Supporting Information

Evaluation of Nitric Oxide Fluctuation *via* a Fast-responsive Fluorescent Probe in Idiopathic Pulmonary Fibrosis Cell and Mice Models

Feifei Xu, [†] Qing Wang, [†] Ling Jiang, [†] Fawei Zhu, [†] Lei Yang, ^{†*} Shusheng Zhang ^{†*} and Xiangzhi Song ^{‡*}

[†]Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.

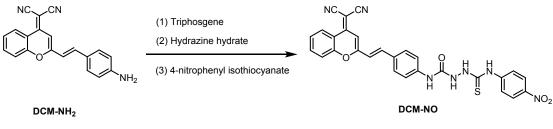
[‡]College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.

*Corresponding authors:

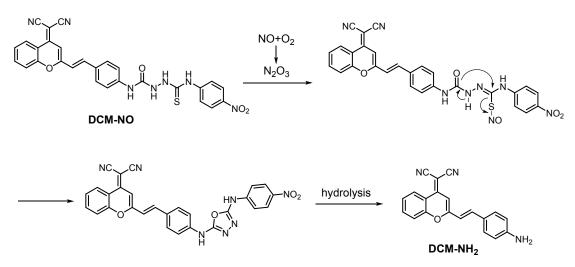
Lei Yang: Tel: +86-539-7258620. E-mail: <u>yanglei@lyu.edu.cn</u> Shusheng Zhang: Tel: +86-539-8766107. Email: <u>shushzhang@126.com</u> Xiangzhi Song: Tel: +86-731-88836954. Email: <u>xzsong@csu.edu.cn</u>

Table of Contents

1. Table S1	S2
2. Table S2	S3
3. Experimental Procedures	S4
4. Supplementary Figures	S6


Probe	Response time (min)	analyte	Stokes shift (nm)	detection limit	Literature
$ \begin{array}{c} $	30	GGT	10	7.6 mU/L	Sensor. Actuat. B-Chem. 2020, 322, 128565
	4	ONOO-	160	85 nM	Anal. Chem. 2019, 91, 11461-11466
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	15	GSTs	80	10 μg/L	Anal. Chem. 2019, 91, 5424-5432
	60	COX-2	120	11 μg/L	J. Mater. Chem. B, 2021, 9, 6226-6233
NH2 F ^{-B-N} F	60	NO	14	57 nM	Anal. Chem. 2020, 92, 699-706
$ \begin{array}{c} $	25	H ₂ O ₂	30	100 nM	ACS Sens. 2021, 6, 1228-1239
	1	NO	198	17 nM	This work

1. Table S1 Fluorescent probes for IPF.


Probe	Response time (min)	Stokes shift (nm)	detection limit	Literature
$\begin{array}{c} & NH_2 \\ & \downarrow & NH_2 \\ & \downarrow & NH_2 \\ & 0 \\ & N \\ & O \\ & HN \\ & N \\ & O \\ & N \\ & O \end{array}$	-	90	5 nM	J. Am. Chem. Soc. 2012, 134, 17486-17489
	1.5	19	14 nM	Anal. Chem. 2017, 89, 9620-9624
	0.3	39	47.6 nM	ACS Sens. 2019, 4, 309-316
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	30	23	56 nM	Anal. Chem. 2019, 91, 4301-4306
	<1	179	242 nM	Anal. Chem. 2020, 92, 5064-5072
Me ₂ N Si NMe ₂	<1	35	0.12 nM	Chem. Sci., 2017, 8, 6857-6864
N C C C C C C C C C C C C C C C C C C C	2	140	37 nM	Chem. Sci., 2017, 8, 4533-4538

2. Table S2 Fluorescent probes for NO.

3. Experimental Procedures

Scheme S1. Synthetic route of DCM-NO.

