Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry

Luis A. Macias and Jennifer S. Brodbelt*

Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712

Supporting Information

Supplementary Methods	52
Table 51. Structure of all standard lipids	53
Table S2. Product ion m/z values for HCD/UVPD fatty acid allyl ester fragments of common fatty acids.	S4
Table S3. E. coli CL structures characterized with sn-isomer and double bond resolution.	\$5
Table S4. PTC CL structures characterized with sn-isomer resolution. Isomer percentages are not reported for PA moieties composed of identical acyl chains (i.e. 18:2/18:2) or moieties for which the sn-isomer was not identified.	56
Scheme S1. Fragmentation pathway for dioxolane fragments.	\$7
Figure S1. (A) HCD (25 NCE) spectrum of sodium-cationized overmethylated CL (16:0/18:1)/(16:0/18:1) and (B) fragment map. Fragment ions of m/z 599.50 and m/z 711.49 are shown with 50x magnification.	58
Figure S2. Fragment map for 18:1(92)/16:0 dioxolane sn-isomer marked with fragments observed in HCD/UVPD spectrum in Fig 2C.	59
Figure S3. Positive mode nESI spectrum of PG 16:0/18:1(9Z) (A) prior to derivatization and (B) post TMSD methylation. Positive mode nESI spectrum of PG 18:1(9Z)/16:0 (C) prior to derivatization and (D) post TMSD methylation	S10
Figure S4. (A) CID (32 NCE) spectrum of sodium-cationized methylated PG 16:0/18:1(9Z) and (B) fragment map. (C) CID (32 NCE) spectrum of sodium-cationized methylated PG 18:1(9Z)/16:0 and (D) fragment map.	S11
Figure S5. Positive mode MS1 spectrum of methylated E. coli CL extract ionized from solution doped with sodium acetate.	512
Figure S6. HCD/UVPD analysis of m/z 1425 from methylated E. coli extract.	\$13
Figure S7. HCD/UVPD analysis of PA moieties from CL 51:2 at m/z 1413.98 produced from the methylated E. coli CL extract. (A) HCD/UVPD of moiety PA 32:1 (dioxolane m/z of 571.47) results in fragment ions in agreement with (B) 16:0/16:1 dioxolane structure. (C) HCD/UVPD of moiety PA 33:1 (dioxolane m/z of 585.48) results in fragment ions in agreement with (D) 16:0/17:1 dioxolane structure.	514
Figure S8. (A) HCD (25 NCE) spectrum of m/z 1413.98 from methylated E. coli CL extract. Fragment maps for (B) methylated CL (16:0/16:1)_(16:0/16:1)_(16:0/17:1) and (C) overmethylated CL (16:0/16:1)_(16:0/16:1) are shown.	\$15
Figure 59. Positive mode MS1 spectrum of methylated PTC total lipid extract ionized from solution doped with sodium acetate. (A) Scan from m/z 400-2000, with 20x magnification of CLs present in 1400-1600 m/z range. (B) Scan of m/z 1000 – 2000, showing predominance of CL species in this mass range.	S16
Figure S10. (A) HCD (25 NCE) spectrum and fragment map of m/z 1500.00 from methylated PTC total lipid extract. (B) MS3 UVPD (10 pulses at 3 mJ) of m/z 621.49 and corresponding fragment maps for 18:2(9Δ,12 Δ)/18:2(9Δ,12 Δ), 16:0/20:4, and 20:4/16:0 dioxolane structures.	517
Figure S11. (A) HCD (25 NCE) spectrum and fragment map of m/z 1502.01 from methylated PTC total lipid extract (B) MS3 UVPD (10 pulses at 3 mJ) of m/z 621.48 and corresponding fragment maps for 18:2/18:2, 16:0/20:4, and 20:4/16:0 dioxolane structures (C) MS3 UVPD (10 pulses at 3 mJ) of m/z 623.48 and corresponding fragment maps for 18:1/18:2 and 18:2/18:1 dioxolane structures.	518
Figure S12. HCD (25 NCE) spectrum and fragment map of m/z 1504.02 from methylated PTC total lipid extract (B) MS3 UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:2 and 18:2/18:1 dioxolane structures.	S19
Figure S13. (A) HCD (25 NCE) spectrum and fragment map of m/z 1530.04 from methylated PTC total lipid extract. (B) MS3 UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:1 and 18:1/18:2 dioxolane structures (C) MS3 UVPD (10 pulses at 3 mJ) of m/z 649.52 and corresponding fragment maps for 18:0/20:4, 18:2/20:2, and 20:2/18:2 dioxolane structures.	520
Figure S14. (A) HCD (30 NCE) spectrum and fragment map of m/z 806.57 from underivatized PTC total lipid extract, corresponding to sodium adducted PC 36:3. (B) MS3 UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:1 and 18:1/18:2 dioxolane structures.	521
Supplementary references	522

Supplementary Methods

Materials. CL standards, PG standards, and *E.coli* CL were purchased from Avanti Polar Lipids (Alabaster, Alabama). Molecular weights and structures for PG and CL standards are shown in **Table S1**. Sodium acetate, (trimethylsilyl)diazomethane (TMSD), HPLC grade water, and HPLC grade methanol were obtained from EMD Millipore (Billerica, MA). Chloroform was obtained from Sigma-Aldrich (St. Louis, MO). Methyl tert-butyl ether (MTBE) was obtained from Alfa Aesar (Haverhill, MA). A total lipid extract was prepared from a papillary thyroid carcinoma obtained from the Cooperative Human Tissue Network using a Bligh and Deyer lipid extraction protocol.¹ Prior to electrospray ionization, samples were prepared in a 50:50 methanol/chloroform solution doped with 1 mM sodium acetate at a final concentration of 2-10 μM for CL and PG standards and 10 ng/μL for biological extracts, unless otherwise indicated.

