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S1 Overview of SARS-CoV-2 prevailing and emerging variants

Starting in early January 2021, several SARS-CoV-2 vaccines have been authorized for full or emergence
use. The majority of the vaccines are target to S protein of SARS-CoV-2, which aims to induce neutraliz-
ing antibodies against the viral S protein, alleviate COVID-19 symptoms and severity, and block infection.
However, the emergence of new variants has assistant SARS-CoV-2 to fight back the human immune sys-
tems built by vaccines. It is noteworthy that the alarming rise in the number of new cases due to several
viral variants threatens the efficacy of existing vaccines in late June 2021, which poses significant challenges
to public health. Therefore, tracking the specific emerging SARS-CoV-2 variants of interest (VOIs) and vari-
ants of concern (VOCs), and understanding their potential effects on vaccines and antibody therapies is
urgently needed. WHO has been established a naming system using the letters of the Greek alphabet for
VOIs and VOCs, aiming to create easy-to-pronounce and non-stigmatizing labels that will be easier and
more practical to be discussed. At this present, the potential effects on existing vaccines and antibody ther-
apies of ten variants have been widely discussed: Alpha, Beta, Gamma, Delta, Eta, Iota, Kappa, Lambda,
Delta plus, and Beta plus.

The S protein of SARS-CoV-2 is the majority target for vaccines due to the receptor-binding domain
(RBD) located on the S protein. RBD on SARS-CoV-2 binds strongly to human ACE2 and exhibits signif-
icantly high binding affinity to ACE2, which makes S protein RBD an appealing and dominant antigenic
target for inducing SARS-CoV-2 neutralizing antibodies [24]. Therefore, prioritizing the analysis of mu-
tations on S protein RBD for different variants is essential for studying the viral infectivity, mAb efficacy,
vaccine efficacy and protection rate. Studies have shown that the binding free energy (BFE) between the S
RBD and the ACE2 is relevant to the infectivity [11, 13, 20, 22, 25]. In this work, we will apply our TopNet-
Tree model to predict the RBD mutation-induced BFE changes of S protein with RBD and 130 existing
antibodies based on 1,489,884 complete SARS-CoV-2 genome sequences from the GISAID database [21] up
to August 5, 2021. At this stage, a total of 683 non-degenerate RBD mutations are detected, which can be
found on Mutation Analyzer. Here, the positive BFE change of a specific mutation means it will strengthen
the binding between S protein and ACE2, suggesting a more infectious variant. Notably, the count of an-
tibody disruption represents the number of antibodies and S protein complexes disrupted by a specific
mutation. If a binding strength between S protein and antibody is reduced by more than 0.3 kcal/mol by
a specific mutation, the binding will be considered as disrupted. From Mutation Analyzer, it can be seen
that the antibody disruption ratios of mutation L452R, E484K, K417T, K417N, F490S, S494P are greater than
30%, and the disruption ratios of mutation E484K, K417T are nearly 30%, suggesting disruptive effects on
the efficacy and reliability of antibody therapies and vaccines. Moreover, all of the top 10 most observed
RBD mutations are ACE2 binding-strengthening mutations, and the BFE changes of S protein and ACE2
for mutation T478K is nearly 1.00 kcal/mol, which results in a strong binding performance and enhance
the stabilization of the RBDACE2 complex [9].

Although a variant is defined by its mutations on the whole SARS-CoV-2 genome, in this work, we will
only focus on the S RBD co-mutations of different variants, due to the fact that RBD contains the majority
of neutralizing epitopes and is the most dominant antigenic domain for inducing SARS-CoV-2 neutralizing
antibodies [12]. Table S1 demonstrates the co-mutations on S protein RBD, the first detected country, and
the earliest detection date of the current VOCs and VOIs, and their corresponding upgraded variants. The
alpha variant was first identified in the United Kingdom (UK) in September 2020, which carries a single
mutation N501Y on S RBD. The alpha variant was dominant in the UK in mid-March 2021, and since
August 23, 2021, 268,099 patients were infected by the alpha variant in the UK according to GISAID. Beta
variant (Lineage B.1.3514) was first found in South Africa and was characterized by three mutations on
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S RBD: K417N, E484K, and N501Y. Up to August 23, 2021, a total of 6,368 patients carry beta variants
in South Africa. In addition, an additional mutation on RBD P438L on Beta variants is called Beta plus
variants. Gamma variant is characterized by its RBD mutations K417T, E484K, and N501Y, which were first
found in Brazil in November 2020. At this stage, the gamma variant is still one of the prevailing variants
in Brazil. Delta variant was characterized by its RBD co-mutations L452R and T478K, which was first
detected in India in October 2020, and then rapidly spread out around the world, which is a preponderance
of SARS-CoV-2 variants. In the past four weeks, 91.9% of new cases in the world are delta variants. Some
evidence has shown that delta variant will cause immune escape and has adverse effects on neutralizing
antibodies [16]. Notably, Delta plus variants that are identified by an additional K417N substitution on RBD
also draw people’s attention. Moreover, two VOIs, Eta and Iota, were identified with E484K mutation on
S RBD in late 2020. Kappa variants were characterized by L452R, E484Q substitutions on RBD, which was
first detected in India in October 2020. Furthermore, in late 2020, a new variant Lambda was found in Peru,
which carries two mutations on S RBD that are different from other COVID-19 variants: L452Q and F490S.
Some preliminary studies have reported that the S protein of Lambda variant may make SARS-CoV-2 easier
to latch onto cells and evade vaccines, which may be a potential threat to the human society [18].

