## **Electronic Supplementary Information**

How End-Capped Acceptors Regulate the Photovoltaic Performance of the Organic Solar Cells: A Detailed Density Functional Exploration of Their Impact on the A-D- $\pi$ -D-A Type Small Molecular Electron Donors

Paramasivam Mahalingavelar\*

Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States.

| Figure S1  | Energy level of bare acceptors                                    | S2         |
|------------|-------------------------------------------------------------------|------------|
| Figure S2  | Existence of anti-aromatic units in the SMEDs                     | <b>S</b> 3 |
| Figure S3  | TDDFT simulations of the A- $\pi$ -D- $\pi$ -A framework          | <b>S</b> 3 |
| Figure S4  | Mulliken population analysis                                      | <b>S4</b>  |
| Figure S5  | ESP of SMEDs at the cation and anionic states                     | <b>S4</b>  |
| Figure S6  | DOS of the SMEDs at the cationic state                            | <b>S</b> 5 |
| Figure S7  | DOS of the SMEDs at the anionic state                             | <b>S</b> 5 |
| Figure S8  | NTO analysis                                                      | <b>S6</b>  |
| Figure S9  | Reorganization energy diagram                                     | <b>S7</b>  |
| Figure S10 | Optimized geometries of cations                                   | <b>S8</b>  |
| Figure S11 | Optimized geometries of the anions                                | <b>S8</b>  |
| Figure S12 | Geometrical coordinates of DFR                                    | <b>S9</b>  |
| Figure S13 | Geometrical coordinates of DFM                                    | S10        |
| Figure S14 | Geometrical coordinates of DFI                                    | S11        |
| Figure S15 | 2D-ICSS plots                                                     | S12        |
| Figure S16 | Optimized geometry Frontier energy levels of PC <sub>61</sub> BM  | S12        |
| Figure S17 | Optimized geometry Frontier energy levels of Y6                   | S13        |
| Figure S18 | TDDFT simulations of PC61BM and Y6                                | S14        |
| Figure S19 | DOS analysis of PC <sub>61</sub> BM and Y6                        | S15        |
| Figure S20 | ESP of PC <sub>61</sub> BM and Y6                                 | S16        |
| Figure S21 | Optimized geometries of SMEDs-PC <sub>61</sub> BM combination     | S17        |
| Figure S22 | Optimized geometries of SMEDs-Y6 combination                      | <b>S17</b> |
| Table S1   | TDDFT results: B3LYP/6-311G (d, p)                                | S18        |
| Table S2   | TDDFT results: CAM-B3LYP/6-311G (d, p)                            | S18        |
| Table S3   | TDDFT results: M06-2X/6-311G (d, p)                               | S19        |
| Table S4   | TDDFT results of SMEDs-PC <sub>61</sub> BM combination            | S19        |
| Table S5   | TDDFT results of SMEDs-Y6 combination                             | S20        |
| Table S6   | BLA variation and energy levels of SMEDs at the charged states    | S20        |
| Table S7   | Interaction energies of SMEDs: PC <sub>61</sub> BM/Y6 combination | S20        |

**Table of contents** 



**Figure S1.** DFT computed HOMO, LUMO, HOMO-LUMO gap and isodensity plots of the bare acceptors obtained at the DFT/B3LYP/6-311G(d, p) level of theory.



Figure S2. Existence of anti-aromatic units in the SMEDs. (Indicated red in color)



**Figure S3.** Optimized geometries, simulated absorptions and oscillator strength of the A-π-D-π-A framework using DFT/B3LYP/6-311G(d, p)/CPCM(CH<sub>2</sub>Cl<sub>2</sub>)//TDDFT/M062X/6-311G(d, p)/CPCM (CH<sub>2</sub>Cl<sub>2</sub>) level of theory.



**Figure S4.** Mulliken population analysis on the grouped segments (D,  $\pi$  and A) of the SMEDs obtained from DFT/B3LYP/6-311++G (d, p) level of theory.



**Figure S5.** Variation of electrostatic environment revealed from MESP plots of the SMEDs at the oxidized  $(-1e^{-})$  and reduced  $(+1e^{-})$  states.



**Figure S6** Variation of energy levels in terms of DOS population corresponding to the HOMO and LUMO of the SMEDs at the oxidized  $(-1e^{-})$  state.



**Figure S7.** Variation of energy levels in terms of DOS population corresponding to the HOMO and LUMO of the SMEDs at the reduced  $(+1e^{-})$  state.



Figure S8. Natural transition orbital (NTOs) analysis corresponding to  $S_0$ - $S_1$  and  $S_0$ - $S_2$  transitions.



