv* 1486.6 eV). The binding energies were calibrated by using the containment carbon (C1s 284.6 eV). The Fe and Mn contents along catalyst's surfaces were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) with a PerkinElmer Optima 3300 DV spectrometer.

1.4. Electrochemical characterization of various FeMn@BNPCFs-T (T= 600, 700, 800, 900 and 1000 °C), Fe@BNPCFs-900 and Mn@BNPCFs-900 control samples toward HER and ORR in alkaline condition.

Electrochemical measurements were performed at room temperature by using a rotating disk electrode (RDE; 5 mm in diameter with a geometric area of 0.19625 cm²) or rotating ring-disk electrode (RRDE; 5.5 mm in diameter with a geometric area of 0.23758 cm²) as the working electrode both in 0.1 M KOH (for ORR) and 1.0 M KOH (for HER). Pt wire was used as counter electrode (for HER test, the counter electrode was carbon rod) and Ag/AgCl was used as reference electrodes. All potentials appeared in this paper are referred to reversible hydrogen electrode, the potentials recorded (referred to Ag/AgCl) in each experiment were calculated using the formula $E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059$ pH + 0.197 V, where $E_{\rm RHE}$ is a potential *vs*. reversible hydrogen electrode (RHE), $E_{\rm Ag/AgCl}$ is a potential *vs*. Ag/AgCl electrode, and pH is the pH value of electrolyte. All current densities are the ratios of recorded currents to the geometric area of electrode.

In order to prepare the working electrodes, 3 mg of as-synthesized catalyst powders were dispersed in 1 mL Nafion solution (0.5 wt%) with 60 min of ultrasonication to generate the homogeneous inks. Following closely, 30 uL of the dispersed slurry was transferred onto the RDE or RRDE with the catalyst loading amount of 0.306 mg cm⁻². Finally, the as-prepared catalyst film was dried at room temperature.

In the electrochemical testing processes for HER and ORR, the Tafel polarization curves were plotted as potentials (*E vs. RHE*) vs. log $|j(\text{mA cm}^{-2})|$ to get the Tafel plots for assessing the HER and ORR kinetics of the resultant catalysts. By

fitting the linear portion of the Tafel plots to the Tafel equation ($\eta = b \log (j) + a$), the Tafel slopes (*b* values) can be obtained. All data were reported without *iR* compensation.

The roughness (R) and electrochemical specific active area (ECSA) were calculated by using **Equations S1** and **S2**:

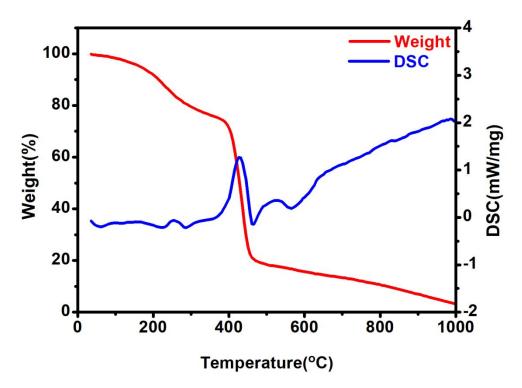
$$R = C_{\text{sample}} / C_{\text{GCE}}$$
(S1)

$$ECSA = R \times A_{GCE}$$
(S2)

Where A = 0.19625 cm² in this work.

The turnover frequency (TOF) values of the optimal catalyst were calculated from the equation **S3**:

$$TOF = j \times A/(4 \times F \times m)$$
(S3)


Where the *j* value is current density obtained at each potential, A is the area of the electrode, *F* is the Faraday constant (96 485 C mol⁻¹), and *m* is the molar number of active material loaded on the electrode.