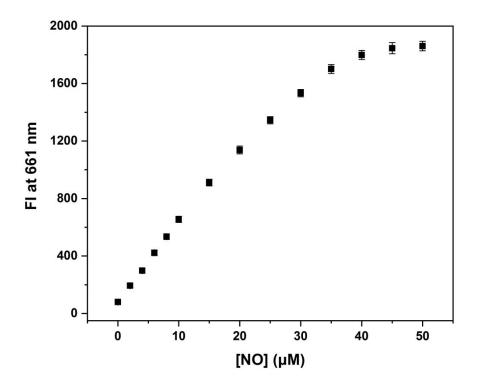
Scheme S2. The proposed response mechanism of probe DCM-NO to NO.

Materials and Instruments.

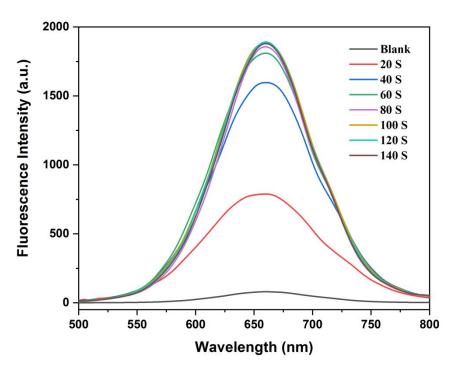
NMR spectra were measured with a Bruker 400 MHz spectrometer. High-resolution mass spectra were taken on a Bruker Daltonics MICROTOF-Q II mass spectrometer. The fluorescence spectra were recorded by a Hitachi F-4600 spectrometer. UV-vis absorption spectra were recorded by an Agilent Cary 60 spectrophotometer. HPLC analyses were performed on an Agilent 1200 HPLC system. pH values of the aqueous media were measured with a Leici PHS-3C meter. The fluorescent images were measured on a TCS SP8 II (Nikon C2plus, Germany) confocal laser scanning microscope. The vivo imaging was performed by an IVIS Lumina LT vivo imaging system. MRC-5 and MH-S cells were obtained from the Fuheng Biotechnology Co., LTD. All male C57BL/6 mice were purchased from Wuhan Servicebio Biotechnology Co., LTD. All reagents were obtained from commercial suppliers and were used without further purification.

Preparation of Analytes.

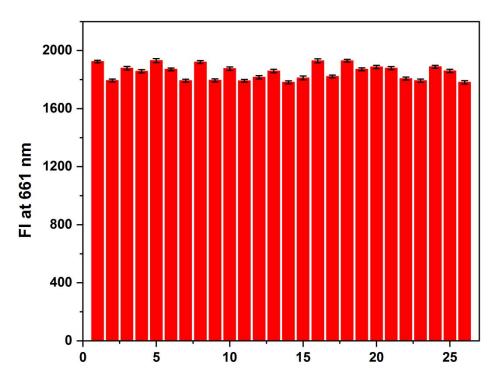
The testing solutions of NaClO, H_2O_2 , Na₂S, Cys, Hcy, GSH, MgCl₂, CaCl₂, CuSO₄, (CH₃COO)₂Pb, FeCl₂, FeCl₃, ZnCl₂, Na₂CO₃, NaNO₂, NaNO₃, KOH, Na₂SO₃, KI were prepared by dissolving or diluting each of them in double-distilled water. ONOO⁻ was prepared according to previous literature and the concentrated was determined by absorbance at 302 nm. Hydroxyl radical (•OH) was generated in the Fenton system from FeSO₄ and H₂O₂. ^[1]


H&E and Masson Staining

Histology analysis of lung from each group was carried out by sacrificing the mice. The lungs were fixed in 10% paraformaldehyde solution, and then embedded in paraffin. The lung sections were observed by an optical microscope after stained with H&E and Masson.


Imaging of NO in Lung Sections

Lung sections of each group were cultured with probe **DCM-NO** (10 μ M) for 30 min, washed three times with PBS and imaged with confocal laser scanning microscope.


