Thermally Stimulated Liquid Na–CaCO₃ Reaction: A Physico-Geometrical Kinetic Approach toward the Safety Assessment of Na-Cooled Fast Reactor

Nobuyoshi Koga^{1,*} and Shin Kikuchi²

¹Department of Science Education, Division of Educational Sciences, Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan ²Fast Reactor Cycle System Research and Development Center, Japan Atomic Energy Agency, 4002 Narita, Oarai, Higashi-Ibaraki 311-1393, Japan

Contents

Figure S1. XRD pattern of the CaCO3 sample. \$2 Figure S2. SEM images of the CaCO3 sample particles. \$2 S2. Liquid Na-CaCO3 powder reaction \$2 Figure S3. XRD pattern of the solid product recovered after the Na-CaCO3 reaction. \$2 Figure S4. Phase diagram of the Na-CaCO3 system drawn using a FactSage software [34]. \$2 Figure S5. Change in the appearance of the top surface of the sample during the DSC measurements for the liquid Na-CaCO3 powder reaction at a β of 5 K min ⁻¹ : (a) 300 K, (b) 374 K (the melting point of Na), (c) 717 K (the onset temperature of the liquid Na-CaCO3 powder reaction), (d) 751 K (the first peak top), (e) 789 K (the second peak top), and (f) 873 K (the shoulder at the ending stage). \$2 S3. Kinetics of the liquid Na-CaCO3 powder (sampling conditions S1) at different β values. \$3 Figure S6. DSC curves for the Na-CaCO3 powder (sampling conditions S1) at different β values. \$3 Figure S8. Kissinger plot for the first peak top of the exothermic DSC peaks attributed to the liquid Na-CaCO3 powder reaction. \$3 S4. Kinetics of the liquid Na-CaCO3 pellet reaction \$3 S4. Kinetics of the liquid Na-CaCO3 pellet reaction \$3 S5. Kissinger plot for the first peak top of the exothermic DSC peaks attributed to the liquid Na-CaCO3 powder reaction \$3 S4. Kinetics of the liquid Na-CaCO3 pellet reaction \$3 S4. Kinetics of the liquid Na-CaCO3 pellet r
Figure S2. SEM images of the CaCO ₃ sample particles
S2. Liquid Na–CaCO ₃ powder reaction
Figure S3. XRD pattern of the solid product recovered after the Na–CaCO ₃ reaction
Figure S4. Phase diagram of the Na–CaCO ₃ system drawn using a FactSage software [34]
Figure S5. Change in the appearance of the top surface of the sample during the DSC measurements for the liquid Na–CaCO ₃ powder reaction at a β of 5 K min ⁻¹ : (a) 300 K, (b) 374 K (the melting point of Na), (c) 717 K (the onset temperature of the liquid Na–CaCO ₃ powder reaction), (d) 751 K (the first peak top), (e) 789 K (the second peak top), and (f) 873 K (the shoulder at the ending stage)
Na–CaCO ₃ powder reaction at a β of 5 K min ⁻¹ : (a) 300 K, (b) 374 K (the melting point of Na), (c) 717 K (the onset temperature of the liquid Na–CaCO ₃ powder reaction), (d) 751 K (the first peak top), (e) 789 K (the second peak top), and (f) 873 K (the shoulder at the ending stage)
temperature of the liquid Na–CaCO ₃ powder reaction), (d) 751 K (the first peak top), (e) 789 K (the second peak top), and (f) 873 K (the shoulder at the ending stage)
top), and (f) 873 K (the shoulder at the ending stage)
S3. Kinetics of the liquid Na–CaCO ₃ powder reaction
Figure S6. DSC curves for the Na–CaCO ₃ powder (sampling conditions S1) at different β values
Figure S7. Repeatability of the DSC exothermic peaks for the liquid Na–CaCO ₃ powder reaction recorded at a β of 5 K min ⁻¹
5 K min ⁻¹
Figure S8. Kissinger plot for the first peak top of the exothermic DSC peaks attributed to the liquid Na–CaCO ₃ powder reaction
powder reaction. s3 S4. Kinetics of the liquid Na–CaCO ₃ pellet reaction. s3 Figure S9. Kissinger plot for the peak top of the exothermic DSC peaks attributed to the liquid Na–CaCO ₃ pellet reaction. s3 Figure S10. EPMA mapping of the cross section of the product of the liquid Na–CaCO ₃ pellet reaction. s3 Mathematical deconvolution analysis s4 Pearson IV function s4 Asymmetric logistic function s4 Figure S11. Typical results of the MDA using different statistical functions applied to the DSC curve for the liquid Na–CaCO ₃ pellet reaction, at a β of 5 K min ⁻¹ : (a) Pearson IV. (b) asymmetric logistic, and (c) Weibull functions.
 S4. Kinetics of the liquid Na–CaCO₃ pellet reaction
 Figure S9. Kissinger plot for the peak top of the exothermic DSC peaks attributed to the liquid Na–CaCO₃ pellet reaction. Figure S10. EPMA mapping of the cross section of the product of the liquid Na–CaCO₃ pellet reaction. s3 Mathematical deconvolution analysis Pearson IV function. s4 Asymmetric logistic function s4 Figure S11. Typical results of the MDA using different statistical functions applied to the DSC curve for the liquid Na–CaCO₃ pellet reaction.
 reaction
 Figure S10. EPMA mapping of the cross section of the product of the liquid Na–CaCO₃ pellet reaction
 Mathematical deconvolution analysis
 Pearson IV function
Asymmetric logistic function
Figure S11. Typical results of the MDA using different statistical functions applied to the DSC curve for the liquid Na–CaCO ₃ pellet reaction at a β of 5 K min ⁻¹ : (a) Pearson IV. (b) asymmetric logistic, and (c) Weibull functions.
Na-CaCO ₃ pellet reaction at a β of 5 K min ⁻¹ : (a) Pearson IV. (b) asymmetric logistic, and (c) Weibull functions.
Figure S12. Results of the MDA using Pearson IV function for the liquid Na–CaCO ₃ pellet reaction at different β
values: (a) 2.5, (b) 5.0, (c) 7.5, and (d) 10 K min ⁻¹
Figure S13. Changes in the contribution of each reaction step of the liquid Na–CaCO ₃ pellet reaction with β
Figure \$14 Kinetic curves for each reaction step of the liquid Na CaCO nellet reaction obtained via MDA: (a)
first and (b) second reaction steps
Figure S15 $F_{\rm c}$ values at different α values for each reaction step of the liquid Na_CaCO ₂ nellet reaction calculated
from the Friedman plot applied to the kinetic curves obtained via MDA: (a) first and (b) second reaction steps 5
Figure S16. Experimental master plots of $(da/d\theta)$ versus a for each reaction step of the liquid Na_CaCO ₂ nellet
reaction calculated from the kinetic curves obtained via MDA and using the average $F_{a,i}$ values: (a) first and (b)
second reaction steps $c_{a,i}$ values. (a) first and (0)
Table S1 Kinetic parameters for each reaction step of the liquid Na-CaCO ₂ nellet reaction determined through
MDA and a subsequent formal kinetic analysis