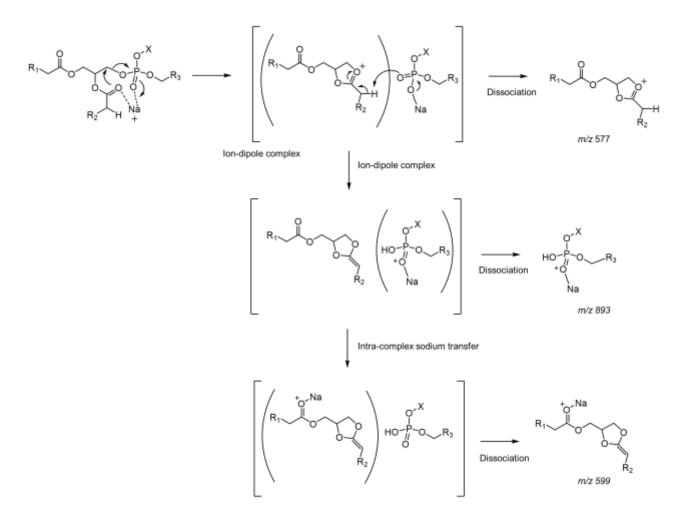
TMSD Methylation of Phospholipids. Phospholipid derivatization via TMSD is described elsewhere^{2,2–5} and adapted as follows: for lipid standards and the *E.coli* CL, 1 mg of material was dried out of the stock solution under a stream of nitrogen and resuspended in 500 μ L of upper phase of MTBE/methanol/water (100:30:25, v/v) mixture. For the papillary thyroid carcinoma, half of the material produced by the Bligh and Deyer extraction (approximately 1.5 mg) was solvated in 500 μ L of the MTBE/methanol/water mixture. To initiate the methylation reaction, 50 μ L of 2 M TMSD hexane solution were added to the lipid solution and incubated at room temperature for 20 minutes. The reaction was quenched with 10 μ L of glacial acetic acid, producing a visible color change from yellow to clear. The solution was subsequently washed 2x with 500 μ L of the lower phase of the MTBE/methanol/water mixture and centrifugation at 1500 g for 3 min. After the final wash, the organic phase was collected in a glass vial, dried down, and reconstituted at 1 mg/mL in chloroform for storage at -20 °C.

Nomenclature. Lipid shorthand notation was used as described by Liebsich et al.⁶ and modified as previously described for CL.⁷ Briefly, phospholipid classes are defined by letter abbreviations followed by sum composition or acyl chain composition as indicated by the number of carbons followed by ":" and the degrees of unsaturation. If *sn* regiochemistry is known, fatty acid identities are separated by "/" or otherwise by "_". If a double bond position is known, it is indicated in parentheses followed by Z, E, or Δ , to indicate the geometry as *cis*, *trans*, or unknown, respectively. For CL, PA moiety compositions are indicated in parentheses to inform that the individual identities are known. PA compositions are separated by "/" or "_" to indicate that the chirality of the central glycerol is known or unknown, respectively. For example, CL (16:0/18:0)_(16:0/18:1(9Z)) indicates a CL structure composed of one PA moiety with a 16:0 fatty acid at *sn*-1 position and a 18:0 fatty acid at the *sn*-2 position, coupled to a second PA moiety with a 16:0 at the *sn*-1 position and 18:1 at the *sn*-2 position, where the latter fatty acid incorporates a *cis* double bond between carbon 9 and 10 on the acyl chain.

 Table S1. Structure of all standard lipids.

Lipid Name	Lipid Structure	Exact Mass (Da)
1',3'-bis[1-palmitoyl-2-oleoyl-sn- glycero-3-phospho]-glycerol CL (16:0/18:1(9Z))/(16:0/18:1(9Z))		1405.00
1-palmitoyl-2-oleoyl-sn-glycero- 3-phospho-(1'-rac-glycerol) PG 16:0/18:1(9Z)	Состатов Соста Состатов Состатов Со	748.53
1-oleoyl-2-palmitoyl-sn-glycero- 3-phospho-(1'-rac-glycerol) PG 18:1(9Z)/16:0	С С С С С С С С С С С С С С С С С С С	748.53

Fatty Acid	Allyl ester <i>m/z</i>
14:0	291.2295
14:1	289.2138
15:0	305.2451
15:1	303.2295
16:0	319.2608
16:1	317.2451
16:2	315.2295
17:0	333.2764
17:1	331.2608
18:0	347.2921
18:1	345.2764
18:2	343.2608
18:3	341.2451
19:0	361.3077
19:1	359.2921
20:0	375.3234
20:1	373.3077
20:2	371.2921
20:3	369.2764
20:4	367.2608
20:5	365.2451
22:6	391.2608


Table S2. Product ion m/z values for HCD/UVPD fatty acid allyl ester fragments of common fatty acids.