In addition, for the ORR test, in order to further verify the ORR catalytic pathways of various catalysts, we also conducted the RRDE measurements at the potential scan rate of 5 mV s⁻¹ with an electrode rotation speed of 1600 rpm. Meanwhile, the operating potential of Pt ring was set at 0.5 V *vs*. Ag/AgCl in 0.1 M KOH for RRDE tests. The electron transfer numbers (*n*) were also calculated from the **Equation S4** and the H₂O₂ formation yields were calculated from the **Equation S5** based on the RRDE data:

$$n = \frac{4I_{\rm D}}{(I_{\rm D} + I_{\rm R} / N)}$$
(S4)

%
$$HO_2^- = \frac{200I_R}{(I_DN + I_R)}$$
 (85)

Where N is the collection efficiency with a value of 0.37, I_D and I_R are the faradic-disk and -ring currents respectively.

Figure S1. The DSC-TGA curves of the precursor networks, in the flowing of pure nitrogen with a temperature rating of 10 °C min⁻¹.

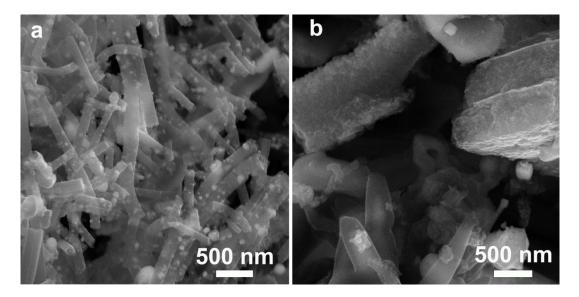


Figure S2. The SEM images of the Fe@BNPCFs-900 (a) and Mn@BNPCFs-900 (b)

control sample.

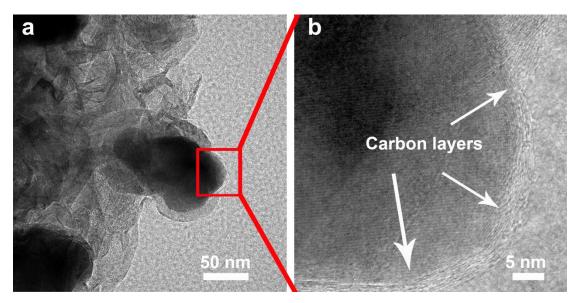


Figure S3. The TEM (a) and HRTEM (b) images of the FeMn@BNPCFs-900 control sample; b is the amplification of red square area showed in a.

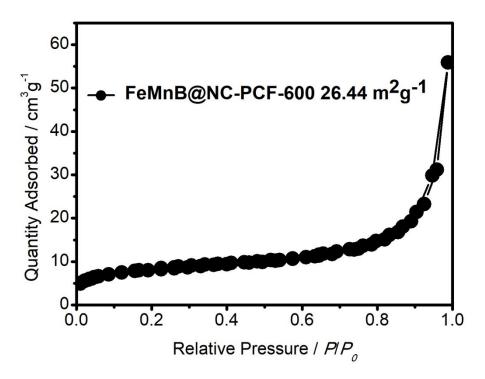


Figure S4. The nitrogen adsorption-desorption isotherm of the FeMn@BNPCFs-600 control sample.

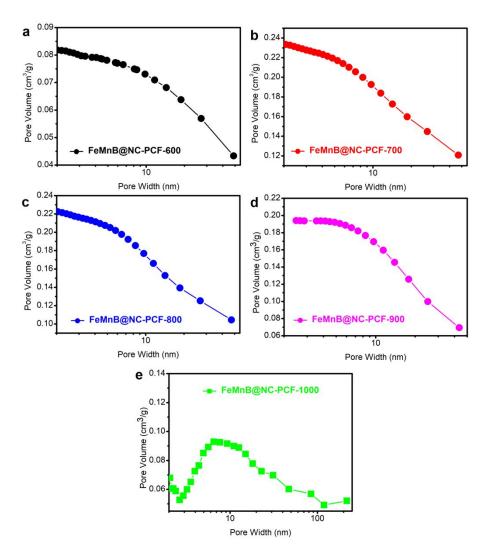


Figure S5. The pore size distribution plots of (a) FeMn@BNPCFs-600, (b) FeMn@BNPCFs-700, (c) FeMn@BNPCFs-800, (d) FeMn@BNPCFs-900 and (e) FeMn@BNPCFs-1000 control samples.