**Figure S9.** Schematic diagram represents the computational methodology for reorganization energy calculations.



Figure S10. Optimized geometry of SMEDs with selected dihedral angles in their first oxidized (cationic) state.



Figure S11. Optimized geometry of SMEDs with selected dihedral angles in their first reduced (anionic) state.



| DFR                              | Neutral | Cation | Anion | DFR                              | Neutral | Cation | Anion |
|----------------------------------|---------|--------|-------|----------------------------------|---------|--------|-------|
| C1-C2                            | 1.544   | 1.541  | 1.545 | C <sub>26</sub> -C <sub>27</sub> | 1.414   | 1.397  | 1.404 |
| C <sub>1</sub> -C <sub>3</sub>   | 1.544   | 1.541  | 1.545 | C <sub>27</sub> -C <sub>16</sub> | 1.379   | 1.394  | 1.388 |
| C <sub>1</sub> -C <sub>4</sub>   | 1.529   | 1.527  | 1.529 | C <sub>13</sub> -C <sub>28</sub> | 1.463   | 1.440  | 1.459 |
| C <sub>4</sub> -C <sub>5</sub>   | 1.383   | 1.376  | 1.382 | C <sub>28</sub> -S <sub>29</sub> | 1.774   | 1.784  | 1.781 |
| C <sub>5</sub> -C <sub>6</sub>   | 1.411   | 1.418  | 1.416 | S <sub>29</sub> -C <sub>30</sub> | 1.729   | 1.733  | 1.740 |
| C <sub>6</sub> -C <sub>7</sub>   | 1.408   | 1.422  | 1.417 | C <sub>30</sub> -C <sub>31</sub> | 1.406   | 1.392  | 1.401 |
| C <sub>7</sub> -C <sub>8</sub>   | 1.389   | 1.379  | 1.386 | C <sub>31</sub> -S <sub>32</sub> | 1.729   | 1.731  | 1.730 |
| C <sub>8</sub> -C <sub>9</sub>   | 1.395   | 1.405  | 1.400 | S <sub>32</sub> -C <sub>33</sub> | 1.782   | 1.781  | 1.788 |
| C <sub>4</sub> -C <sub>9</sub>   | 1.408   | 1.417  | 1.409 | C <sub>33</sub> -C <sub>34</sub> | 1.391   | 1.395  | 1.396 |
| C <sub>9</sub> -C <sub>10</sub>  | 1.461   | 1.441  | 1.456 | C <sub>34</sub> -C <sub>35</sub> | 1.402   | 1.397  | 1.398 |
| C <sub>10</sub> -C <sub>11</sub> | 1.395   | 1.404  | 1.398 | C <sub>35</sub> -N <sub>36</sub> | 1.385   | 1.380  | 1.383 |
| C <sub>11</sub> -C <sub>12</sub> | 1.388   | 1.380  | 1.389 | N <sub>36</sub> -C <sub>37</sub> | 1.451   | 1.459  | 1.455 |
| C <sub>12</sub> -C <sub>13</sub> | 1.408   | 1.418  | 1.410 | N <sub>36</sub> -C <sub>38</sub> | 1.382   | 1.378  | 1.393 |
| C <sub>13</sub> -C <sub>14</sub> | 1.411   | 1.420  | 1.414 | C <sub>38</sub> -C <sub>39</sub> | 1.414   | 1.397  | 1.412 |
| C <sub>14</sub> -C <sub>15</sub> | 1.383   | 1.375  | 1.381 | C <sub>39</sub> -C <sub>28</sub> | 1.462   | 1.394  | 1.381 |
| C <sub>15</sub> -C <sub>10</sub> | 1.408   | 1.417  | 1.412 | C <sub>21</sub> -C <sub>41</sub> | 1.423   | 1.422  | 1.415 |
| C <sub>15</sub> -C <sub>1</sub>  | 1.529   | 1.528  | 1.529 | C <sub>41</sub> -C <sub>42</sub> | 1.359   | 1.361  | 1.367 |
| C <sub>6</sub> -C <sub>16</sub>  | 1.463   | 1.442  | 1.451 | C <sub>33</sub> -C <sub>41</sub> | 1.421   | 1.422  | 1.419 |
| C <sub>16</sub> -S <sub>17</sub> | 1.774   | 1.783  | 1.789 | C <sub>42</sub> -C <sub>43</sub> | 1.415   | 1.420  | 1.420 |
| S <sub>17</sub> -C <sub>18</sub> | 1.737   | 1.734  | 1.741 | C <sub>43</sub> -N <sub>44</sub> | 1.473   | 1.462  | 1.462 |
| C <sub>18</sub> -C <sub>19</sub> | 1.406   | 1.392  | 1.348 | N <sub>44</sub> -C <sub>45</sub> | 1.368   | 1.359  | 1.359 |
| C <sub>19</sub> -S <sub>20</sub> | 1.729   | 1.731  | 1.743 | C <sub>45</sub> -S <sub>46</sub> | 1.777   | 1.756  | 1.766 |
| S <sub>20</sub> -C <sub>21</sub> | 1.782   | 1.781  | 1.806 | C <sub>42</sub> -S <sub>46</sub> | 1.648   | 1.653  | 1.663 |
| C <sub>21</sub> -C <sub>22</sub> | 1.391   | 1.395  | 1.400 | C <sub>43</sub> -O <sub>47</sub> | 1.213   | 1.213  | 1.219 |
| C <sub>22</sub> -C <sub>23</sub> | 1.402   | 1.398  | 1.408 |                                  |         |        |       |
| C <sub>23</sub> -N <sub>24</sub> | 1.385   | 1.379  | 1.384 |                                  |         |        |       |
| N <sub>24</sub> -C <sub>25</sub> | 1.451   | 1.459  | 1.453 |                                  |         |        |       |
| N <sub>24</sub> -C <sub>26</sub> | 1.382   | 1.379  | 1.386 |                                  |         |        |       |