10	HCD			UVPD						
(miz)	PA + Headgroup + Na (m/2)	PA Molety Sum Composition	Dioxolane + Na (m/2)	Fatty Acid Allyl Eater (m/2)	an-steraochemistry	PA taomer %	Double Bond Fragments (m/2)	Major CL Isomer		
1347.93	825.46	30:0	545.46	319.26	16:0/14:0	91.5		CL (16:0/14:0) (16:0/14:0)		
1347.23	623.46	30.0	343.40	291.23	14:0/16:0	8.5		GE (18/8/14/0)_(18/8/14/0)		
1371.93	823.45	30:1	543.44	291.23	14:0/16:1	89.6	433.33, 457.33			
				317.24	16:1/14:0	10,4	400.00, 401.00	CL (16:0/16:1(9A)_(14:0/16:1(9A))		
	851.48	32:1	571.47	319.26	16:0/16:1	94.5	461.36, 485.36	or frame itent (inventional)		
	401110			317.24	16:1/16:0	5.5	101101,100100			
1373.95	825.46	30:0	545.46	319.26	16:0/14:0	89.8		CL (16:0/16:1(9A)) (16:0/14:0)		
			313.10	291.23	14:0/16:0	10.2				
	851.48	32:1	571.47	319.26	16:0/16:1	94.6	461.36, 485.36			
				317.24	16:1/16:0	5.4				
	849.46	32:2	569.45	317.24	10:1/10:1	-	459.34, 483.34			
1397.95	851,48	32:1	571,47	319.26	16:0/16:1	\$5.7	461.36, 485.36	CL (16:0/16:1(9A))_(16:1(9A)/16:1(9A))		
	401.10			317.24	16:1/16:0	4.3	1011001100			
1399.96	851,47	32:1	571.47	319.26	16:0/16:1	95.5	461.36, 485.36	CL (16:0/16:1(9A) (16:0/16:1(9A))		
1000.00	401.11			317.24	16:1/16:0	4.5	101.00, 100.00	and term the stand T serve set strength		
	851.48	32:1	571.47	319.26	16:0/16:1	95.3	461.36, 485.36			
1400.97				317.25	16:1/16:0	4.7	101100, 100100	CL (16:0/16:0)_(16:0/16:1(9A))		
	853.49	32:0	573.49	319.26	16:0/16:0	-				
1403.99	853.49	32:0	573.49	319.26	16:0/16:0	-		CL (16:0/16:0)_(16:0/16:0)		
	849.46	32:2	569.45	317,24	16:1/16:1		459.34, 483.34	CL (18:1(11A)/16:1(3A))_(16:1(3A)/16:1(3A)		
1423.96				345.27	18:1/16:1	87.7				
	877.50	34:2	597,48	317.24	16:1/18:1	12.3	487.37, 511.37			
			674 A.R.	319,26	16:0/16:1	93.4	461.36, 485.36	CL. (18:1(11.5)/16:1(9.5))_(16:0/16:1(9.5))		
1425.98	851,48	32:1	571,47	317.24	16:1/16:0	6.6				
	877.50	342	222.10	345.27	18:1/16:1	88.3	107.07.011.07			
	8/7.50	34.2	597.48	317.24	16:1/18:1	11.7	487.37, 511.37			
	854.48	22.4		319.26	16:0/16:1	95.3		CL (16:0/18:1(11A)_(16:0/16:1(9A))		
4427.00	851.48	32:1	571.47	317.24	16:1/16:0	4.7	461.36, 485.36			
1427.99	870.64		800.40	319.26	16:0/18:1	88.3	100 00 010 00			
	879.51	34:1	599.50	345.28	18:1/16:0	11.7	489.39, 513.39			
4454.00	477.64		202.10	345.27	18:1/16:1	87.5	100 00 011 00			
1451.99	877.50	34.2	597.49	317.24	16:1/18:1	12.5	487.37, 511.37	CL (18:1(11A)/18:1(9A))_(18:1(11A)/18:1(9A)		
	877.50	34.2			222.10	345.27	18:1/16:1	88.6	102.02.01.02	
1454.01			597.49	317.24	16:1/18:1	11.4	487.37, 511.37	CL (18:1(11A)/16:1(9A))_(16:0/18:1(11A))		
				319.26	16:0/18:1	92.3				
	879.51	34:1	599.50	345.28	18:1/16:0	7.7	489.39, 513.39			
1456.02		34:1	599.50	319.26	16:0/18:1	90.4		CL (16:0/18:1(11A))_(16:0/18:1(11A))		
	879.51			345.27	18:1/16:0	9.6	489.39, 513.39			
1480.03	477.60		507.40	345.27	18:1/16:1	89.1	407 07 511 07			
	877.50	342	597.48	317.24	16:1/18:1	10.9	487.37, 511.37	CL (18:1(11A)/18:1(11A))_(18:1(11A)/16:1(9A)		
	905.53	36:2	625.52	345.27	18:1/18:1	-	515.41, 539.41			
1482.04	879.51	24-1	599.50	319.26	16:0/18:1	89.4	400 30 543 30			
	678.01	34:1	383.50	345.28	18:1/16:0	10.6	489.39, 513.39	CL (18:1(115)/18:1(115))_(16:0/18:1(115))		
	905.53	36:2	625.52	345.27	18:1/18:1	-	515.41, 539.41			

