Supporting Information

Tuning Luminescence of Lanthanide-doped Upconversion Nanoparticles through Simultaneous Binary Cation Exchange

Chen Li,[†] Xiyan Li,^{‡*} and Xiaowang Liu^{†§*}

[†]College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Centre for Nano Science and Technology, Anhui Normal University, Wuhu 241000, China

[‡]Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin 300350, China; Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China; Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, China

[§]Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.

*E-mail: <u>xiyan.li@nankai.edu.cn</u>; iamxwliu@nwpu.edu.cn

Figure S1. (a and c) TEM images of NaYF₄:Yb/Er (18/2 mol%) and core@shell NaYF₄:Yb/Er (18/2 mol%)@NaYF₄ NPs. (b and d) The particle size distributions of the corresponding NaYF₄:Yb/Er (18/2 mol%) and core@shell NaYF₄:Yb/Er (18/2 mol%)@NaYF₄ NPs.

Figure S2. FT-IR spectrum comparison of the oleate-capped $NaYF_4$:Yb/Er (18/2 mol %)@NaYF₄ nanoparticles before and after removing the surface ligands.

Figure S3. (a) TEM images of core@shell NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs after removing surface ligand. (b) The particle-size distribution of the as-prepared ligand-free core@shell NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs. Note that the average size was estimated to be 29 nm.

Figure S4. Upconversion spectrum comparison of core@shell NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ nanoparticles before and after removing the surface ligand.

Figure S5. The TEM and elemental mapping images of Tb^{3+} -doped CeF_3 microparticles.

Figure S6. XRD patterns of $NaYF_4$ and Tb^{3+} -exchanged $NaYF_4$ NPs. Excitation and emission profiles of an aqueous dispersion of as-prepared $NaYF_4$:Tb NPs.

Figure S7. (a) The contents of Ce^{3+} and Tb^{3+} ions in the cation-exchanged core@shell NaYF₄:Yb/Er (18/2 mol%)@NaYF₄ NPs as a function of C_{Tb}^{3+}/C_{Ce}^{3+} in the reaction mixture. (b) The utilization efficiencies of incoming Ce^{3+} and Tb^{3+} ions as a function of C_{Tb}^{3+}/C_{Ce}^{3+} in the reaction mixture.

Figure S8. Excitation spectra (purple curve), and down-conversion emission spectra of NaYF₄:Yb/Er (18/2 mol %)@NaYF₄:Ce/Tb (blue curve), and NaYF₄:Yb/Er (18/2 mol%)@NaYF₄:Tb (red curve) under 254 nm excitation respectively.

Figure S9. Schematic of the role of a thin layer of $NaYF_4$ lattices in protecting upconversion excitation energy from surface quenchers. The integrity of the surface $NaYF_4$ layer of the cation-exchanged NPs shows high dependence on the Tb^{3+} -to- Ce^{3+} molar ratio in the reaction solution.

Figure S10. (a-f) TEM images of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs after being reacted with a combination of Ce³⁺ (16 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (g-l) TEM images of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs after being reacted with a combination of Ce³⁺ (32 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h.

Figure S11 (a) XRD patterns of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (16 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (b) XRD patterns of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (32 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h.

Figure S12. (a) Down-shifting emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (16 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (b) The peak emission at 543 nm as a function of the concentration of Tb³⁺ ions. (c) Upconversion emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (16 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (d) The peak emission at 654 nm as a function of the concentration of Tb³⁺ ions.

Figure S13. (a) Down-shifting emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (32 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (b) The peak emission at 543 nm of the resultant NPs as a function of the concentration of Tb³⁺ ions. (c) Upconversion emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaYF₄ NPs before and after being reacted with a combination of Ce³⁺ (32 mM) and Tb³⁺ (0, 2, 4, 8, 12, 16 mM) at 90 °C for 1 h. (d) The peak emission at 654 nm of the resultant NPs as a function of the concentration of Tb³⁺ ions.

Figure S14. (a) Downshifting and (b) upconversion emission spectra of the resultant NaYF₄: Yb/Er/Ce/Tb and NaYF₄: Yb/Er (18/2 mol%)@NaYF₄:Ce/Tb NPs. Note that the downshifting and upconversion emissions were measured under excitation at 254 and 980 nm, respectively.

Figure S15. (a-f) TEM images of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaGdF₄ NPs after being reacted with a combination of Ce³⁺ (8 mM) and Tb³⁺ (0, 1, 2, 4, 8, 12 mM) at 90 °C for 1 h.

 $\label{eq:Figure S16. XRD patterns of NaYF_4:Yb/Er (18/2 mol \%)@NaGdF_4 NPs before and after being reacted with a combination of Ce^{3+} (8 mM) and Tb^{3+} (0, 1, 2, 4, 8, 12 mM) at 90 °C for 1 h.$

Figure S17. (a) Down-shifting emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaGdF₄ NPs before and after being reacted with a combination of Ce³⁺ (8 mM) and Tb³⁺ (0, 1, 2, 4, 8, 12 mM) at 90 °C for 1 h. (b) The peak emission at 543 nm of the resultant NPs as a function of the concentration of Tb³⁺ ions. (c) Upconversion emission profiles of ligand-free NaYF₄:Yb/Er (18/2 mol %)@NaGdF₄ NPs before and after being reacted with a combination of Ce³⁺ (8 mM) and Tb³⁺ (0, 1, 2, 4, 8, 12 mM) at 90 °C for 1 h. (d) The peak emission at 654 nm of the resultant NPs as a function of the concentration of Tb³⁺ ions.

Figure S18. (a) TEM image of ligand-free core@shell NaYF₄:Yb/Er (18/2 mol%)@NaGdF₄ NPs. (b) TEM image of core@shell NaYF₄:Yb/Er (18/2 mol%)@NaGdF₄:Ce/Eu NPs. (c and d) Downshifting and upconversion profiles for NaYF₄:Yb/Er (18/2 mol%)@NaGdF₄:Ce/Eu NPs. Insets: photographs of the corresponding colloidal dispersions under UV (254 nm) and NIR (980 nm) excitation.

Figure S19. (a) XRD patterns of ligand-free NaGdF₄:Yb/Tm (49/1 mol %)@NaYF₄ before and after being reacted with a mixture of Ce³⁺ (8 mM) and Tb³⁺ (12 mM) at 90 °C for 1 h. (b and c) TEM and size distribution of the cation-exchanged NaGdF₄:Yb/Tm (49/1 mol %)@NaYF₄:Ce/Tb NPs. (d) Upconversion and downshifting emission profiles of the cation-exchanged NaGdF₄:Yb/Tm (49/1 mol %)@NaYF₄:Ce/Tb NPs. NPs.

Figure S20. (a) XRD patterns of ligand-free NaErF₄: Tm (0.5 mol %)@NaYF₄ before and after being reacted with a mixture of Ce³⁺ (8 mM) and Tb³⁺ (8 mM) at 90 °C for 1 h. (b and c) TEM and size distribution of the cation-exchanged NaErF₄: Tm (0.5 mol %)@NaYF₄:Ce/Tb NPs. (d) Upconversion and downshifting emission profiles of the cation-exchanged NaErF₄: Tm (0.5 mol %)@NaYF₄:Ce/Tb NPs.