Figure S12. Optimized geometrical coordinates of DFR at the neutral, cation and anionic states.



| DFM                              | Neutral | Cation | Anion | DFM                              | Neutral | Cation | Anion |
|----------------------------------|---------|--------|-------|----------------------------------|---------|--------|-------|
| C <sub>1</sub> -C <sub>2</sub>   | 1.544   | 1.545  | 1.544 | N <sub>24</sub> -C <sub>25</sub> | 1.453   | 1.459  | 1.455 |
| C <sub>1</sub> -C <sub>3</sub>   | 1.544   | 1.545  | 1.544 | N <sub>24</sub> -C <sub>26</sub> | 1.380   | 1.377  | 1.381 |
| C <sub>1</sub> -C <sub>4</sub>   | 1.528   | 1.527  | 1.530 | C <sub>26</sub> -C <sub>27</sub> | 1.413   | 1.397  | 1.404 |
| C <sub>4</sub> -C <sub>5</sub>   | 1.383   | 1.380  | 1.378 | C <sub>27</sub> -C <sub>16</sub> | 1.379   | 1.395  | 1.388 |
| C <sub>5</sub> -C <sub>6</sub>   | 1.409   | 1.421  | 1.419 | C <sub>13</sub> -C <sub>28</sub> | 1.463   | 1.440  | 1.448 |
| C <sub>6</sub> -C <sub>7</sub>   | 1.409   | 1.423  | 1.415 | C <sub>28</sub> -S <sub>29</sub> | 1.774   | 1.783  | 1.788 |
| C <sub>7</sub> -C <sub>8</sub>   | 1.388   | 1.378  | 1.386 | S <sub>29</sub> -C <sub>30</sub> | 1.726   | 1.732  | 1.741 |
| C <sub>8</sub> -C <sub>9</sub>   | 1.396   | 1.406  | 1.400 | C <sub>30</sub> -C <sub>31</sub> | 1.403   | 1.392  | 1.393 |
| C <sub>4</sub> -C <sub>9</sub>   | 1.407   | 1.418  | 1.414 | C <sub>31</sub> -S <sub>32</sub> | 1.726   | 1.726  | 1.735 |
| C <sub>9</sub> -C <sub>10</sub>  | 1.460   | 1.438  | 1.450 | S <sub>32</sub> -C <sub>33</sub> | 1.786   | 1.782  | 1.804 |
| C <sub>10</sub> -C <sub>11</sub> | 1.396   | 1.405  | 1.402 | C <sub>33</sub> -C <sub>34</sub> | 1.395   | 1.398  | 1.411 |
| C <sub>11</sub> -C <sub>12</sub> | 1.388   | 1.378  | 1.384 | C <sub>34</sub> -C <sub>35</sub> | 1.396   | 1.393  | 1.390 |
| C <sub>12</sub> -C <sub>13</sub> | 1.409   | 1.421  | 1.418 | C <sub>35</sub> -N <sub>36</sub> | 1.385   | 1.380  | 1.385 |
| C <sub>13</sub> -C <sub>14</sub> | 1.409   | 1.421  | 1.417 | N <sub>36</sub> -C <sub>37</sub> | 1.453   | 1.459  | 1.454 |
| C <sub>14</sub> -C <sub>15</sub> | 1.383   | 1.374  | 1.380 | N <sub>36</sub> -C <sub>38</sub> | 1.380   | 1.376  | 1.382 |
| C <sub>15</sub> -C <sub>10</sub> | 1.407   | 1.419  | 1.412 | C <sub>38</sub> -C <sub>39</sub> | 1.413   | 1.397  | 1.403 |
| C <sub>15</sub> -C <sub>1</sub>  | 1.528   | 1.527  | 1.530 | C <sub>38</sub> -C <sub>28</sub> | 1.463   | 1.394  | 1.390 |
| C <sub>6</sub> -C <sub>16</sub>  | 1.463   | 1.441  | 1.448 | C <sub>21</sub> -C <sub>41</sub> | 1.418   | 1.419  | 1.404 |
| C <sub>16</sub> -S <sub>17</sub> | 1.774   | 1.782  | 1.787 | C <sub>41</sub> -C <sub>42</sub> | 1.379   | 1.376  | 1.395 |
| S <sub>17</sub> -C <sub>18</sub> | 1.738   | 1.732  | 1.741 | C <sub>33</sub> -C <sub>41</sub> | 1.422   | 1.419  | 1.398 |
| C <sub>18</sub> -C <sub>19</sub> | 1.402   | 1.392  | 1.394 | C <sub>42</sub> -C <sub>43</sub> | 1.425   | 1.425  | 1.412 |
| C <sub>19</sub> -S <sub>20</sub> | 1.726   | 1.726  | 1.733 | C <sub>42</sub> -C <sub>44</sub> | 1.422   | 1.422  | 1.415 |
| S <sub>20</sub> -C <sub>21</sub> | 1.786   | 1.782  | 1.801 | C <sub>43</sub> -N <sub>45</sub> | 1.186   | 1.156  | 1.161 |
| C <sub>21</sub> -C <sub>22</sub> | 1.395   | 1.398  | 1.409 | C <sub>44</sub> -N <sub>46</sub> | 1.187   | 1.157  | 1.161 |
| C <sub>22</sub> -C <sub>23</sub> | 1.396   | 1.394  | 1.390 |                                  |         |        |       |
| C <sub>23</sub> -N <sub>24</sub> | 1.385   | 1.380  | 1.384 |                                  |         |        |       |