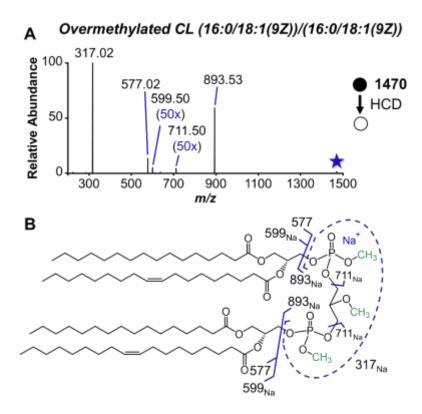
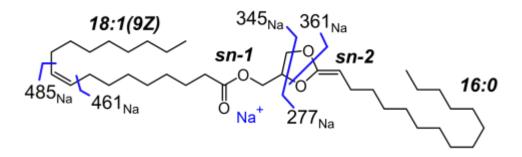
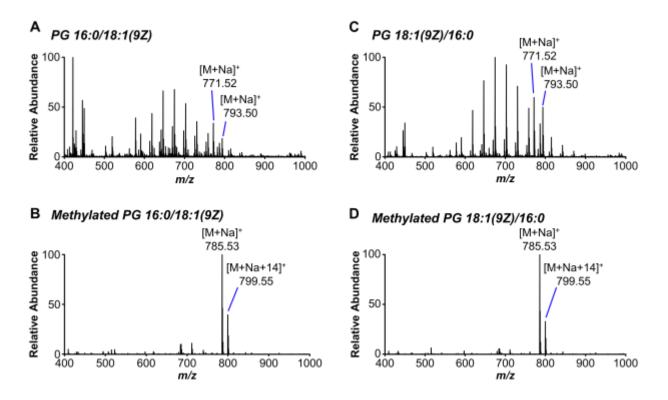
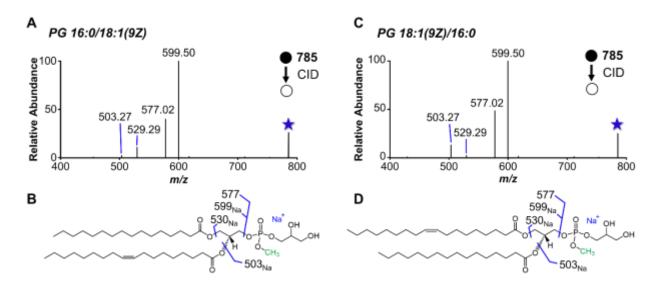
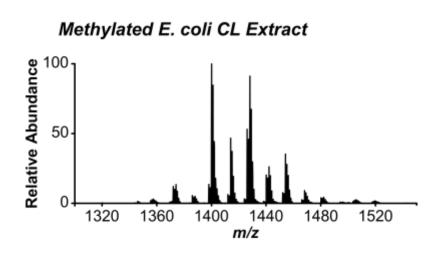

Table S3. E. coli CL structures characterized with sn-isomer and double bond resolution.

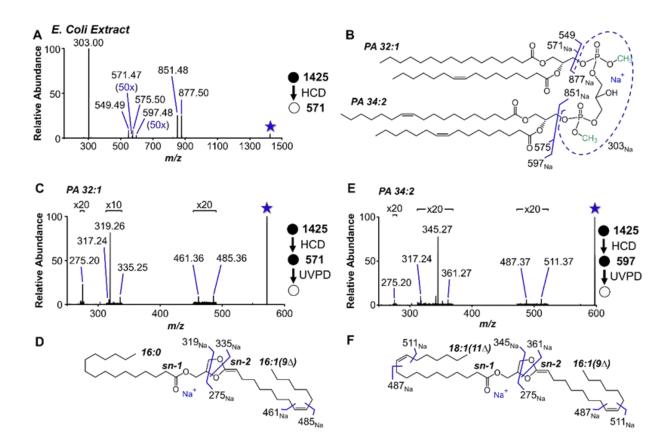
Table S4. PTC CL structures characterized with *sn*-isomer resolution. Isomer percentages are not reported for PA moieties composed of identical acyl chains (i.e. 18:2/18:2) or moieties for which the *sn*-isomer was not identified.