Table S1: The RBD co-mutations, the first detected country, and the earliest detection date of ten VOCs, VOIs, and their corresponding
upgraded variants: Alpha, Beta, Gamma, Delta, Eta, Iota, Kappa, Lambda, Delta plus, and Beta plus.

Variants Categories Co-mutations on RBD Country Date

Alpha VOC [N501Y] United Kingdom 2020-09
Beta VOC [K417N, E484K, N501Y] South Africa 2020-05
Gamma VOC [K417T, E484K, N501Y] Brazil 2020-11
Delta VOC [L452R, T478K] India 2020-10
Eta VOI [E484K] Multiple countries 2020-12
Iota VOI [E484K] United States 2020-11
Kappa VOI [L452R, E484Q] India 2020-10
Lambda VOI [L452Q, F490S] Peru 2020-12
Delta plus Upgraded variants [K417N, L452R, T478K] / /
Beta plus Upgraded variants [P384L, K417N, E484K, N501Y] / /

S2 Supplementary data

The Supplementary Data.zip contains two folders. One is a folder with 4 csv/xlsx files and the other is a
folder with 29 HTML files.

S2.1 Excel files

A total of 4 Excel files are in this folder.

S2.1.1 Disrupted antibodies

File antibodies disruptmutation.csv shows the name of antibodies disrupted by mutations.

S2.1.2 List of antibodies

File antibodies.csv lists the Protein Data Bank (PDB) IDs for all of the 130 SARS-CoV-2 antibodies.
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S2.1.3 SNPs

File RBD comutation residue 08052021.csv lists all of the SNPs of RBD co-mutations.

S2.1.4 Non-degenerate RBD co-mutations

File Track Comutation 08052021.xlsx records all of the non-degenerate RBD co-mutations with their fre-
quencies, antibody disruption counts, total BFE changes, and the first detection dates and countries.

S2.2 HTML files

A total of 29 HTML files are given.

S2.2.1 HTML files

Twenty HTML files for the time evolution of 2, 3, and 4 co-mutations on the S protein RBD of SARS-CoV-2
from January 01, 2021 to July 31, 2021, in 20COVID-19 devastated countries: the United Kingdom (UK),
the United States (US), Denmark (DK), Brazil (BR), Germany (DE), Netherlands (NL), Sweden (SE), Italy
(IT), Canada (CA), France (FR), India (IN), Belgium (BE), Ireland (IE), Spain (ES), Chile (CL), Portugal (PT),
Mexico (MX), Singapore (SG), Turkey (TR), and Finland (FL).

S2.2.2 2D histograms

Three 2D histograms are given for antibody disruption counts and total BFE changes for RBD 2 co-mutations,
3 co-mutations, and 4 co-mutations.

S2.2.3 Histograms

Three histograms of total BFE changes, antibody disruption count, and natural log of frequencies for RBD
2 co-mutations, 3 co-mutations, and 4 co-mutations.

S2.2.4 Barplots

Three barplots for RBD 2, 3, and 4 co-mutations with a frequency greater than 90, 30, and 20, respectively.