Figure S13. Optimized geometrical coordinates of DFM at the neutral, cation and anionic states.



| DFI                              | Neutral | Cation | Anion | DFI                              | Neutral | Cation | Anion |
|----------------------------------|---------|--------|-------|----------------------------------|---------|--------|-------|
| C <sub>1</sub> -C <sub>2</sub>   | 1.544   | 1.545  | 1.541 | C <sub>30</sub> -C <sub>31</sub> | 1.404   | 1.391  | 1.392 |
| C <sub>1</sub> -C <sub>3</sub>   | 1.544   | 1.545  | 1.541 | C <sub>31</sub> -S <sub>32</sub> | 1.726   | 1.729  | 1.735 |
| C <sub>1</sub> -C <sub>4</sub>   | 1.528   | 1.527  | 1.526 | S <sub>32</sub> -C <sub>33</sub> | 1.790   | 1.786  | 1.801 |
| C <sub>4</sub> -C <sub>5</sub>   | 1.383   | 1.375  | 1.379 | C <sub>33</sub> -C <sub>34</sub> | 1.394   | 1.396  | 1.410 |
| C <sub>5</sub> -C <sub>6</sub>   | 1.409   | 1.419  | 1.418 | C <sub>34</sub> -C <sub>35</sub> | 1.396   | 1.395  | 1.391 |
| C <sub>6</sub> -C <sub>7</sub>   | 1.409   | 1.422  | 1.417 | C <sub>35</sub> -N <sub>36</sub> | 1.387   | 1.381  | 1.387 |
| C <sub>7</sub> -C <sub>8</sub>   | 1.388   | 1.378  | 1.387 | N <sub>36</sub> -C <sub>37</sub> | 1.452   | 1.459  | 1.454 |
| C <sub>8</sub> -C <sub>9</sub>   | 1.396   | 1.405  | 1.401 | N <sub>36</sub> -C <sub>38</sub> | 1.379   | 1.377  | 1.381 |
| C <sub>4</sub> -C <sub>9</sub>   | 1.407   | 1.417  | 1.412 | C <sub>38</sub> -C <sub>39</sub> | 1.414   | 1.397  | 1.405 |
| C <sub>9</sub> -C <sub>10</sub>  | 1.461   | 1.440  | 1.450 | C <sub>38</sub> -C <sub>28</sub> | 1.461   | 1.395  | 1.391 |
| C <sub>10</sub> -C <sub>11</sub> | 1.396   | 1.405  | 1.401 | C <sub>21</sub> -C <sub>41</sub> | 1.416   | 1.421  | 1.419 |
| C <sub>11</sub> -C <sub>12</sub> | 1.388   | 1.378  | 1.387 | C <sub>41</sub> -C <sub>42</sub> | 1.369   | 1.366  | 1.396 |
| C <sub>12</sub> -C <sub>13</sub> | 1.409   | 1.422  | 1.418 | C <sub>33</sub> -C <sub>41</sub> | 1.420   | 1.421  | 1.411 |
| C <sub>13</sub> -C <sub>14</sub> | 1.409   | 1.419  | 1.418 | C <sub>42</sub> -C <sub>43</sub> | 1.476   | 1.482  | 1.456 |
| C <sub>14</sub> -C <sub>15</sub> | 1.383   | 1.375  | 1.378 | C <sub>43</sub> -C <sub>44</sub> | 1.395   | 1.493  | 1.508 |
| C <sub>15</sub> -C <sub>10</sub> | 1.406   | 1.417  | 1.379 | C44-C45                          | 1.386   | 1.390  | 1.384 |