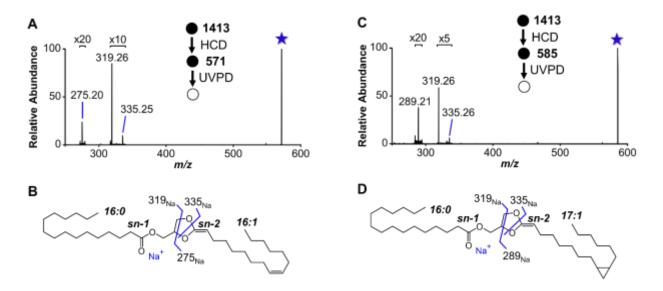

		HCD			UVPD		
Precursor (<i>m</i> /z)	PA + Headgroup + Na (<i>m/z</i>)	PA Moiety Sum Composition	Dioxolane + Na (m/z)	Fatty Acid Allyl Ester (m/z)	sn-stersochemistry	PA Isomer %	CL Assignments
1500.00	901.50	36:4	621.49	343.26	18:2/18:2	-	CL(18:2/18:2)_(18:2/18:2), CL(18:2/18:2)_(16:0/20:4),
				319.26	16:0/20:4	89.5	CL(18:2/18:2)_(20:4/16:0), CL(16:0/20:4)_(16:0/20:4), CL(20:4/16:0)_(20:4/16:0), CL(16:0/20:4)_(20:4/16:0)
				367.27	20:4/16:0	10.5	
				343.26	18:2/18:2	-	CL(18:2/18:2)_(18:2/18:1),
	901.50	36:4	621.48	319.26	16:0/20:4	89.7	CL(18:2/18:2)_(18:1/18:2),
1502.01				367.28	20:4/16:0	10.3	CL(16:0/20:4)_(18:2/18:1), CL(20:4/16:0) (18:2/18:1),
	903.51	36:3	623.50	343.26	18:2/18:1	80.6	CL(16:0/20:4)_(18:1/18:2),
	000.01		020.00	345.28	18:1/18:2	19.4	CL(20:4/16:0)_(18:1/18:2)
1504.02	903.51	36:3	623.50	343.26	18:2/18:1	76.5	CL(18:2/18:1)_(18:2/18:1), CL(18:1/18:2)_(18:1/18:2),
1004.02	300.01	66.5	020.00	345.27	18:1/18:2	23.5	CL(18:1/18:2)_(18:1/18:2), CL(18:2/18:1)_(18:1/18:2)
	901.50	36:4	621.49	343.26	18:2/18:2	-	CL(18:2/18:2)_(18:2/20:3), CL(18:2/18:2) (20:3/18:2),
				319.26	16:0/20:4	89.6	CL(18:2/18:2)_(18:1/20:4),
				367.28	20:4/16:0	10.4	CL(18:2/18:2) (20:4/18:1), CL(16:0/20:4) (18:2/20:3), CL(16:0/20:4) (20:3/18:2), CL(16:0/20:4) (20:3/18:2), CL(16:0/20:4) (20:4/18:1), CL(20:4/16:0) (18:2/20:3), CL(20:4/16:0) (20:3/18:2), CL(20:4/16:0) (20:3/18:2), CL(20:4/16:0) (20:4/18:1)
1526.01	927.51	38:5	647.50	343.26	18:2/20:3	78.1	
				369.27	20:3/18:2	21.9	
				345.27	18:1/20:4	83.0	
				367.26	20:4/18:1	17.0	
	901.50	36:4	621.48	343.26	18:2/18:2	-	CL(18:2/18:2)_(18:0/20:4), CL(18:2/18:2)_(18:2/20:2), CL(18:2/18:2)_(20:2/18:2), CL(16:0/20:4)_(18:0/20:4), CL(16:0/20:4)_(18:2/20:2), CL(16:0/20:4)_(20:2/18:2), CL(20:4/16:0)_(18:0/20:4), CL(20:4/16:0)_(18:2/20:2), CL(20:4/16:0)_(18:2/20:2),
				319.26	16:0/20:4	89.3	
1528.03				367.28	20:4/16:0	10.7	
1320.03	929.53	38:4	649.52	347.29	18:0/20:4	-	
				343.26	18:2/20:2	81.8	
				371.29	20:2/18:2	18.2	
	903.51	36:3	623.50	343.26	18:2/18:1	63.7	CL(18:2/18:1)_(18:0/20:4), CL(18:2/18:1)_(18:2/20:2), CL(18:2/18:1)_(20:2/18:2), CL(18:1/18:2)_(18:0/20:4),
				345.27	18:1/18:2	36.3	
1530.04	929.53	38:4	649.52	347.29	18:0/20:4	-	
				343.26	18:2/20:2	84.8	CL(18:1/18:2)_(18:2/20:2),
				371.29	20:2/18:2	15.2	CL(18:1/18:2)_(20:2/18:2)

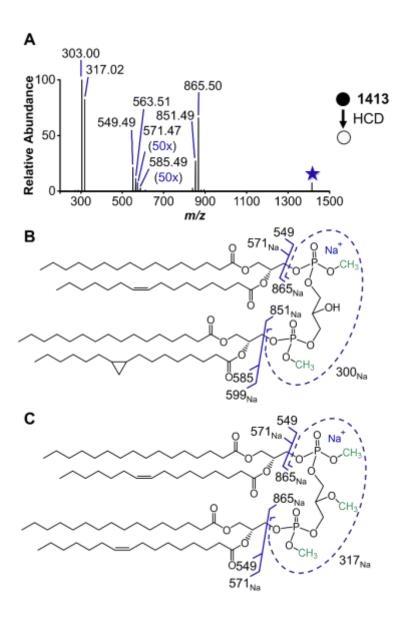

Scheme S1. Fragmentation pathway for dioxolane fragments from metal adducted glycerophospholipids. Fragment m/z mass labels correspond to HCD fragment masses in Figure S1. Adapted from Ref. 8 and 9.

