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Supplementary Note 1: Extinction Cross Section and Cavity
Losses

The transmission Tcav on resonance and the linewidth κ of the resonance of an
optical resonator is determined on the one hand by the transmission Ti and the
losses Li of the two mirrors i = 1, 2 and on the other hand by the losses due to
the medium L, the light passes within the resonator. Here L denotes the portion
of light getting lost when passing the medium once. The maximum transmission is
given by

Tcav = 4T1T2

(2L + L1 + L2 + T1 + T2)2 , (1)

the linewidth by
κ = c

2πd

2L + L1 + L2 + T1 + T2

2 (2)

where c is the speed of light and d = q λ/2 the cavity length with the wavelength
λ and the longitudinal mode order q.

For the losses L inside a resonator, no further assumptions concerning position
or shape of the lossy medium are neither made nor necessary.

In contrast, the loss of light due to a nanoparticle is described by its extinction
cross section σext. This quantity associates a perfectly absorbing disk of a certain
size to the particle, blocking the light passing it.
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To bring both concepts together, the extinction cross section has to be compared
to the mode size of the light field in the resonator. Before doing so, let’s consider
the problem in free space, where a Gaussian beam with waist w0 gets attenuated by
a nanoparticle in its center that has an extinction cross section much smaller than
the beam size.

A Gaussian beam has an intensity distribution of

I(r) = I0 e
− 2r2

w2
0 (3)

where I0 is the peak intensity and w0 the 1/e2-radius of the Gaussian. Integrating
over the full area yields a relation between the peak intensity I0 and the total power
of the beam P0, that can be measured:

P0 =
∫ ∞

0

∫ 2π

0
I0e

− 2r2
w2

0 r dφ dr = I0
πw2

0
2 . (4)

If a small absorbing disk with radius rext and surface area σext is brought to the
center of the beam, the absorbed power PL can be determined by

PL =
∫ rext

0

∫ 2π

0
I0e

− 2r2
w2

0 r dφ dr (5)

as rext is assumed to be much smaller than w0, the radial dependence of the
intensity can be neglected and the integral simplifies to

PL ≈ I0

∫ rext

0

∫ 2π

0
r dφ dr = I0r2

extπ = I0σext. (6)

The fraction of the light L, getting lost at the absorbing disk that can be associated
with the extinction cross section of a nanoparticle is determined by comparing the
absorbed power to the incident power:

L = PL

P0
= I0σext

I0
πw2

0
2

= 2σext

πw2
0

. (7)

In contrast to the free space problem, where a running wave interacts with the
particle and a spatial as well as a temporal average of the light wave has to be
considered, in a resonator, a standing wave builds up. Thus the position of the
particle in the standing wave plays an important role. If placed to an antinode of
the wave, as done in the experiments presented in this work, the intensity here is
a factor of 2 higher compared to the spatial average of the running wave case, the
extinction cross section is defined for. Thus the losses at the particle get modified
to

L = 4σext

πw2
0

. (8)

In the context of quantum optics, this increase of losses due to an absorbing particle
inside an optical cavity is extensively discussed e.g. by Tanji-Suzuki et. al.1
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Supplementary Note 2: Optical Properties of a Metal Nanopar-
ticle in the Rayleigh Limit

For the interpretation of the experiments shown in this work, a detailed understand-
ing of the optical properties of the metal nanoparticles is crucial. As the particles
are small compared to the wavelength λ (rpart ≪ λ/(2πnenv)) it is possible to sim-
plify the problem to the treatment introduced by Lord Rayleigh. In the following,
different effects that influence the properties are discussed.

The dielectric constants of the particle, its surrounding and the surfaces in the
vicinity of the particle are denoted as follows: ϵ1 denotes the dielectric constant of
the surrounding environment, ϵ2 the dielectric constant of a surface close to the
particle and ϵ3 gives the dielectric constant of the particle itself as depicted in figure
S1. ϵ0 is the vacuum dielectric constant.

Supplementary Figure S1: Optical constants of the particle, the surface it is placed
to and it’s environment

Polarizability of a spherical nanoparticle
The polarizability is the key quantity to describe the optical properties of a particle.
For spherically symmetric and isotropic particles, the polarizability is given by the
Clausius-Mossotti law:

α = 3ϵ0Vp
ϵ3 − ϵ1

ϵ3 + 2ϵ1
(9)

where Vp = 4πr3/3 is the volume of the particle.

Correction of the dielectric constant because of the small size
It turns out that the dielectric constant of gold ϵ3 has to be modified with respect
to the bulk value (ϵbulk)2 in order to describe very small particles accurately3:

ϵ3(λ) = ϵbulk(λ) +
ω2

p

ω(ω + iγbulk) −
ω2

p

ω(ω + iγ) , (10)

with the metal plasma frequency ωp and the electron scattering rates in the bulk
(γbulk) and confinded metal (γ), where

γ = γbulk + 2gvF /D (11)

with vF the Fermi velocity, D the particle diameter and g a proportionality factor
in the order of 1.