| C <sub>15</sub> -C <sub>1</sub>  | 1.528   | 1.527  | 1.526 | C <sub>45</sub> -C <sub>46</sub> | 1.395   | 1.395  | 1.403 |
| C <sub>6</sub> -C <sub>16</sub>  | 1.462   | 1.442  | 1.450 | C <sub>46</sub> -C <sub>47</sub> | 1.401   | 1.402  | 1.394 |
| C <sub>16</sub> -S <sub>17</sub> | 1.774   | 1.783  | 1.789 | C <sub>47</sub> -C <sub>48</sub> | 1.395   | 1.395  | 1.403 |
| S <sub>17</sub> -C <sub>18</sub> | 1.738   | 1.733  | 1.741 | C <sub>48</sub> -C <sub>49</sub> | 1.395   | 1.390  | 1.385 |
| C <sub>18</sub> -C <sub>19</sub> | 1.404   | 1.391  | 1.393 | C <sub>49</sub> -C <sub>50</sub> | 1.398   | 1.489  | 1.499 |
| C <sub>19</sub> -S <sub>20</sub> | 1.726   | 1.729  | 1.734 | C <sub>42</sub> -C <sub>50</sub> | 1.480   | 1.493  | 1.472 |
| S <sub>20</sub> -C <sub>21</sub> | 1.790   | 1.786  | 1.805 | C <sub>43</sub> -O <sub>51</sub> | 1.223   | 1.218  | 1.230 |
| C <sub>22</sub> -C <sub>23</sub> | 1.396   | 1.396  | 1.397 | C <sub>49</sub> -O <sub>52</sub> | 1.223   | 1.222  | 1.235 |
| C <sub>23</sub> -N <sub>24</sub> | 1.387   | 1.395  | 1.388 |                                  |         |        |       |
| N <sub>24</sub> -C <sub>25</sub> | 1.452   | 1.459  | 1.455 |                                  |         |        |       |
| N <sub>24</sub> -C <sub>26</sub> | 1.379   | 1.377  | 1.380 |                                  |         |        |       |
| C <sub>26</sub> -C <sub>27</sub> | 1.414   | 1.422  | 1.405 |                                  |         |        |       |
| C <sub>27</sub> -C <sub>16</sub> | 1.379   | 1.397  | 1.390 |                                  |         |        |       |
| C <sub>13</sub> -C <sub>28</sub> | 1.462   | 1.442  | 1.450 |                                  |         |        |       |
| C <sub>28</sub> -S <sub>29</sub> | 1.774   | 1.783  | 1.789 |                                  |         |        |       |
| S <sub>29</sub> -C <sub>30</sub> | 1.726   | 1.733  | 1.741 |                                  |         |        |       |

Figure S14. Optimized geometrical coordinates of DFI at the neutral, cation and anionic states.



Figure S15. 2D-ICSS Map of the SMEDs showing aromatic and anti-aromatic characteristics.



**Figure S16.** Optimized geometry and computed isosurface of frontier molecular orbitals of  $PC_{61}BM$  electron acceptor.



