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EXPERIMENTAL SECTION 

Structure Preparation 

The geometry of the fragment was determined using density-functional theory (DFT) 

calculations with the Gaussian software package (Gaussian, Inc., Wallingford CT, 2016).   The 

calculations were performed using the Pople double-zeta basis set with a single set of 

polarization functions on non-hydrogen atoms (6-31G(d)).  Solvent effects were included using 

a polarizable continuum model (PCM).  The structures of all calculated molecules correspond 

to minima on the ground state potential energy surfaces with no imaginary frequencies present.  

The metalloprotein structures human carbonic anhydrase II (PDB 6GOT),1 jumonji-domain of 

histone lysine demethylase (PDB 5ANQ),2 and N-terminal domain of the polymerase acidic 

subunit of the RNA-dependent RNA polymerase of the influenza virus (PDB 6E6W)3 were 

downloaded from the Protein Data Bank (https://www.rcsb.org/) and prepared for the docking 

experiment using the Molecular Operating Environment (MOE, Chemical Computing Group 

ULC, Montreal, QC, Canada, 2019) software package.  Water molecules, other small 

molecules, inhibitors as well as ions were removed.  Hydrogen atoms were added and the side 

chains protonated at physiological pH.  

 

Protein Sequence Homology 

Percent sequence identity and percent sequence coverage was determined using 

BLAST.4  hCAII sequences were compared to the sequence of PDB accession code 6RKN.  

KDM sequences were compared to the sequence of PDB accession code 2VD7.  PAN sequences 

were compared to the sequence of PDB accession code 6DCZ.   
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Fragment Docking 

The structurally optimized fragments were docked using the Genetic Optimization for 

Ligand Docking (GOLD, Cambridge Crystallographic Data Centre, Cambridge, United 

Kingdom, 2019) software package.  The protein structure was considered rigid.  The  binding 

pose of the compounds was predicted using a genetic algorithm with a population size of 200, 

selection pressure of 1.2, number of operations of 500000, number of islands of 5, niche size of 

2, crossover frequency of 95, mutation frequency of 95, and a migration frequency of 10.  The 

genetic algorithm was set to 100 runs.  The metal ions within the active site were predefined to 

have a tetrahedral geometry for Zn and an octahedral geometry for Fe or Mn.  During the 

docking procedure the binding poses were evaluated using the ChemPLP scoring function.  

After docking, the obtained solutions were re-scored using the GoldScore fitness function.  

 

Protein Alignment 

 PDB files and the docking pose from GOLD were loaded into MOE and identical 

subunits were removed.  The sequences were aligned, and the pocket residues were superposed. 

For PAN, endonuclease, residues 109-119 were superposed with an RMSD of 0.17 Å.  The 

active site alignment was further refined by superposing the proteins using two manganese 

atoms and the amine in His41 as alignment points, with an RMSD of 0.14 Å (Figure S7a.).  For 

KDM, the sequences were aligned, and the pocket residues were superposed with an RMSD of 

0.28 Å.  The active site alignment was further refined using the Fe ion, the amine from His188 

and the amine in His276 as alignment points, with an RMS distance of 0.13 Å (Figure S7b.).  

For hCAII, residues the pocket residues were superposed with an RMSD of 0.23 Å, which 

provided sufficient alignment and did not require further refinement (Figure S7c.). 
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Fragment Growth 

 Fragment growth was performed in MOE.  The model structure from GOLD was loaded 

into MOE.  The fragment model for each protein was manually extended, and the added group 

was energy minimized using the Amber10:EHT forcefield with a gradient of 0.1 RMS kcal/mol/ 

Å2, while the MBP was not altered.  For the PAN model, the atoms in the core of the MBP were 

manually changed to match the corresponding PDB structure.  

 

Evaluation of binding pose prediction 

 The binding pose was evaluated by comparing the computationally docked model with 

the corresponding PDB structure.  After the proteins were aligned, poses of the PDB ligand and 

the computationally-derived ligand were uploaded to the LigRMSD 1.0 server5 and an RMSD 

value was calculated. 

 

Docking with AutoDock Vina 

The structurally optimized fragments for 2WEJ, 1I9L, 6E6V, and 6E6W were docked 

using the AutoDock Vina software (version 1.2.0, The Scripps Research Institute, La Jolla CA, 

2021).  The protein structure was considered rigid.  The cubic grid for the docking experiment 

was chosen so that the whole protein was covered.  As default parameters, the energy range 

was set at 4 and the exhaustiveness at 8.  The best scored binding pose was compared with the 

crystallographically determined binding pose. 