^{*} Corresponding Author, e-mail: nkoga@hiroshima-u.ac.jp

S1. Sample characterization

Figure S1. XRD pattern of the CaCO₃ sample.

Figure S2. SEM images of the CaCO₃ sample particles.

S2. Liquid Na–CaCO₃ powder reaction

Figure S3. XRD pattern of the solid product recovered after the Na–CaCO₃ reaction

Figure S4. Phase diagram of the Na–CaCO₃ system drawn using a FactSage software [34].

Figure S5. Change in the appearance of the top surface of the sample during the DSC measurements for the liquid Na–CaCO₃ powder reaction at a β of 5 K min⁻¹: (a) 300 K, (b) 374 K (the melting point of Na), (c) 717 K (the onset temperature of the liquid Na–CaCO₃ powder reaction), (d) 751 K (the first peak top), (e) 789 K (the second peak top), and (f) 873 K (the shoulder at the ending stage).

S3. Kinetics of the liquid Na–CaCO₃ powder reaction

Figure S6. DSC curves for the Na–CaCO₃ powder (sampling conditions S1) at different β values.

Figure S7. Repeatability of the DSC exothermic peaks for the liquid Na–CaCO₃ powder reaction recorded at a β of 5 K min⁻¹.

Figure S8. Kissinger plot for the first peak top of the exothermic DSC peaks attributed to the liquid Na–CaCO₃ powder reaction.

S4. Kinetics of the liquid Na–CaCO₃ pellet reaction

Figure S9. Kissinger plot for the peak top of the exothermic DSC peaks attributed to the liquid Na–CaCO₃ pellet reaction.

Figure S10. EPMA mapping of the cross section of the product of the liquid Na–CaCO₃ pellet reaction.