S3 Supplementary figures

Figure S1 illustrates the the time evolution of 2, 3, and 4 co-mutations on the S protein RBD of SARS-CoV-2
from January 01, 2021, to July 31, 2021, in 8 COVID-19 devastated countries: Ireland (IE), Spain (ES), Chile
(CL), Portugal (PT), Mexico (MX), Singapore (SG), Turkey (TR), and Finland (FL). The Delta variant is the
most popular one in these countries, except for Chile and Mexico. Gamma has the hishest population in
Chile and Mexico, which may change soon. It worthy to note that Chile has a relatively large population of
[L452Q, F490S], the key RBD co-mutation in the Lambda variant.
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Figure S1: Illustration of the time evolution of 2, 3, and 4 co-mutations on the S protein RBD of SARS-CoV-2 from January 01, 2021, to
July 31, 2021, in 8 COVID-19 devastated countries: Ireland (IE), Spain (ES), Chile (CL), Portugal (PT), Mexico (MX), Singapore (SG),
Turkey (TR), and Finland (FL). The y-axis represents the natural log frequency of each RBD co-mutation. The top 5 high-frequency
co-mutations in each country are marked by red, blue, green, yellow, and pink lines. The cyan line is for the RBD co-mutation [L452Q,
F490S] on the Lambda variant, and the other co-mutations are marked by light grey lines. (Please check the interactive HTML files in
the Supplementary Data for a better view of these plots.)

S4 Supplementary feature generation

The feature generation of protein-protein interactions is crucial for BFE change predictions induced by mu-
tations. In the main content, we briefly discuss the topology theory and its implementation in this model.
There are other features, named as auxiliary features, which also play important roles in the training pro-
cess. The auxiliary features includes chemical and physical information of the complexes, such as molecular
surface areas, partial charges, Coulomb interactions, van der Waals interaction, mutation site neighborhood
amino acid composition, pKa shifts, electrostatic solvation free energy, and secondary structure informa-
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tion [7, 26]. Two different levels of features which are residue-level and atom-level and will be discussed
following.

S4.1 Residue-level features

Mutation site neighborhood amino acid composition Neighbor residues are the residues within 10 Å of
the mutation site. Distances between residues are calculated based on residue Cα atoms. Six categories
of amino acid residues are counted, which are hydrophobic, polar, positively charged, negatively charged,
special cases, and pharmacophore changes. The count and percentage of the 6 amino acid groups in the
neighbor site are regrading as the environment composition features of the mutation site. The sum, average,
and variance of residue volumes, surface areas, weights, and hydropathy scores are used but only the sum
of charges is included.

pKa shifts The pKa values are calculated by the PROPKA software [3], namely the values of 7 ionizable
amino acids, namely, ASP, GLU, ARG, LYS, HIS, CYS, and TYR. The maximum, minimum, sum, the sum of
absolute values, and the minimum of the absolute value of total pKa shifts are calculated. We also consider
the difference of pKa values between a wild type and its mutant. Additionally, the sum and the sum of the
absolute value of pKa shifts based on ionizable amino acid groups are included.

Position-specific scoring matrix (PSSM) Features are computed from the conservation scores in the
position-specific scoring matrix of the mutation site for the wild type and the mutant as well as their differ-
ence. The conservation scores are generated by PSI-BLAST [2].

Secondary structure The SPIDER2 software is used to compute the probability scores for residue torsion
angle and residues being in a coil, alpha helix, and beta strand based on the sequences for the wild type
and the mutant [29].

S4.2 Atom-level features

Seven groups of atom types, including C, N, O, S, H, all heavy atoms, and all atoms, are considered when
generating the element-type features. Meanwhile, other three atom types, i.e., mutation site atoms, all
heavy atoms, and all atoms, are used when generating the general atom-level features.

Surface areas Atom-level solvent excluded surface areas are computed by ESES [15].

Partial changes Partial change of each atom is generated by pdb2pqr software [10] using the Amber
force field [5] for wild type and CHARMM force field [4] for mutant. The sum of the partial charges and
the sum of absolute values of partial charges for each atomic group are collected.

Atomic pairwise interaction interactions Coulomb energy of the ith single atom is calculated as the
sum of pairwise coulomb energy with every other atom as

Ci =
!

j,j ∕=i

ke
qiqj
rij

, (1)

where ke is the Coulomb’s constant, rij is the distance of ith atom to jth atom, and qi is the charge of ith
atom. The van der Waals energy of the ith atom is modeled as the sum of pairwise Lennard-Jones potentials
with other atoms as

Vi =
!

j,j ∕=i

ε
"#ri + rj

rij

$12 − 2
#ri + rj

rij

$6%
, (2)

where ε is the depth of the potential well, and ri is van der Waals radii.
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In atomic pairwise interaction, 5 groups (C, N, O, S, and all heavy atoms) are counted both for Coulomb
interaction energy and van der Waals interaction energy.