 

Docking with SwissDock  

The structurally optimized fragments 2WEJ, 1I9L, 6E6V, and 6E6W were docked using 

SwissDock (Swiss Institute of Bioinformatics, Lausanne, 2021).  The protein structure was 
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considered rigid.  No information about the binding pocket was provided, allowing docking 

towards the whole protein.  The best scored binding pose was compared with the 

crystallographically determined binding pose. 
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SUPPORTING FIGURES AND TABLES 

Table S1.  Percent sequence identity and percent sequence coverage between proteins.  

Protein PDB 
Percent 

Identity 

Percent 

Coverage 
Protein PDB 

Percent 

Identity 

Percent 

Coverage 
Protein PDB 

Percent 

Identity 

Percent 

Coverage 

hCAII 4MTY Parent Parent KDM 2VD7 Parent Parent PAN 6DCZ Parent Parent 

 1IF8 100 99  3PDQ 100 100  4E5I 92.97 96 

 1I9L 99 99  4GD4 100 100  4E5J 92.97 96 

 2HD6 100 99  4URA 100 94  6E3M 100 100 

 1KWR 100 100  5A7N 100 100  6E3N 100 100 

 3K34 100 100  5A7O 99.74 100  6E3O 100 100 

 3MNA 100 100  5A7P 100 100  6E3P 100 100 

 3MMF 100 100  5A7Q 100 100  6E4C 100 100 

 3MZC 100 100  5A7S 100 100  6E6V 100 100 

 3NON 100 100  5A7W 
99.74 - 

100* 
100  6E6W 100 100 

 3N4B 100 100  5A80 100 100     

 4ILX 100 98  5ANQ 100 94     

 4ITP 100 98  5F5I 100 95     

 4XE1 100 100  5VMP 97.33 98     

 5BYI 100 100  6CG2 100 91     

 5E2R 100 100         

 5LJK 100 99         

 5N1S 100 100         

 5N1R 100 100         

 5N24 100 100         

 6EQU 100 100         

 6IOW 100 100         

 6SDS 100 100         

* Two different sequences reported in PDB accession code 5A7W. 
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a)  

b)  

Figure S1.  Binding pose of MBP 2,4-pyridinedicarboxylic acid:  a) restricted to a box of 20 Å 

centered around the KDM active site metal ion (where the MBP ultimately binds), or b) without 

any restrictions.  Without any restrictions, the MBP does not bind at the active site (left), but 

rather at a distal site (right, protein image rotated ~120 to show docked site) in KDM.  The 

distal site is Protein (PAN) shown as gray surface, active site metals shown as cyan surface, and 

MBP shown as sticks colored by atom type. 
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Figure S2.  Chemical Structures of the docked fragment as well as full length inhibitors for 

hCAII.  Inhibitor naming is associated with their corresponding PDB accession code.6-23 
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Figure S3.  Chemical Structures of the docked fragment as well as full length inhibitors for 

KDM.  Inhibitor naming is associated with their corresponding PDB accession code.2, 24-31 

 

 

Figure S4.  Chemical Structures of the docked fragment as well as full length inhibitors for 

PAN.  Inhibitor naming is associated with their corresponding PDB accession code.3, 32-33 
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Table S2.  Root-mean-square deviation of atomic positions (RMSD) between the 

computational model and the MBP of the evaluated PDB structures. 

Protein PDB ID RMSD Protein PDB ID RMSD Protein PDB ID RMSD 

hCAII Model 
 

KDM Model  PAN Model  

 1I9L 0.71  2VD7 0.5  4E5J 1.14 

 1IF8 0.85  3PDQ 0.22  4E5I 1.92 

 1KWR 0.87  4GD4 0.69  6E4C 0.36 

 2HD6 0.91  4URA 0.69  6E3N 0.42 

 3K34 0.86  5A7N 0.23  6DCZ 0.69 

 3MMF 0.76  5A7O 0.47  6E3M 1.07 

 3MNA 0.77  5A7P 0.44  6E6W 0.30 

 3MZC 1.01  5A7Q 0.93  6E3P 0.76 

 3N0N 0.91  5A7S 0.76  6E3O 0.33 

 3N4B 0.93  5A7W 0.45  Average 0.78 

 4ILX 0.97  5A80 0.47 

 4ITP 0.79  5ANQ 0.24 

 4MTY 0.84  5F5I 0.56 

 4XE1 1.08  5VGI 0.71 

 5BYI 0.86  6CG2 0.46 

 5E2R 1.02  Average 0.52 

 5N1R 1.03 

 5N24 1.10 

 6EQU 0.96 

 6I0W 0.77 

 6SDS 0.79 

 
Average 

 

0.90 
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Figure S5.  Overlay between the docked MBP using GOLD (green) and the MBP fragment 

from the corresponding PDB structures for:  (A) hCAII, (B) KDM, (C) PAN, and (D) PAN 

(perspective of this pose is rotated by 90° compared to the other images to highlight the ‘tilt’ of 

the MBP poses).  Angle between the carbon atom of the carboxyl group of Asp108 (purple), a 

centroid between both metal centers (green), and a centroid of the aromatic MBP moiety 

(yellow) for (E) 4E5I (175° binding angle) and (F) 6E3N (145° binding angle). 

