Supplementary Information for:

## HeterostructuredCeria–Titania-SupportedPlatinumCatalyst for the Water Gas Shift Reaction

Xiao-Meng Lai,<sup>1</sup> Qi Xiao,<sup>1</sup> Chao Ma,<sup>2</sup> Wei-Wei Wang,<sup>1,\*</sup> Chun-Jiang Jia<sup>1,\*</sup>

<sup>1</sup>Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China

<sup>2</sup>College of Materials Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China

\*Corresponding Author. Email: jiacj@sdu.edu.cn, wangww@sdu.edu.cn

## **Table of Contents**

- 1) Figure S1. TEM images of the fresh (a) 0.5Pt/TiO<sub>2</sub> and (b) 0.5Pt/CeO<sub>2</sub> catalysts.
- 2) **Figure S2.** TEM images of the fresh (a) 0.5Pt/1Ce-10Ti, (b) 0.5Pt/3Ce-10Ti, (c) 0.5Pt/5Ce-10Ti catalysts, and (d) the size distribution of the CeO<sub>2</sub> nanoparticles on the 0.5Pt/3Ce-10Ti fresh catalyst.
- 3) **Figure S3.** TEM images of the used (a) 0.5Pt/1Ce-10Ti, (b) 0.5Pt/3Ce-10Ti, (c) 0.5Pt/5Ce-10Ti catalysts, and (d) the size distribution of the CeO<sub>2</sub> nanoparticles on the 0.5Pt/3Ce-10Ti used catalyst.
- 4) Figure S4. (a, b) XRD patterns and (c, d) Raman spectra of the fresh (a, c) and used (b, d) 0.5Pt/xCe-10Ti catalysts.
- 5) Figure S5. The CO conversion of supported Pt catalysts under GHSV=168,000 mL $\cdot$ g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>.
- 6) Figure S6. (a) The CO conversion of 0.5Pt/TiO<sub>2</sub>-CD catalysts under GHSV=42,000 mL·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>. (b) The HRTEM image of 0.5Pt/TiO<sub>2</sub>-CD used catalysts.
- 7) Table S1. Comparison of CO conversion rate for the as-prepared and literature reported catalysts.
- 8) Table S2. The elements and surface composition analysis of different samples.
- 9) References



Figure S1. TEM images of the fresh (a) 0.5Pt/TiO<sub>2</sub> and (b) 0.5Pt/CeO<sub>2</sub> catalysts.



**Figure S2.** TEM images of the fresh (a) 0.5Pt/1Ce-10Ti, (b) 0.5Pt/3Ce-10Ti, (c) 0.5Pt/5Ce-10Ti catalysts, and (d) the size distribution of the CeO<sub>2</sub> nanoparticles on the 0.5Pt/3Ce-10Ti fresh catalyst.



**Figure S3.** TEM images of the used (a) 0.5Pt/1Ce-10Ti, (b) 0.5Pt/3Ce-10Ti, (c) 0.5Pt/5Ce-10Ti catalysts, and (d) the size distribution of the CeO<sub>2</sub> nanoparticles on the 0.5Pt/3Ce-10Ti used catalyst. (Circled in red: the TiO<sub>2</sub> nanosheets)

Note: The part indicated by the red circle was TiO<sub>2</sub> nanosheet instead of CeO<sub>2</sub> irregular flakes.



Figure S4. (a, b) XRD patterns and (c, d) Raman spectra of the fresh (a, c) and used (b, d) 0.5Pt/xCe-10Ti catalysts.

For the fresh samples, there were very weak  $CeO_2$  peaks (JCPDS no. 34-394) in the XRD patterns (Figure S4a), while almost all the other diffraction peaks were indexed to anatase TiO<sub>2</sub> (JCPDS no. 21-1272). Similarly, only the characteristic peaks of TiO<sub>2</sub> appeared in the Raman spectra (Figure S4c). For the catalysts after catalytic test, the characteristic peaks of TiO<sub>2</sub> and CeO<sub>2</sub> were observed simultaneously in the XRD patterns (Figure S4b) and Raman (Figure S4d) spectra, and the peak strength of CeO<sub>2</sub> became stronger with the increase of CeO<sub>2</sub> proportion.



**Figure S5.** The CO conversion of supported Pt catalysts under GHSV=168,000 mL $\cdot$ g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>.