Electrostatic solvation free energy Electrostatic solvation free energy of each atom is calculated using
the Poisson-Boltzmann equation via MIBPB [6] and are summed up by atom groups.

S5 Supplementary machine learning methods

The topology-based network model for BFE change predictions induced mutations on SARS-CoV-2 study-
ing applies a deep neural network structure. Similar approaches have been widely implemented in the
energy prediction of protein-ligand binding [17] and protein-protein interactions [26]. The neural network
method maps an input feature layer to output layer and mimics biological brains for solving problems
where numerous neuron units are involved and weights of neurons are updated by backpropagation meth-
ods. To make more complicated structure in order to extract abstract properties, more layers and more
neurons in each layer can be constructed. In the training process, optimization methods are applied to
avoid overfitting issue, such as dropout methods [23] that a partial of computed neurons of each layer is
dropped. For the model cross validations, the Pearson correlations of 10-fold cross validations is 0.864 and
root mean square error is 1.019 kcal/mol.

S5.1 Deep learning algorithms

A deep neural network is a neural network methods with multi-layers (hidden layer) of neurons between
the input and output layers. In each layer, the single neuron gets fully connecting with the neurons in next
leyer. It should be preserve the consistency of all labels when applying the model for mutation-induced
BFE change predictions. The loss function is constructed as following:

argmin
W,b

L(W, b) = argmin
W,b

1

2

N!

i=1

#
yi − f(xi; {W, b})

$2
+ λ‖W‖2 (3)

where N is the number of samples, f is a function of the feature vector xi parameterized by a weight vector
W and bias term b, and λ represents a penalty constant.

S5.2 Optimization

The backpropagation is applied to evaluated the loss function start from the output layer and propagates
backward through the network structure to update the weight vector W and bias term b. According to
that the gradient calculation is required, we apply the stochastic gradient descent method with momen-
tum which only evaluates a small part of training data and can be considered as calculating exponentially
weighted averages, which is given as

Vi = βVi−1 + η∇WiL(Wi, bi)

Wi+1 = Wi − Vi,
(4)

where Wi is the parameters in the network, L(Wi, bi) is the objective function, η is the learning rate, X and
y are the input and target of the training set, and β ∈ [0, 1] is a scalar coefficient for the momentum term.
The momentum term involved accelerates the converging speed.
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S6 Supplementary validation

In the main content, we briefly summarized validations of our machine learning predictions and experi-
mental data. For large quantitative validations, we compared the BFE change prediction for mutations on
S protein RBD to the experimental deep mutational enrichment data on RBD binding to human ACE2 and
CTC-445.2 induced by RBD mutations [7,8,14]. To make these validations, we eliminated the experimental
deep mutational enrichment data of RBD binding to human ACE2 and CTC-445.2 from the training sets
and set them as testing sets, which have 1539 and 1500 samples, respectively. In the validation of RBD
and CTC-445.2 complex, there is a very high correlation between the enrichment data and machine learn-
ing predictions, as well as the validation of RBD binding to ACE2, with Pearson correlations are 0.69 and
0.70, respectively. The deep mutational enrichment data can give a proportional descriptor of the affinity
strength of protein-protein interactions induced by mutations. The machine learning methods, however,
gives stable and equalized evaluations, while experimental data might be different dramatically due to
conditions and environments.

In addition, we compared our machine learning results with other experimental data, which are escape
fraction, pseudovirus infection changes, and IC50 fold changes [8]. In the comparison of 35 cases to exper-
imental escape fractions on RBD binding to clinical trial antibodies induced by emerging mutations, our
machine learning predictions have a Pearson correlation of 0.80. Especially, those high escaping mutations
E484K and E484Q on LY-CoV555, and mutations K417T and K417N on LY-CoV016, are indicated by both
our predictions and the experimental data [8]. We also use the pattern comparisons of our prediction to
experimental data. Lastly, we collected experimental data from different literature [1, 19, 27, 28]. According
to variations from different research groups, they were summarized in increasing/decreasing patterns of
emerging variant (including co-mutations) impacts on antibody therapies in clinical trials. In total there are
20 pattern comparisons with an excellent agreement between various experimental data and our predic-
tions, except for a minor discrepancy [8].
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