Defect-Type-Dependent Carrier Lifetimes in Monolayer WS₂ Films Yuanshuang Liu, Huan Liu, Jiangcai Wang and Dameng Liu* State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China Figure S1. Density of states (DOS) of pristine and defective WS_2 monolayers. Both V_S and O_{2S} defects introduce two defect states in band gap, about 0.4 eV below the CBM. **Figure S2.** a)-c) Optical microscope image of different WS₂ samples on Si/SiO₂ substrate. d) Raman spectra at different location (P2) for WS₂ monolayer. e) and f) Raman spectra of sample 2 and sample 3 treated by O²⁺ plasma at different treatment times (calibrated by silicon Raman peak ~520cm⁻¹). Figure S3. a) PL spectra at different location (P2) for WS_2 monolayer. b) and c) PL spectra of sample 2 and sample 3 treated by O^{2+} plasma at different treatment times (calibrated by silicon Raman peak ~520cm⁻¹). d)-f) PL intensity and energy as the function of the treatment time for different samples. Figure S4. a)-b) The temperature-dependent PL spectrum of the two positions $\alpha-P3$ and $\beta-P4$ in monolayer WS₂, respectively. c) The PL intensity of the A, A_{trap} , and A_{tot} at $\alpha-P3$ (up) and $\beta-P4$ (down) as a function of temperature¹. d) PL spectra of monolayer MoS₂ after oxygen plasma irradiation with different durations². e) PL spectrum measured over the temperature range from 77 K to 300 K of a monolayer MoS₂, defect-induced PL peak (X_B) ³. Table S1. Photoluminescence quantum yield (Φ) and radiative lifetime (τ_r) of WS₂ monolayer treated by O²⁺ plasma at different treatment times | Treatment Time (s) | Φ (%) | τ_r (ns) | |--------------------|--------|---------------| | 0 | 0.0600 | 21.67 | | 3 | 0.0187 | 26.69 | | 6 | 0.0232 | 16.39 | | 9 | 0.0261 | 13.41 | | 12 | 0.0338 | 5.92 | | 15 | 0.0604 | 5.30 | | 18 | 0.0534 | 5.43 | | 21 | 0.0488 | 5.94 | | 24 | 0.0427 | 7.49 | | 27 | 0.0132 | 18.24 | | 30 | 0.0073 | 28.80 | Figure S5. Nonadiabatic molecular dynamics results of defective WS_2 monolayer. a) and b) electron energy change from band edge in defective WS_2 with O_S defect and O_{2S} , respectively. c) and d) electron energy change from the first defect state (defect 1) and the second defect state (defect 2) in defective WS_2 with V_S , respectively. e) and f) electron energy change from the first defect state (defect 1) and the second defect state (defect 2) in defective WS_2 with O_{2S} , respectively. Figure S6. FT spectrum of between the first defect state (defect 1) as well as the second defect state (defect 2) and VBM in defective WS_2 monolayer with O_S defect and O_{2S} . ## Reference (1) Wu, K.; Zhong, H.; Guo, Q.; Tang, J.; Yang, Z.; Qian, L.; Yuan, S.; Zhang, S.; Xu, H., Revealing the Competition between Defect-Trapped Exciton and Band-Edge Exciton Photoluminescence in Monolayer Hexagonal WS₂. *Adv. Opt. Mater.* **2022**, 2101971. - (2) Nan, H.; Wang, Z.; Wang, W.; Liang, Z.; Lu, Y.; Chen, Q.; He, D.; Tan, P.; Miao, F.; Wang, X.; et al. Strong Photoluminescence Enhancement of MoS₂ through Defect Engineering and Oxygen Bonding. *ACS Nano* **2014**, *8*(6), 5738-5745. - (3) Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; et al.Defects Activated Photoluminescence in Two-Dimensional Semiconductors: Interplay Between Bound, Charged, and Free Excitons. *Rep* **2013**, *3*, 2657.