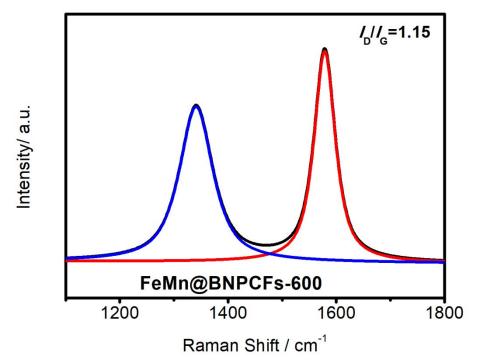


Figure S6. The Raman spectrum of resultant FeMn@BNPCFs-600 material.

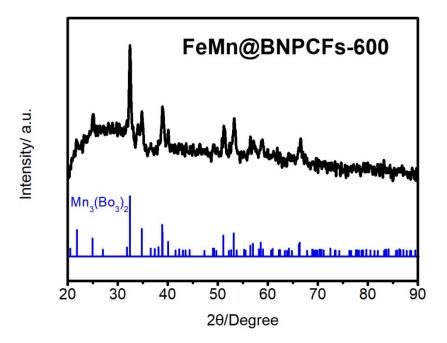



Figure S7. The XRD pattern of the resultant FeMn@BNPCFs-600 sample.

Figure S8. The SEM-EDX mapping of the resultant FeMn@BNPCFs-900 sample: (a) overlapped signals of each element and the distribution states of (b) C, (c) N, (d) B, (e) Fe and (f) Mn elements.

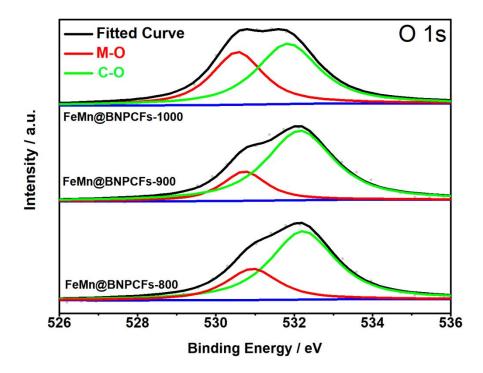
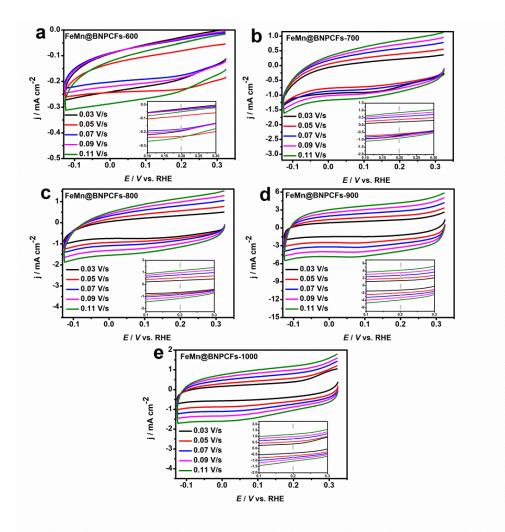
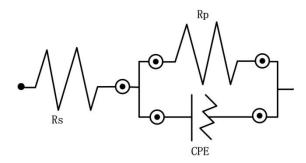



Figure S9. The high-resolution O 1s spectra of resultant FeMn@BNPCFs-800, FeMn@BNPCFs-900 and FeMn@BNPCFs-1000 materials.