Figure S6. (a) The CO conversion of 0.5Pt/TiO<sub>2</sub>-CD catalysts under GHSV=42,000 mL·g<sub>cat</sub><sup>-1</sup>·h<sup>-1</sup>. (b) The HRTEM image of 0.5Pt/TiO<sub>2</sub>-CD used catalysts.

| Catalyst                                                      | Temperature (°C) | <b>Reaction rate</b>                        | Rof              |
|---------------------------------------------------------------|------------------|---------------------------------------------|------------------|
|                                                               |                  | (µmol·gcat <sup>−1</sup> ·s <sup>−1</sup> ) | Ku.              |
| 0.5Pt/3Ce-10Ti                                                | 200              | 2.03                                        | This work        |
| 0.5Pt/3Ce-10Ti                                                | 225              | 5.25                                        | This work        |
| 0.5Pt/3Ce-10Ti                                                | 300              | 55.40                                       | This work        |
| 0.5Pt/CeO <sub>2</sub>                                        | 300              | 29.20                                       | This work        |
| 0.5Pt/TiO <sub>2</sub>                                        | 300              | 4.40                                        | This work        |
| 0.5Pt/Ce <sub>0.8</sub> Ti <sub>0.2</sub> O <sub>2-δ</sub>    | 200              | 0.78                                        | Ref <sup>1</sup> |
| Pt/Ce-Ti-T                                                    | 200              | 0.92                                        | Ref <sup>2</sup> |
| Pt/Ce-Ti-T                                                    | 300              | 8.66                                        | Ref <sup>2</sup> |
| Au-Ti(15Ce)O2                                                 | 225              | 3.10                                        | Ref <sup>3</sup> |
| Ti <sub>2</sub> Ce <sub>1</sub> O <sub>x</sub> /npAu          | 300              | 27.00                                       | Ref <sup>4</sup> |
| Pt/CeO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub><br>(M0.3) | 200              | 1.83                                        | Ref <sup>5</sup> |
| 5Ni-10Ce-85Zr                                                 | 200              | 0.32                                        | Ref <sup>6</sup> |

Table S1. Comparison of CO conversion rate for the as-prepared and literature reported catalysts.

| Catalyst               | Pt loading<br>(wt.%) <sup>a</sup> | Ce:Ti<br>(molar ratio) <sup>a</sup> | Surface composition <sup>b</sup>     |                                    |                                   |
|------------------------|-----------------------------------|-------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|
|                        |                                   |                                     | Pt <sup>2+</sup> +Pt <sup>4+</sup> / | Ce <sup>3+</sup> /                 | $O_{\alpha}/O_{\alpha}+O_{\beta}$ |
|                        |                                   |                                     | $Pt^{0}+Pt^{2+}+Pt^{4+}$             | Ce <sup>3+</sup> +Ce <sup>4+</sup> |                                   |
| 0.5Pt/TiO <sub>2</sub> | 0.58                              | _                                   | 0.79                                 | _                                  | 0.05                              |
| 0.5Pt/3Ce-10Ti         | 0.46                              | 0.42                                | 0.61                                 | 0.46                               | 0.20                              |
| 0.5Pt/CeO <sub>2</sub> | 0.61                              | _                                   | 1.00                                 | 0.43                               | 0.22                              |

**Table S2.** The elements and surface composition analysis of different samples.

<sup>a</sup> A value by ICP-MS analysis.

<sup>b</sup> A value by XPS analysis.

## References

- [1] Petallidou, K. C.; Polychronopoulou, K.; Boghosian, S.; Garcia-Rodriguez, S.; Efstathiou, A. M.; Water-gas shift reaction on Pt/Ce1-xTixO2-δ: the effect of Ce/Ti ratio. *J. Phys. Chem. C* 2013, *117*, 25467–25477.
- [2] Zhang, Y.; Cai, J.; Liu, Y.; Wang, X.; Au, C. T.; Jiang, L.; Preparation of Sintering-Resistant Pt Nanocatalysts by Dopamine Mediation for Water-Gas Shift Reaction. *Appl. Surf. Sci.* 2019, 496, 143669–143676.
- [3] Si, R.; Tao, J.; Evans, J.; Park, J. B.; Barrio, L.; Hanson, J. C.; Zhu, Y.; Hrbek, J.; Rodriguez, J. A.; Effect of ceria on gold-titania catalysts for the water-gas shift reaction: fundamental studies for Au/CeO<sub>x</sub>/TiO<sub>2</sub>(110) and Au/CeO<sub>x</sub>/TiO<sub>2</sub> powders. *J. Phys. Chem. C* 2012, *116*, 23547–23555.
- [4] Shi, J.; Mahr, C.; Murshed, M. M.; Zielasek, V.; Rosenauer, A.; Gesing, T. M.; Bäumer, M.;
   Wittstock, A.; A Versatile Sol-Gel Coating for Mixed Oxides on Nanoporous Gold and Their
   Application in the Water Gas Shift Reaction. *Catal. Sci. Technol.* 2016, *6*, 5311–5319.
- [5] González-Castaño, M.; Ivanova, S.; Laguna, O. H.; Martínez T., L. M.; Centeno, M. A.; Odriozola, J. A.; Structuring Pt/CeO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> WGS Catalyst: Introduction of Buffer Layer. *Appl. Catal. B Environ.* 2017, 200, 420–427.
- [6] Chamnankid, B.; Föttinger, K.; Rupprechter, G.; Kongkachuichay, P.; Ni-CeO<sub>2</sub>-ZrO<sub>2</sub> Catalysts for Water Gas Shift Reaction: Effect of CeO<sub>2</sub> Contents and Reduction Temperature. *J. Nanosci. Nanotechnol.* 2016, 16, 12904–12909.