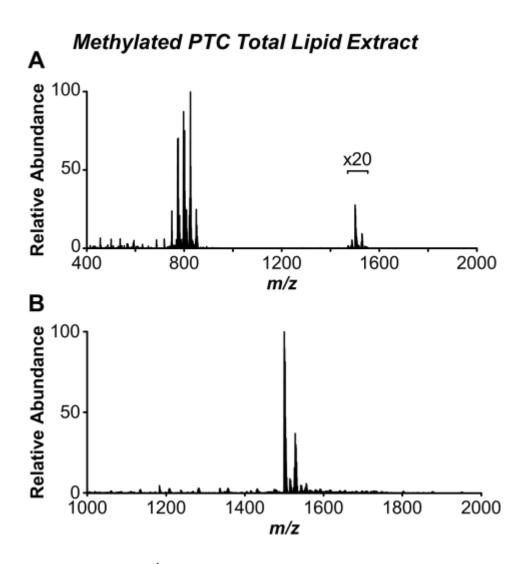

Figure S1. (A) HCD (25 NCE) spectrum of sodium-cationized overmethylated CL (16:0/18:1)/(16:0/18:1) and (B) fragment map. Fragment ions of m/z 599.50 and m/z 711.49 are shown with 50x magnification. Each selected precursor ion is demarcated with a star.

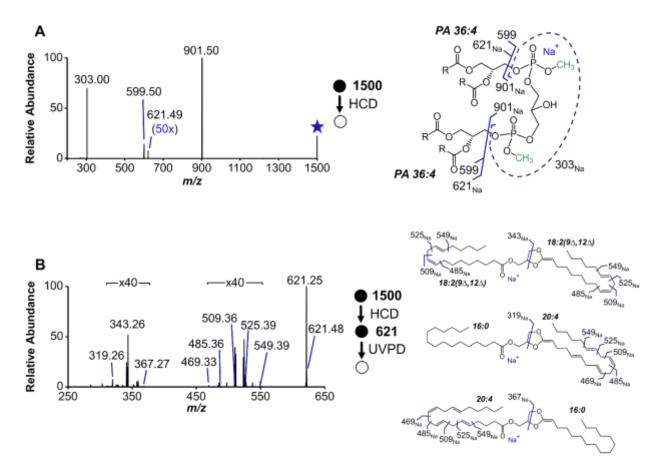

Figure S2. Fragment map for 18:1(9Z)/16:0 dioxolane *sn*-isomer marked with fragments observed in HCD/UVPD spectrum in **Figure 2C**.

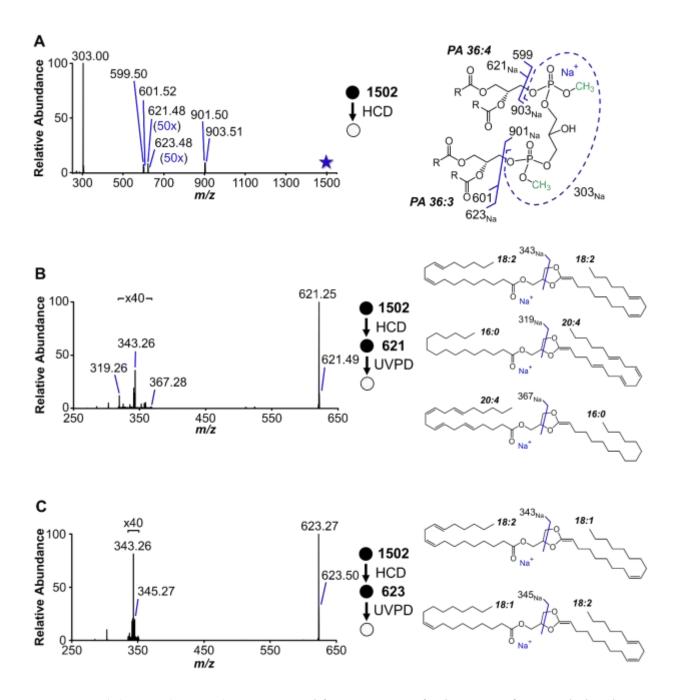

Figure S3. Positive mode nESI spectrum of PG 16:0/18:1(9Z) (A) prior to derivatization and (B) post TMSD methylation. Positive mode nESI spectrum of PG 18:1(9Z)/16:0 (C) prior to derivatization and (D) post TMSD methylation. CID spectra for methylated sodium-cationized ions are shown in **Figure S4.** CID/UVPD spectra are shown in **Figure 3**.

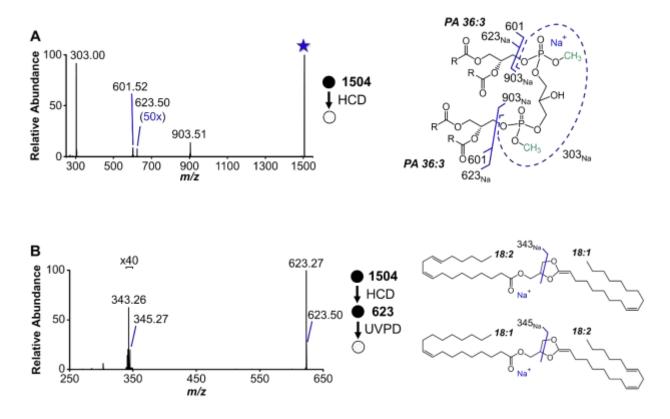

Figure S4. (A) CID (32 NCE) spectrum of sodium-cationized methylated PG 16:0/18:1(9Z) and (B) fragment map. (C) CID (32 NCE) spectrum of sodium-cationized methylated PG 18:1(9Z)/16:0 and (D) fragment map. CID/UVPD spectra are shown in **Figure 3**. Selected precursor ion is demarcated with a star.