4. Supplementary Figures

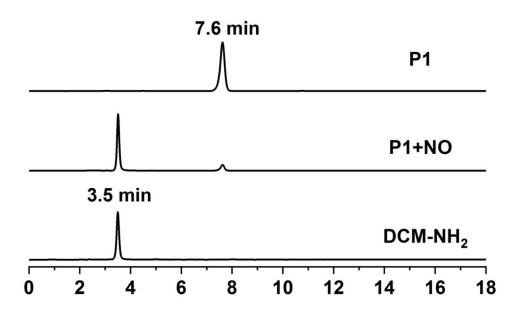
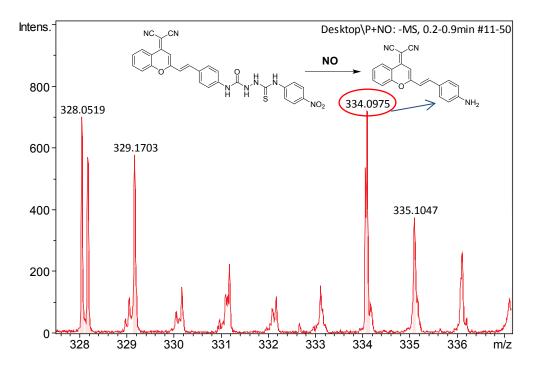
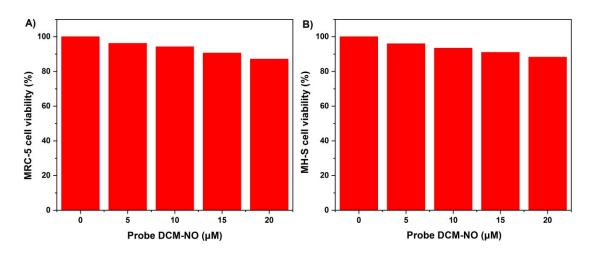
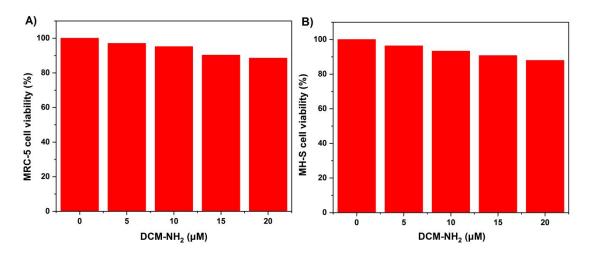

Figure S1. Plot of emission intensity at 661 nm of probe **DCM-NO** (10 μ M) upon the addition of NO (0-50 μ M) in PBS buffer (10 mM, pH 7.4, including 30% DMSO).

Figure S2. Time-dependent fluorescence spectra of probe **DCM-NO** (10 μ M) with NO (50 μ M) in PBS buffer (10 mM, pH 7.4, including 30% DMSO).

Figure S3 Fluorescence intensity of probe **DCM-NO** (10 μ M) with NO (50 μ M) in the presence of various relevant analytes (50 μ M) in PBS buffer (10 mM, pH 7.4, including 30% DMSO). The analytes include Na⁺, Mg²⁺, Ca²⁺, K⁺, Cu²⁺, Fe²⁺, Fe³⁺, Zn²⁺, Pb²⁺, AcO⁻,SO₄²⁻, CO₃²⁻, NO₂⁻, Cl⁻, NO₃⁻, OH⁻, SO₃²⁻, I⁻, S²⁻, Cys, Hcy, GSH, ClO⁻, ONOO⁻, H₂O₂, •OH.

Figure S4. HPLC chromatograms of probe **DCM-NO**, compound **DCM-NH**₂, and the reaction mixture of probe **DCM-NO** with NO. Conditions: eluent, H₂O/CH₃CN (v/v, 1/9), flow rate, 0.8 mL/min; temperature, 25 °C; detection wavelength, 455 nm; injection volume, 10 μ L.