 

 

Figure S6.  Overlay between the computationally docked MBP (green) and corresponding 

MBPs from PDB structures for hCAII (gray).  Using a modified scoring function with a metal-

binding bias the benzenesulfonamide MBP is much better aligned with the experimentally 

determined structures (compare with Figure S5A). 
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Table S3.  Root-mean-square deviation of atomic positions (RMSD) between the 

computational model using a scoring function with a metal-binding bias and only the MBP of 

the evaluated PDB structures. 

Protein PDB ID RMSD 

hCAII Model  

 1I9L 0.41 

 1IF8 0.60 

 1KWR 0.34 

 2HD6 0.46 

 3K34 0.42 

 3MMF 0.30 

 3MNA 0.27 

 3MZC 0.42 

 3N0N 0.34 

 3N4B 0.38 

 4ILX 0.34 

 4ITP 0.29 

 4MTY 0.46 

 4XE1 0.51 

 5BYI 0.51 

 5E2R 0.53 

 5LJQ 0.38 

 5N1R 1.19 

 5N1S 0.52 

 5N24 0.53 

 6EQU 0.48 

 6I0W 0.56 

 6SDS 0.53 

 Average 0.47 
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Figure S7.  Active site alignment for: (A) PAN, (B) KDM, and (C) hCAII. 

 

 

Figure S8.  Comparison of binding modes of computationally derived hCAII inhibitor poses 

(green) and crystallographically determined structures (gray) from PDB entries (PDB entry 

codes shown). 
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Figure S9.  Comparison of binding modes of computationally derived KDM inhibitor poses 

(green) and crystallographically determined structures (gray) from PDB entries (PDB entry 

codes shown). 

 



 S16 

 

Figure S10.  Comparison of binding modes of computationally derived PAN inhibitor poses 

(green) and crystallographically determined structures (gray) from PDB entries (PDB entry 

codes shown). 
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Table S4.  RMSD values of computationally and crystallographically determined full-length 

inhibitors of the enzyme-inhibitor complexes. 

Enzyme Entry RMSD Reference 
hCAII 1I9L 1.69 6 

 1IF8 3.18 7 

 1KWR 1.07 8 

 2HD6 1.74 9 

 3K34 1.91 10 

 3MMF 1.67 11 

 3MNA 1.20 11 

 3N0N 3.79 12 

 3N4B 3.03 12 

 3MZC 3.73 12 

 4ILX 4.11 13 

 4ITP 0.95 14 

 4MTY 1.86 15 

 4XE1 1.33 16 

 5BYI 2.79 17 

 5E2R 3.07 18 

 5LJQ 4.58 19 

 5N1R 2.80 20 

 5N1S 2.87 20 

 5N24 2.61 20 

 6EQU 2.48 21 

 6I0W 1.24 22 

 6SDS 2.35 23 

 Average 2.44  

    

KDM 2VD7 0.52 24 

 3PDQ 0.85 25 

 4GD4 0.69 26 

 4URA 0.67 27 

 5A7N 1.04 28 

 5A7O 2.77 28 

 5A7P 1.30 28 

 5A7Q 1.02 28 

 5A7S 1.32 28 

 5A7W 2.70 28 

 5A80 3.92 28 

 5ANQ 2.10 2 

 5F5I 1.42 29 

 5VGI 1.79 31 

 6CG2 1.46 30-31 

 Average 1.57  

    

PAN 4E5I 4.22 32 

 4E5J 3.05 32 

 6DCZ 0.69 33 

 6E3M 2.61 3 

 6E3N 0.65 3 

 6E3O 0.83 3 

 6E3P 2.09 3 

 6E4C 0.57 3 

 6E6W 0.39 3 

 Average 1.60  
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Figure S11.  Comparison of binding modes of computationally derived hCAII inhibitor poses 

upon docking with AutoDock Vina (red), our reported docking procedure (green), and 

crystallographically determined structures (gray) from PDB entries:  a) 2WEJ, b) 1I9L, c) 

6E6V, d) 6E6W. 
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Figure S12.  Comparison of binding modes of computationally derived PAN inhibitor poses 

upon docking with SwissDock (red), our reported docking procedure (green), and 

crystallographically determined structures (gray) from PDB entries:  a) 2WEJ (the active site is 

found on the other side of this protein and therefore only the with SwissDock determined 

binding pose can be seen), b) 1I9L, c) 6E6V, d) 6E6W. 
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