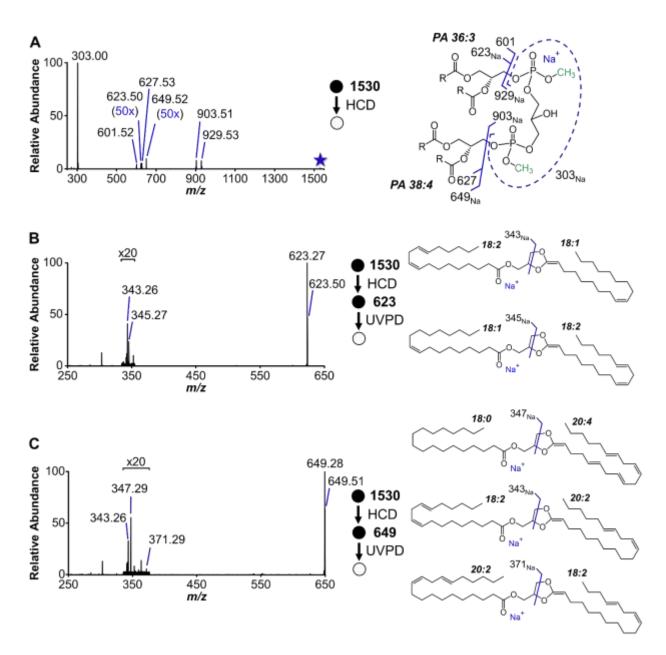

Figure S5. Positive mode MS^1 spectrum of methylated *E. coli* CL extract ionized from solution doped with sodium acetate.


Figure S6. Structural characterization of CL at m/z 1425 from E. coli extract after methylation. (A) HCD (35 NCE) fragments reveal PA moieties PA 32:1 and PA 34:2. Fragments of m/z 571.47 and m/z 597.26 are shown with 50x magnification. (B) HCD fragment map. (C) UVPD (10 pulses at 3 mJ) of headgroup loss fragment from PA 32:1, m/z 571.47, confirms the major structure as PA 16:0/16:1(9 Δ). (E) UVPD (10 pulses at 3 mJ) of headgroup loss fragment from PA 34:2, m/z 597.48, confirms the major structure as PA 18:1(11 Δ)/16:1(9 Δ). Each selected precursor ion is demarcated with a star. Fragment maps constructed from (B) HCD and (D, F) HCD/UVPD elucidate the *E. coli* structure as CL (16:0/16:1(9 Δ))_(18:1(11 Δ)/16:1(9 Δ)) at double bond and acyl chain position level.


Figure S7. HCD/UVPD analysis of PA moieties from CL 51:2 at m/z 1413.98 produced from the methylated *E. coli* CL extract. (A) HCD/UVPD of moiety PA 32:1 (dioxolane m/z of 571.47) results in fragment ions in agreement with (B) 16:0/16:1 dioxolane structure. (C) HCD/UVPD of moiety PA 33:1 (dioxolane m/z of 585.48) results in fragment ions in agreement with (D) 16:0/17:1 dioxolane structure. Selected precursor ions are demarcated with a star. MS² HCD of m/z 1413.98 is shown in **Figure S8A**.


Figure S8. (A) HCD (25 NCE) spectrum of m/z 1413.98 from methylated *E. coli* CL extract. Selected precursor is designated with a star. Fragment ions of m/z 563.51 and m/z 585.49 are shown with 50x magnification. Fragment maps for (B) methylated CL (16:0/16:1)_(16:0/17:1) and (C) overmethylated CL (16:0/16:1)_(16:0/16:1) are shown.


Figure S9. Positive mode MS^1 spectrum of methylated PTC total lipid extract ionized from solution doped with sodium acetate. (A) Scan from m/z 400-2000, with 20x magnification of CLs present in 1400-1600 m/z range. (B) Scan of m/z 1000 – 2000, showing predominance of CL species in this mass range.


Figure S10. (A) HCD (25 NCE) spectrum and fragment map of m/z 1500.00 from methylated PTC total lipid extract. Selected precursor is designated with a star. Fragment ion at m/z 621.49 is shown with 50x magnification. (B) MS³ UVPD (10 pulses at 3 mJ) of m/z 621.49 and corresponding fragment maps for 18:2(9 Δ ,12 Δ)/18:2(9 Δ ,12 Δ), 16:0/20:4, and 20:4/16:0 dioxolane structures. Ion at m/z 621.25 was co-isolated with precursor of m/z 621.49.