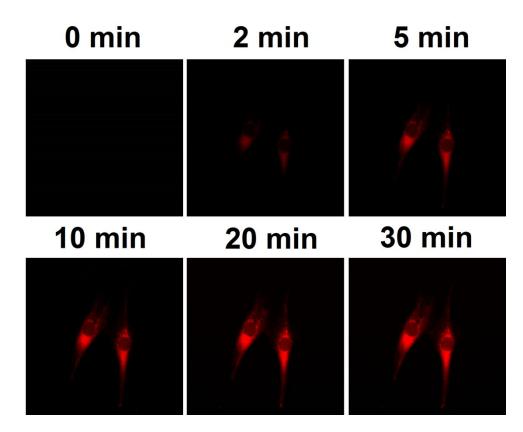

Figure S5. HRMS spectrum of the reaction product from probe DCM-NO with NO.

Figure S6. Cytotoxicity assay of probe **DCM-NO** at different concentration for MRC-5 (A) and MH-S (B) cells.

Figure S7. Cytotoxicity assay of compound **DCM-NH**₂ at different concentration for MRC-5 (A) and MH-S (B) cells.

Figure S8 Confocal fluorescence images of NO in IPF cell models at diverse time points: 0, 2, 5, 10, 20, and 30 min as control.

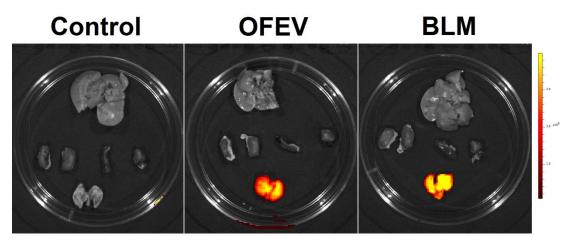
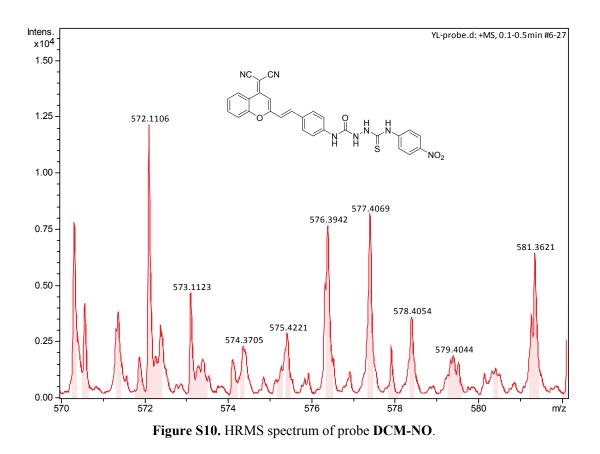



Figure S9. Images of isolated organs, involving heart, liver, spleen, lung, and kidney.

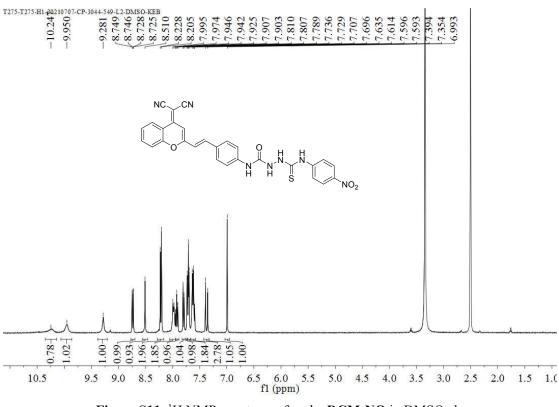


Figure S11. ¹H NMR spectrum of probe DCM-NO in DMSO-d₆.

(1) Mao, Z.; Jiang, H.; Li, Z.; Zhong, C.; Zhang, W.; Liu, Z. An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide. *Chem. Sci.* **2017**, *8*, 4533-4538.