**Figure S17.** Optimized geometry and computed isosurface plots of the frontier molecular orbitals of Y6 electron acceptor.



**Figure S18.** Simulated absorption profiles of  $PC_{61}BM$  and Y6 acceptors obtained at the TDDFT/M06-2X/6-311G (d, p)/CPCM(CHCl<sub>3</sub>) level of theory.



**Figure S19.** DOS population corresponding to the frontier energy levels of  $PC_{61}BM$  and Y6 electron acceptors.







Figure S21. Optimized geometries of SMEDs-PC<sub>61</sub>BM combination.



Figure S22. Optimized geometries of SMEDs-Y6 combination.

## Tables

**Table S1.** Computed S<sub>0</sub>- S<sub>1</sub> excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes obtained from B3LYP/6-311G(d, p)/C-PCM(CH<sub>2</sub>Cl<sub>2</sub>) level of theory.

| <b>B3LYP</b> |           | λ <sub>max</sub> (nm) | f    | Major transitions                                                          | μ <sub>e</sub> (D) |
|--------------|-----------|-----------------------|------|----------------------------------------------------------------------------|--------------------|
|              | S. S.     | 489.3                 |      |                                                                            |                    |
|              | 0-01      | (2.534 eV)            | 4.27 | HOMO->LUMO (57%), H-1->L+1 (33%))                                          |                    |
| DFR          |           |                       |      |                                                                            | 3 33               |
|              | S0-S0     | 463.8                 | 0.16 |                                                                            | 0.00               |
|              | 00-02     | (2.673 eV)            | 0.10 | 11-1->LONIO (4470), HOMO->LI 1 (4070)                                      |                    |
|              |           | 476.6                 |      |                                                                            |                    |
|              | $S_0-S_1$ | 470.0                 | 2 02 |                                                                            |                    |
| DFM          |           | (2.601 eV)            | 3.02 | H-1-2L+1 (50%), HOMO-2LONIO (65%), H-4-2L+2 (2%)                           |                    |
| 21.11        |           | 446.1                 |      |                                                                            | 8.44               |
|              | 50-52     | (2.779 eV)            | 0.18 | H-1->LUMO (44%), HOMO->L+1 (49%), H-4->L+1 (4%)                            |                    |
|              |           | 404.0                 |      |                                                                            |                    |
|              | $S_0-S_1$ | 494.3                 |      |                                                                            |                    |
|              |           | (2.508 eV)            | 4.41 | H-1->L+1 (32%), HOMO->LUMO (60%), H-4->L+4 (2%)                            |                    |
| DFI          |           | 464.8                 |      |                                                                            | 12.12              |
|              | $S_0-S_2$ | -04.0                 | 0.16 | $11.1 \times 111000 (AA9/) 110000 \times 111 (A79/) 11.4 \times 111 (A9/)$ |                    |
|              |           | (2.667 eV)            | 0.10 | n-1-2LUIVIO (44%), nuivio-2l+1 (47%), n-4-2l+1 (4%)                        |                    |

**Table S2.** Computed S<sub>0</sub>- S<sub>1</sub> excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes obtained from CAM-B3LYP/6-311G(d, p)/C-PCM(CH<sub>2</sub>Cl<sub>2</sub>) level of theory.

| CAM-<br>B3LYP |                                | λ <sub>max</sub><br>(nm) | f    | Major transitions                               | μ <sub>e</sub> (D) |
|---------------|--------------------------------|--------------------------|------|-------------------------------------------------|--------------------|
|               | S0-S1                          | 538.4<br>(2.303 eV)      | 4.37 | H-1->L+1 (29%), HOMO->LUMO (64%)                | 0.00               |
| DFR           | S <sub>0</sub> -S <sub>2</sub> | 465.9<br>(2.661 eV)      | 0.16 | H-1->LUMO (43%), HOMO->L+1 (50%), H-4->L+1 (4%) | 3.69               |
| DEM           | S0-S1                          | 511.6<br>(2.423 eV)      | 3.81 | H-1->L+1 (27%), HOMO->LUMO (67%), H-4->L+2 (2%) | 0.05               |
| DFM           | S <sub>0</sub> -S <sub>2</sub> | 445.1<br>(2.786 eV)      | 0.18 | H-1->LUMO (42%), HOMO->L+1 (52%), H-4->L+1 (3%) | 8.25               |
|               | S0-S1                          | 556.2<br>(2.229 eV)      | 4.25 | H-1->L+1 (31%), HOMO->LUMO (62%)                |                    |
| DFI           | S <sub>0</sub> -S <sub>2</sub> | 465.1<br>(2.666 eV)      | 0.16 | H-1->LUMO (44%), HOMO->L+1 (49%), H-4->L+1 (3%) | 11.96              |

