Defect-Type-Dependent Carrier Lifetimes in Monolayer WS₂ Films

Yuanshuang Liu, Huan Liu, Jiangcai Wang and Dameng Liu*

State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

Figure S1. Density of states (DOS) of pristine and defective WS_2 monolayers. Both V_S and O_{2S} defects introduce two defect states in band gap, about 0.4 eV below the CBM.

Figure S2. a)-c) Optical microscope image of different WS₂ samples on Si/SiO₂ substrate. d)

Raman spectra at different location (P2) for WS₂ monolayer. e) and f) Raman spectra of sample

2 and sample 3 treated by O²⁺ plasma at different treatment times (calibrated by silicon Raman peak ~520cm⁻¹).

Figure S3. a) PL spectra at different location (P2) for WS_2 monolayer. b) and c) PL spectra of sample 2 and sample 3 treated by O^{2+} plasma at different treatment times (calibrated by silicon Raman peak ~520cm⁻¹). d)-f) PL intensity and energy as the function of the treatment time for different samples.

Figure S4. a)-b) The temperature-dependent PL spectrum of the two positions $\alpha-P3$ and $\beta-P4$ in monolayer WS₂, respectively. c) The PL intensity of the A, A_{trap} , and A_{tot} at $\alpha-P3$ (up) and $\beta-P4$ (down) as a function of temperature¹. d) PL spectra of monolayer MoS₂ after oxygen plasma irradiation with different durations². e) PL spectrum measured over the temperature range from 77 K to 300 K of a monolayer MoS₂, defect-induced PL peak (X_B) ³.

Table S1. Photoluminescence quantum yield (Φ) and radiative lifetime (τ_r) of WS₂ monolayer treated by O²⁺ plasma at different treatment times

Treatment Time (s)	Φ (%)	τ_r (ns)
0	0.0600	21.67
3	0.0187	26.69
6	0.0232	16.39
9	0.0261	13.41
12	0.0338	5.92
15	0.0604	5.30
18	0.0534	5.43
21	0.0488	5.94
24	0.0427	7.49
27	0.0132	18.24
30	0.0073	28.80

Figure S5. Nonadiabatic molecular dynamics results of defective WS_2 monolayer. a) and b) electron energy change from band edge in defective WS_2 with O_S defect and O_{2S} , respectively. c) and d) electron energy change from the first defect state (defect 1) and the second defect state (defect 2) in defective WS_2 with V_S , respectively. e) and f) electron energy change from the first defect state (defect 1) and the second defect state (defect 2) in defective WS_2 with O_{2S} , respectively.

Figure S6. FT spectrum of between the first defect state (defect 1) as well as the second defect state (defect 2) and VBM in defective WS_2 monolayer with O_S defect and O_{2S} .

Reference

(1) Wu, K.; Zhong, H.; Guo, Q.; Tang, J.; Yang, Z.; Qian, L.; Yuan, S.; Zhang, S.; Xu, H., Revealing the Competition between Defect-Trapped Exciton and Band-Edge Exciton Photoluminescence in Monolayer Hexagonal WS₂. *Adv. Opt. Mater.* **2022**, 2101971.

- (2) Nan, H.; Wang, Z.; Wang, W.; Liang, Z.; Lu, Y.; Chen, Q.; He, D.; Tan, P.; Miao, F.; Wang, X.; et al. Strong Photoluminescence Enhancement of MoS₂ through Defect Engineering and Oxygen Bonding. *ACS Nano* **2014**, *8*(6), 5738-5745.
- (3) Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; et al.Defects Activated Photoluminescence in Two-Dimensional Semiconductors: Interplay Between Bound, Charged, and Free Excitons. *Rep* **2013**, *3*, 2657.