reported non-pro							
Catalysts	η ₁₀ (mv)	η _{onset} (mv)	Tafel Slope (mV dec ⁻¹)	Catalyst Loading	Medium	References	
	(((g cm ⁻²)			
FeMn@BNPCFs-600	431	203	226.94	0.306	1 M KOH		
FeMn@BNPCFs-700	383	155	212.81	0.306	1 M KOH	This work	
FeMn@BNPCFs-800	311	97	127.69	0.306	1 M KOH		
FeMn@BNPCFs-900	247	49	104.89	0.306	1 M KOH		
FeMn@BNPCFs-1000	325	126	130.51	0.306	1 M KOH		
Fe-promoted MoP	195	150	49	0.071	0.5 MH ₂ SO ₄	Appl. Catal. A-Gen. 2016 , 524, 134-138	
0.05Mn-MoP	199	210	49	0.46	0.5 MH ₂ SO ₄	App. Surf. Sci. 2021, 551, 149321	
MnFeO-NF-0.8	186	172	74	0.46	1 M KOH	Nanoscale, 2020 , 12, 19992	
NiFeMn-LTH/FM-NS /NF-4	110	191	80	0.46	1 M KOH	Nanoscale, 2019 , 11, 20797	
Mn-FeP	175	153	103.6	-	0.5 MH ₂ SO ₄	App. Surf. Sci. 2020, 510, 145427	
NiFe LDH/NF	210	190	58.9	-	1 M KOH	Science 2014, 345, 1593	
Fe ¹³⁺ -WS ₂ /CC	160	176	77.3	-	0.5 M HCl	FlatChem 2021, 27, 100247	
Fe ₂ P	300	201	126	-	1 M KOH	ACS. Appl. Mater. Interfaces 2016, 8, 12798–12803	
Ni-Fe-Mn	68	-	64	0.46	1 M KOH	Int. J, Hydrogen Energ. 2020, 45, 24670-24683	
Fe-Ni@NCF	219	207	79.1	-	1 М КОН	Int. J, Hydrogen Energ. 2020, 45, 12237-12243.	
FeP/NF	157	-	97	1	1 M KOH	Chem. Sci. 2018, 9, 8590-8597.	
Mesoporous Mn-FeP	173	-	95	0.51	1 М КОН	ACS Sustainable Chem. Eng. 2019, 7, 12419–12427	
FeP/NCNSs	205		70	0.6	1 M KOH	ACS Sustainable Chem. Eng. 2018 , 6, 11587-11594.	
P-FeMnO _x	97	150	126.8	-	1 М КОН	ACS Sustainable Chem. Eng. 2021, 9, 5963–5971	
Cu@Mn(OH) ₂	248	182	184	-	1 M KOH	Nano Research 2018 , 11, 1798– 1809	
Fe-H ₂ cat	-	343	77	-	1 M KOH	Chem 2018 , <i>4</i> , 1139-1152	
Fe/P/C0.5-800	256	110	53.6	0.46	1 М КОН	Nano Energy 2017 , <i>33</i> , 221-228	
Fe@C-SN/50	550	358	123	0.55	1 M KOH	Energy Fuels. 2021, 35, 16046–16053	
Fe@N-C/RGO	400	248	100	-	1 М КОН	Faraday Discuss. 2014 , 176, 135-151	
Porous FeP nanosheets	253	100	67	-	1 M KOH	Chem. Commun. 2013 , 49, 6656	


Table S1 A comparison on HER catalytic data between our catalysts and other reported non-precious metal based HER catalysts.

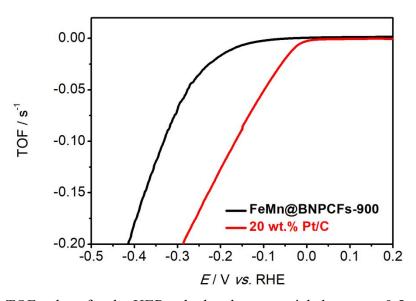

Figure S10. CV curves recorded at different potential scanning rates from 30 to 110 mV s⁻¹ in 1.0 M KOH solution (between -0.15 V *vs.* RHE and + 0.35 V *vs.* RHE) for the FeMn@BNPCFs-600 (a), FeMn@BNPCFs-700 (b), FeMn@BNPCFs-800 (c), FeMn@BNPCFs-900 (d) and FeMn@BNPCFs-1000 (e) samples.

Table S2 C, roughness (R), and electrochemical specific active area (ECSA) values				
for the catalysts modified electrodes and bare RDE. The R and ECSA values were				
calculated by using Equations S1 and S2.				