**Table S3.** Computed S<sub>0</sub>- S<sub>1</sub> excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of the dyes obtained from M06-2X/6-311G(d, p)/C-PCM(CH<sub>2</sub>Cl<sub>2</sub>) level of theory.

| M06-2X |                                | λ <sub>max</sub><br>(nm)  | f    | Major transitions                               | μ <sub>e</sub> (D) |  |
|--------|--------------------------------|---------------------------|------|-------------------------------------------------|--------------------|--|
| DEP    | S <sub>0</sub> -S <sub>1</sub> | 555.5<br>(2.232 eV)       | 3.26 | HOMO->LUMO (95%), H-1->L+1 (3%)                 | 2 12               |  |
| DFR    | S0-S4                          | S4 491.2<br>(2.524 eV)    |      | H-1->L+1 (95%), HOMO->LUMO (4%)                 | 3.13               |  |
| DEM    | S <sub>0</sub> -S <sub>1</sub> | 537.0<br>(2.309 eV)       | 3.34 | HOMO->LUMO (97%)                                | 0.06               |  |
|        | S0-S4                          | S0-S4 446.4<br>(2.777 eV) |      | H-3->L+1 (25%), H-2->LUMO (49%), H-1->L+1 (25%) | 0.00               |  |
|        | S <sub>0</sub> -S <sub>1</sub> | 579.6<br>(2.534 eV)       | 3.47 | HOMO->LUMO (96%), H-1->L+1 (3%)                 | 40.5               |  |
| DFI    | S0-S4                          | 475.8<br>(2.534 eV)       | 0.71 | H-1->L+1 (93%), HOMO->LUMO (3%)                 | 12.5               |  |

**Table S4.** Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of SMEDs-PC<sub>61</sub>BM acceptor combination obtained from M06-2X/6-311G(d, p)/C-PCM(CH<sub>2</sub>Cl<sub>2</sub>) level of theory.

| M06-2X                  |                                | $\lambda_{max}\left(nm\right)$ | f    | Major transitions                                      | $\mu_e(\mathbf{D})$ |
|-------------------------|--------------------------------|--------------------------------|------|--------------------------------------------------------|---------------------|
|                         | S <sub>0</sub> -S <sub>2</sub> | 509.4<br>(2.434 eV)            | 0.14 | H-2->LUMO (91%), H-7->L+1 (3%)                         |                     |
| DFR-                    |                                | 506.1                          |      | H-3->LUMO (16%), HOMO->LUMO (11%), HOMO->L+1           | 7 14                |
| PC <sub>61</sub> BM     | $S_0-S_4$                      | (2.450 eV)                     | 1.22 | (13%), HOMO->L+3 (17%), H-2->L+1 (8%), H-1->LUMO (7%), |                     |
|                         |                                |                                |      | H-1->L+1 (7%), H-1->L+4 (8%)                           |                     |
|                         | SS-                            | 480.8                          |      |                                                        |                     |
| DFM-                    | 00-05                          | (2.579 eV)                     | 3.63 | H-2->LUMO (92%), H-5->L+1 (3%)                         |                     |
| PC <sub>61</sub> BM     | So-So                          | 449.9                          |      | H-1->I +4 (26%) HOMO->I +3 (62%) H-9->I +8 (2%) HOMO-  | 10.33               |
|                         | 0,00                           | (2.756 eV)                     | 0.19 | >L+2 (5%)                                              |                     |
|                         | So-S1                          | 525.6                          |      | H-2->I UMO (55%), H-3->I UMO (3%), H-1->I UMO (5%),    |                     |
|                         |                                | (2.359 eV)                     | 0.58 | HOMO->LUMO (5%), HOMO->L+1 (5%), HOMO->L+3 (6%)        | 40.0                |
| DFI-PC <sub>61</sub> BM | S₀-S₄                          | 517.2                          |      | H-2->LUMO (30%), H-2->L+1 (10%), HOMO->L+3 (23%)       | 12.3                |
|                         |                                | (2.397 eV)                     | 1.63 | H-1->L+1 (5%), H-1->L+4 (8%), HOMO->L+1 (9%)           |                     |

**Table S5.** Computed S0- S1 excitation energies with electron volt in parenthesis, oscillator strength (f), major transitions and transient dipole moment of SMEDs-Y6 acceptor combination obtained from M06- $2X/6-311G(d, p)/C-PCM(CH_2Cl_2)$  level of theory.