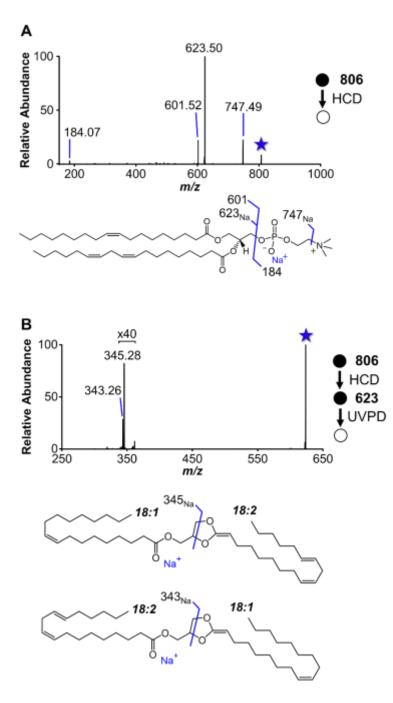

Figure S11. (A) HCD (25 NCE) spectrum and fragment map of m/z 1502.01 from methylated PTC total lipid extract. Selected precursor is designated with a star. Fragment ions of m/z 621.48 and m/z 623.48 are shown with 50x magnification. (B) MS³ UVPD (10 pulses at 3 mJ) of m/z 621.48 and corresponding fragment maps for 18:2/18:2, 16:0/20:4, and 20:4/16:0 dioxolane structures. Ion at m/z 621.25 was co-isolated with precursor of m/z 621.49. (C) MS³ UVPD (10 pulses at 3 mJ) of m/z 623.48 and corresponding fragment maps for 18:1/18:2 and 18:2/18:1 dioxolane structures. Ion at m/z 623.27 was co-isolated with precursor of m/z 623.48.

Figure S12. HCD (25 NCE) spectrum and fragment map of m/z 1504.02 from methylated PTC total lipid extract. Selected precursor is designated with a star. Fragment ion at m/z 623.50 is shown with 50x magnification. (B) MS³ UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:2 and 18:2/18:1 dioxolane structures. Ion at m/z 623.27 was co-isolated with precursor of m/z 623.50.

Figure S13. (A) HCD (25 NCE) spectrum and fragment map of m/z 1530.04 from methylated PTC total lipid extract. Selected precursor is designated with a star. Fragment ions of m/z 623.50 and m/z 649.52 are shown with 50x magnification. (B) MS³ UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:1 and 18:1/18:2 dioxolane structures. Ion at m/z 623.27 was co-isolated with precursor of m/z 623.50. (C) MS³ UVPD (10 pulses at 3 mJ) of m/z 649.52 and corresponding fragment maps for 18:0/20:4, 18:2/20:2, and 20:2/18:2 dioxolane structures. Ion at m/z 649.28 was co-isolated with precursor of m/z 649.52.

Figure S14. (A) HCD (30 NCE) spectrum and fragment map of m/z 806.57 from underivatized PTC total lipid extract, corresponding to sodium adducted PC 36:3. (B) MS³ UVPD (10 pulses at 3 mJ) of m/z 623.50 and corresponding fragment maps for 18:2/18:1 and 18:1/18:2 dioxolane structures. Each selected precursor ion is demarcated with a star.

Supplementary References

- (1) Bligh, E. G.; Dyer, W. J. A Rapid Method of Total Lipid Extraction and Purification. *Can. J. Biochem. Physiol.* **1959**, *37*, 911–917.
- (2) Xia, T.; Ren, H.; Zhang, W.; Xia, Y. Lipidome-Wide Characterization of Phosphatidylinositols and Phosphatidylglycerols on CC Location Level. *Analytica Chimica Acta* **2020**, *1128*, 107–115.
- (3) Lee, J. C.; Yang, J. S.; Moon, M. H. Simultaneous Relative Quantification of Various Polyglycerophospholipids with Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry. *Anal. Chem.* **2019**, *91*, 6716–6723.
- (4) Lee, J. C.; Byeon, S. K.; Moon, M. H. Relative Quantification of Phospholipids Based on Isotope-Labeled Methylation by Nanoflow Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectrometry: Enhancement in Cardiolipin Profiling. *Anal. Chem.* **2017**, *89*, 4969–4977.
- (5) Cai, T.; Shu, Q.; Liu, P.; Niu, L.; Guo, X.; Ding, X.; Xue, P.; Xie, Z.; Wang, J.; Zhu, N.; Wu, P.; Niu, L.; Yang, F. Characterization and Relative Quantification of Phospholipids Based on Methylation and Stable Isotopic Labeling. *J Lipid Res* 2016, *57*, 388–397.
- (6) Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.; Schmitz, G.; Spener, F.; Wakelam, M. J. O. Shorthand Notation for Lipid Structures Derived from Mass Spectrometry. J Lipid Res 2013, 54, 1523–1530.
- (7) Macias, L. A.; Feider, C. L.; Eberlin, L. S.; Brodbelt, J. S. Hybrid 193 Nm Ultraviolet Photodissociation Mass Spectrometry Localizes Cardiolipin Unsaturations. *Anal. Chem.* **2019**, *91*, 12509–12516.
- (8) Hsu, F.-F.; Turk, J. Electrospray Ionization with Low-Energy Collisionally Activated Dissociation Tandem Mass Spectrometry of Glycerophospholipids: Mechanisms of Fragmentation and Structural Characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877 (26), 2673– 2695.
- (9) Kirschbaum, C.; Greis, K.; Polewski, L.; Gewinner, S.; Schöllkopf, W.; Meijer, G.; von Helden, G.; Pagel, K. Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy. *J. Am. Chem. Soc.* **2021**, *143* (36), 14827–14834.