Mathematical deconvolution analysis

Pearson IV function

$$F(t) = \frac{a_0 \left[1 + \frac{\left(t - \frac{a_2 a_4}{2a_3} - a_1\right)^2}{a_2^2} \right]^{-a_3} \exp\left[-a_4 \left(\tan^{-1} \left(\frac{t - \frac{a_2 a_4}{2a_3} - a_1}{a_2} \right) + \tan^{-1} \left(\frac{a_4}{2a_3} \right) \right) \right]}{\left(1 + \frac{a_4^2}{4a_3^2} \right)^{-a_3}},$$
 (S1)

where a_0-a_4 indicate amplitude, center, width (>0), shape 1 (>0), and shape 2, respectively.

Asymmetric logistic function

$$F(t) = a_0 \left[1 + \exp\left(-\frac{t + a_2 \ln a_3 - a_1}{a_2}\right) \right]^{-a_3 - 1} a_3^{-a_3} (a_3 + 1)^{a_3 + 1} \exp\left(-\frac{t + a_2 \ln a_3 - a_1}{a_2}\right),$$
(S2)

where a_0-a_3 indicate amplitude, center, width (>0), and shape (>0), respectively.

Figure S11. Typical results of the MDA using different statistical functions applied to the DSC curve for the liquid Na–CaCO₃ pellet reaction at a β of 5 K min⁻¹: (a) Pearson IV, (b) asymmetric logistic, and (c) Weibull functions.

Figure S12. Results of the MDA using Pearson IV function for the liquid Na–CaCO₃ pellet reaction at different β values: (a) 2.5, (b) 5.0, (c) 7.5, and (d) 10 K min⁻¹.

The results of the MDA indicated systematic changes in the (c_1, c_2) values with β value: the decrease in the c_1 value and compensative increase in the c_2 value with an increase in the β value (Figure S13). The kinetic curves at different β values for each reaction step were obtained from the DSC peaks separated via MDA (Figure S14). The kinetic curves were subjected to the formal isoconversional analysis using the Friedman method, obtaining the $E_{a,i}$ values at different α_i values (Figure S15). Using the average $E_{a,i}$ value in the α_i range of 0.1–0.9, the experimental master plots of $(d\alpha_i/d\theta_i)$ versus α_i for each reaction step were obtained (Figure S16). Thereafter, the experimental master curves were fitted using the SB(m, n, p) function by optimizing the kinetic exponents (m_i, n_i, p_i) and A_i values. The kinetic parameters evaluated through MDA and the subsequent formal kinetic analysis are listed in Table S1, and they are used as the initial values for KDA.

Figure S13. Changes in the contribution of each reaction step of the liquid Na–CaCO₃ pellet reaction with β determined via MDA.

Figure S15. $E_{a,i}$ values at different α_i values for each reaction step of the liquid Na–CaCO₃ pellet reaction, calculated from the Friedman plot applied to the kinetic curves obtained via MDA: (a) first and (b) second reaction steps.

Figure S14. Kinetic curves for each reaction step of the liquid Na–CaCO₃ pellet reaction obtained via MDA: (a) first and (b) second reaction steps.

Figure S16. Experimental master plots of $(d\alpha_i/d\theta_i)$ versus α_i for each reaction step of the liquid Na–CaCO₃ pellet reaction calculated from the kinetic curves obtained via MDA and using the average $E_{a,i}$ values: (a) first and (b) second reaction steps.

1	5	
Kinetic parameter	First reaction step $(i = 1)$	Second reaction step $(i = 2)$
$E_{\mathrm{a},i}/\mathrm{kJ}~\mathrm{mol}^{-1,\mathrm{a}}$	141.6 ± 17.7	89.1 ± 18.3
A_i / s^{-1}	$(5.33 \pm 0.15) imes 10^7$	$(7.70 \pm 0.64) imes 10^4$
m_i	-3.70 ± 0.31	6.60 ± 0.09
n_i	1.89 ± 0.12	-0.76 ± 0.04
p_i	4.37 ± 0.30	-5.88 ± 0.09
R ^{2, b}	0.9941	0.9998

Table S1. Kinetic parameters for each reaction step of the liquid Na-CaCO3 pellet reaction, determined through MDA and a subsequent formal kinetic analysis.

^a Average over $0.1 \le \alpha_i \le 0.9$. ^b Determination coefficient of the nonlinear least-squares analysis.