| M06-2X |                                | λmax<br>(nm)        | f    | Major transitions                                                  | μe<br>(D) |
|--------|--------------------------------|---------------------|------|--------------------------------------------------------------------|-----------|
|        | S <sub>0</sub> -S <sub>1</sub> | 608.8<br>(2.037 eV) | 2.38 | H-1->LUMO (83%), H-6->L+1 (7%), H-5->L+1 (2%),<br>H-1->L+4 (2%)    |           |
| DFR-Y6 | S0-S5                          | 486.9<br>(2.546 eV) | 4.15 | H-2->L+3 (29%), HOMO->L+2 (61%), H-7->L+7 (2%)                     | — 7.95    |
|        | S <sub>0</sub> -S <sub>1</sub> | 606.2<br>(2.045 eV) | 2.31 | H-1->LUMO (84%), H-6->L+1 (7%)                                     | 0.07      |
| DFM-16 | S <sub>0</sub> -S <sub>5</sub> | 493.8<br>(2.511 eV) | 4.48 | H-2->L+3 (29%), HOMO->L+2 (64%) H-7->L+9 (2%)                      | - 8.87    |
|        | S <sub>0</sub> -S <sub>1</sub> | 611.8<br>(2.027 eV) | 2.26 | H-1->LUMO (71%), HOMO->LUMO (14%),<br>H-6->L+1 (4%), H-3->L+1 (5%) | 40.00     |
| DFI-16 | S0-S5                          | 473.9<br>(2.616 eV) | 3.70 | H-2->L+3 (26%), HOMO->L+2 (57%), H-1->L+2 (7%)                     | - 12.98   |

**Table S6.** Computed bond length alternation and energy levels of the SMEDs at the cation and anionic states

|     | <b>BLA</b> <sub>neu</sub> <sup>a</sup> | <b>BLA</b> cat <sup>b</sup> | <b>BLA</b> ani <sup>c</sup> | $BLA_{N \to C}{}^d$ | $BLA_{N \to A}{}^e$ | HOMO <sub>cat</sub> <sup>f</sup> | LUMO <sub>cat</sub> f | H-                              | HOMO <sub>ani</sub> <sup>g</sup> | LUMO <sub>ani</sub> <sup>g</sup> | H-                                       |
|-----|----------------------------------------|-----------------------------|-----------------------------|---------------------|---------------------|----------------------------------|-----------------------|---------------------------------|----------------------------------|----------------------------------|------------------------------------------|
|     | (Å)                                    | (Å)                         | (Å)                         | (Å)                 | (Å)                 | (eV)                             | (eV)                  | $\mathbf{L_{cat}}^{\mathbf{f}}$ | (eV)                             | (eV)                             | $\mathbf{L}_{\mathbf{ani}}^{\mathbf{g}}$ |
|     |                                        |                             |                             |                     |                     |                                  |                       | (eV)                            |                                  |                                  | (eV)                                     |
| DFR | -0.161                                 | -0.061                      | -0.082                      | -0.154              | -0.03               | -8.52                            | -4.48                 | 4.04                            | -4.08                            | -1.90                            | 2.18                                     |
| DFM | -0.357                                 | -0.037                      | -0.005                      | -0.173              | -0.072              | -9.02                            | -4.94                 | 4.08                            | -4.48                            | -2.10                            | 2.38                                     |
| DFI | -0.126                                 | -0.042                      | -0.004                      | -0.202              | -0.141              | -8.54                            | -4.48                 | 4.06                            | -4.28                            | -1.92                            | 2.36                                     |

<sup>*a,b,c*</sup>-variation of bond length alternation of the SMEDs at the neutral, oxidized and reduced state respectively; <sup>*d, e*</sup>-variation of BLA transformation from neutral to oxidized/reduced charged states respectively; <sup>*f, g*</sup>- frontier energy levels at the oxidized and reduced states respectively.

**Table S7.** Interaction energy of the SMEDs upon combination with the electron acceptors  $PC_{61}BM$  and Y6.

| D-A                     | Interaction energy<br>(kcal/mol) | D-A    | Interaction energy<br>(kcal/mol) |
|-------------------------|----------------------------------|--------|----------------------------------|
| DFR-PC <sub>61</sub> BM | -169.70                          | DFR-Y6 | -166.29                          |
| DFM-PC <sub>61</sub> BM | -156.37                          | DFM-Y6 | -142.76                          |
| DFI-PC <sub>61</sub> BM | -169.92                          | DFI-Y6 | -153.20                          |