Electrodes	C (mF cm ⁻²)	R	ECSA (cm ²)
Bare GCE	1.139	-	-
FeMn@BNPCFs-600	1.56	1.37	0.27
FeMn@BNPCFs-700	10.75	9.44	1.85
FeMn@BNPCFs-800	18.35	16.11	3.16
FeMn@BNPCFs-900	68.96	60.54	11.88
FeMn@BNPCFs-1000	16.68	14.64	2.87

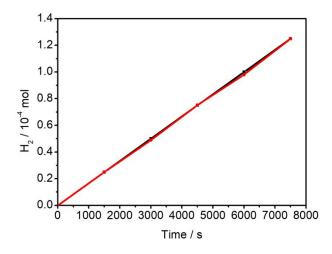


Figure S11. The equivalent electrical circuit utilized for fitting the electrochemical impedance spectra showed in **Figure 7e**.

Figure S13.TOF values for the HER calculated at potentials between -0.5 and 0.20 V vs. RHE for 20 *wt*.% Pt/C and FeMn@BNPCFs-900 catalysts.

The turnover frequency (TOF) values of the optimal catalyst were calculated from the **Equation S3**. We first measured the Fe and Mn contents on the surfaces of FeMn@BNPCFs-900; for this, 1 mg of FeMn@BNPCFs-900 were first washed in the strong acid and further detected *via* the ICP technology. The ICP measurement results display that the mole numbers of Fe and Mn atoms on the surfaces of 1 mg FeMn@BNPCFs-900 sample are 6.875×10^{-4} mmol and 2.0618×10^{-3} mmol, respectively; demonstrating the most Fe₃C nanoparticles were imbedded into carbon layers. XPS test results have proved that the mole numbers of B and N elements in 1 mg of FeMn@BNPCFs-900 are 1.43×10^{-4} mmol and 3.0438×10^{-4} mmol, respectively. Assuming all Fe, Mn, B and N atoms dispersed along FeMn@BNPCFs-900's surfaces are catalytically active toward HER, the TOF values of the optimal FeMn@BNPCFs-900 and 20 *wt.*% Pt/C catalysts were then calculated between -0.5 and 0.20 V *vs.* RHE in a 1.0 M KOH (as shown in **Figure S13**). The TOF values of FeMn@BNPCFs-900 calculated in the as-chosen potential range are all smaller than those of the 20 *wt.*% Pt/C catalyst.

Figure S14. Amount of theoretically calculated (black) and experimentally measured (red) hydrogen versus time of FeMn@BNPCFs-900 under a static over-potential of 300 mV *vs*. RHE.

The generated gas was analyzed by gas chromatography (GC) analysis. The generated hydrogen was measured quantitatively using a calibrated pressure sensor to monitor the changes in pressure in the cathode compartment of an H-type electrolytic cell. Potentiostatic cathodic electrolysis was performed by maintaining a FeMn@BNPCFs-900 modified glassy carbon electrode at the over-potential of 300 mV for 7500 seconds. To calculate the Faradaic efficiency (FE) of the electrocatalytic hydrogen evolution process, we compared the amount of experimentally quantified hydrogen with the theoretically calculated hydrogen (assuming 100% FE). The agreement between both the theoretically and experimentally measured values suggests an FE of close to 100% (**Figure S14**).

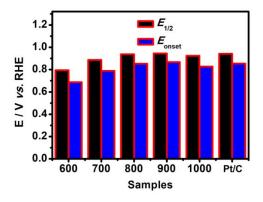


Figure S15.The corresponding ORR E_{onset} and $E_{1/2}$ values for the
FeMn@BNPCFs-600, FeMn@BNPCFs-700, FeMn@BNPCFs-800,
FeMn@BNPCFs-900, FeMn@BNPCFs-1000 and 20 wt.% Pt/C samples.

Table S3 A comparison on ORR catalytic data between our resultant catalysts and other reported non-precious metal based ORR catalysts.