S3



Correction of the polarizability for particles on a dielectric sur-
face
As the nanoparticles in our experiments lie on the surface of a dielectric mirror,
also the effect of a surface close to the particle has to be considered. For metal
nanospheres far away from plasmon resonance and for an incident light field with a
polarization parallel to the surface, like in the case discussed in this paper, Wind et
al.4,5 give the following solution:

α = ϵ0
ϵ1(ϵ3 − ϵ1)Vp

ϵ1 + Ls(ϵ3 − ϵ1) (12)

with the depolarization factor

Ls = 1
3

(
1 − 1

8
ϵ2 − ϵ1

ϵ2 + ϵ1

)
. (13)

Scattering and Absorption
When light interacts with an object it either gets absorbed or scattered. For nanopar-
ticles smaller than a wavelength of light, this is described by Rayleigh scattering.
The corresponding cross sections are given by6:

σabs =
2π

√
ϵ1

λϵ0
ℑ(α) (14)

and

σsca =
(

2π

λ

)4 |α|2

6πϵ2
0

. (15)

As both effects attenuate the probe beam, the measured quantity in all our
experiments is the extinction of a nanoparticle:

σext = σabs + σsca. (16)

Size- and g-factor distribution for gold nanospheres
The size of the nanoparticles varies as well as the g-factor, a heuristic value charac-
terizing damping effects for small nanoparticles. In order to compare our measured
distribution of extinction cross sections, we take a Gaussian diameter distribution
measured by the manufacturer of the particles with central diameter 48.5 nm and a
standard deviation of 1.9 nm. In addition, we adopt a gaussian distribution of the
g-factor found by Muskens et. al.3 around 1.4 with a standard deviation of 0.25.

S4



Supplementary Note 3: Repeatability of Extinction Measure-
ments based on Scanning Cavity Microscopy

We have investigated the repeatability of scanning cavity microscopy already in
earlier experiments and show here briefly the central results.

In that experiment, we have measured the extinction cross section of polystyrene
spheres with a diameter of (100.0 ± 12.1) nm1 using scanning cavity microscopy.
Although the sample is different to gold particles that have been used in the
present main study, the underlying physics describing scattering and absorption
in the Rayleigh-limit is the same for both types of particles. This shows that the
technique also works for purely scattering particles.

In contrast to the method presented in this paper where the change of the
linewidth of the resonator has been measured in order to determine the extinction
cross section of the nanoparticles, here the peak transmission of the resonator has
been analyzed. We have demonstrated earlier that both methods are equivalent7.

In a first step, we have measured 15 times the extinction cross section σext of the
same polystyrene particle at a longitudinal mode order of q = 14 at a wavelength of
785.46 nm. Figure S2 shows the results for each measurement. We have calculated
a mean extinction cross section of (133.3 ± 0.7) nm2. The corresponding relative
deviation of the measurement is 0.5 %, proofing the high repeatability and precision
of the method.
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Supplementary Figure S2: Results of repeated measurements of the extinction cross
section σext of a single polystyrene nano sphere at a longitudianl mode order of
q = 14. The mean value of 133.3 nm2 with its error band of ±0.7 nm is depicted in
red.

In a second step, we have measured the extinction cross section of the same
particle for subsequent longitudinal mode orders and repeated this experiment 5
times. The average values of the measurement at each resonator length with its error
bars is shown in figure S3. Now larger variations between different longitudinal mode
orders are visible, the mean value of the extinction cross section σext shifts to (142±
5) nm2, the respective relative variation of the measurement is 5 %. This represents
the leading systematic uncertainty which limits the accuracy of our method.

The variations are mainly caused by the coupling of higher order transversal
modes to the fundamental cavity mode8,9: in contrast to the wavefront of an ideal
Gaussian mode, the profile especially of the mirror on the fiber has no spherical

1Polyscience Inc.
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Supplementary Figure S3: Results of repeated measurements of the extinction cross
section σext of a single polystyrene nano sphere at subsequent logitudinal mode
orders. Missing data points due to mode mixing.

but more a Gaussian profile10,11. Thus the cavity mode is no longer an exact
single Hermite-Gaussian mode but it can be described as a superposition of vari-
ous Hermite-Gaussian modes, resembling a wavefront at the mirrors following their
geometrical shape. At certain resonator lengths, a higher transversal mode of a
subsequent longitudinal order has the same resonance frequency as the fundamen-
tal mode of the resonator, thus the modes couple and energy is transferred from
one mode to the other. As this effect strongly depends on the exact geometry of
both mirrors of the cavity, it can appear at a certain length where the finesse drops
significantly and the cavity can not be used for scanning cavity microscopy. These
longitudinal mode orders are not considered for measurements and correspond to
the missing data points in figure S3. The mode mixing effect can also have an effect
for detuned transverse modes, however much less pronounced, but still leading to
a slight variation of the measured extinction cross section for different longitudinal
mode orders, as can be seen in figure S3.

The measurements on polystyrene spheres presented in the section show that
scanning cavity microscopy provides highly repeatable results. Nevertheless, the
longitudinal mode order, the resonator is operated at has to be chosen carefully to
avoid systematic errors especially due to mode mixing.
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