Catalysts	<i>E</i> _{onset} (V vs. RHE)	<i>E</i> _{1/2} (V vs. RHE)	<i>j</i> L (mA cm ⁻²)	Medium	References	
FeMn@BNPCFs-600	0.795	0.688	-4.507	0.1 M KOH		
FeMn@BNPCFs-700	FeMn@BNPCFs-700 0.887		-4.924	0.1 M KOH		
FeMn@BNPCFs-800	0.938	0.853	-5.776	0.1 M KOH		
FeMn@BNPCFs-900	0.946	0.868	-5.976	0.1 M KOH	This work	
FeMn@BNPCFs-1000	0.925	0.827	-5.310	0.1 M KOH		
20 wt.% Pt/C	0.943	0.854	-5.449	0.1 M KOH		
Fe@Mn13-polymer	0.78	0.7	-2.5	0.1 M KOH	Dalton Trans. 2019, 48,4794-4797	
Fe,Mn,N-FGC	1.03	0.89	-6.47	0.1 M KOH	Inorg. Chem. 2020 , 59, 5194–5205	
Fe,Mn-N/C-900	0.934	-	-6.1	0.1 M KOH	J. Mater. Chem. A 2018, 6, 13254-13262	
Fe/Mn-N-C	-	0.9	-6.05	0.1 M KOH	Nature Commun. 2015 , 6, 8618–8626	
FeNC-1000	C-1000 -		-5.8	0.1 M KOH	ACS. Appl. Mater. Interfaces 2018, 10, 10778-10785	
Mn@NPC-NH ₃	0.95 Mn@NPC-NH3		-5.69	0.1 M KOH	ACS. Sustainable. Chem. Eng. 2020 , 8, 12618-12625	
Mn-Fe-N/S@mC	0.93	0.89	-6	0.1 M KOH	Nano Energy 2019 , 63, 103851	
Mn/C-NO	0.92	0.86	-5.6	0.1 M KOH	Adv. Mater. 2018, 30, 1801732	
Mn-N-C	0.98	0.86	-5.8	0.1 M KOH	Int. J. Hydrogen Energ. 2019 , 44, 26387-26395.	
BN-CDs@CNT	BN-CDs@CNT 0.92		-5.9	0.1 M KOH	J. Colloid Interface Sci. 2021 , 600, 865-871	
CNx/CBx-GNRs	CNx/CBx-GNRs 0.8		-3.75	0.1 M KOH	ACS Appl. Mater, Interfaces 2015, 7, 7786-7794	
Mn ₂ Co ₃ -900	0.91	0.76	-5.8	0.1 M KOH	J. Mater. Chem. A 2019, 7, 20649-20657.	
Fe ₃ Mn ₁ /NCNTs-100	0.91	0.86	-5.4	0.1 M KOH	ChemCatChem 2018, 10, 5475-5486.	

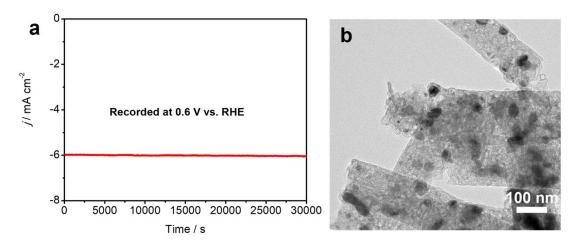


Figure S16. (a) Time dependence of the current density for FeMn@BNPCFs-900 at a static potential of 0.6 V vs. RHE for 30000 s in O₂-saturated 0.1 M KOH. (b) TEM image of the FeMn@BNPCFs-900 sample after the accelerated durability test in O₂-saturated 0.1 M KOH solution.

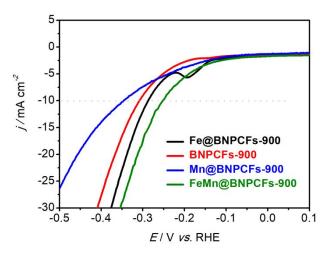


Figure S17. The HER LSV polarization curves recorded in 1.0 M KOH for FeMn@BNPCFs-900, Fe@BNPCFs-900, Mn@BNPCFs-900 and BNPCFs-900 control samples.

Figure S18. The ORR LSV polarization curves recorded in 0.1 M KOH for FeMn@BNPCFs-900, Fe@BNPCFs-900, Mn@BNPCFs-900 and BNPCFs-900 control samples.