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Appendix A

Referring to Equation (1) in the text as fundamental equation of continuity, for two-
phase immiscible, incompressible, isotherm flow through a rigid 3D porous medium, 
the fluid phase α satisfies and Equation (1) becomes:q  
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Sα is the phase saturation, and qα is the phase velocity which is given by the extended 
Darcy equation [45]:
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Mobility is the ratio of relative permeability krα of phase α to its    CCSkr   ,

viscosity, µα. Mobility ratio describes the impairment of the flow of one phase by 
the other phase. K is the permeability tensor of the porous medium, pα is the fluid 
pressure of phase α (which is defined through capillary pressure as ) and wnc ppp 

g is the gravitational acceleration vector. 

It should be noted that Equations (1) and (A-1) can be derived from first principles 
[45], while equation (A-2) is an assumption. 

The parameter C in Equation (A-2) represents chemical composition (water salinity, 
polymer, additives, tracers, etc.), with the following assumptions:
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i. Components do not alter the porous medium (through chemical reactions);
ii. They do not partition into the other phase;

iii. Solute mass flux due to hydrodynamic dispersion within a phase is described 
by a Fickian model;

iv. The volume fraction of the chemical composition is small compared to that of 
the wetting phase;

v. The only chemical interaction between the rock and the components is 
equilibrium adsorption [46].

The flux of any component Ci includes contributions from advection and dispersion 
[47]:
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where D is the hydrodynamic dispersion tensor [47]:
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δi,j is the Kronecker delta, αL and αT are longitudinal and transversal dispersivity, 
respectively, which are measured through experiments. D accounts for the effects of 
velocity fields, but the effect of molecular diffusion is ignored. 

For a system of n components, there are n advection-dispersion-reaction (ADR) 
equations:
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The rock density is ρr, and the adsorption of Ci per unit mass of rock is presented by 
As,i. In addition, when water fluid properties stay constant, the tracer concentration 
will be constant (e.g.,  and ). For chemical   .constC ww     .constC ww  
components (polymer or salts), empirical adsorption relations can be used [48] as 
below:
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At thermodynamic equilibrium, isotherm is a function of C only (i.e. ).  C

Furthermore, variations in density (due to the presence of chemical components) are 
considered in the gravity term only. 
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Equation (A-2) combined with the definition of capillary pressure results in a 
parabolic Partial differential Equation for water pressure [49]:
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where ct is the total compressibility of the fluid-rock system, , andnwt  
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The fractional flow function is also introduced as: 
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The wetting and non-wetting relative permeability functions depend on saturation 
(Sw) only, and numerous correlations have been proposed for them, already. 

The total velocity is . The set of equations is obtained as:nwt qqq 


(A-9)

 

   

      

      

, ,

, ( )

ro w n
w t c w n

n t

w ro w n
t c w n

n t w

w ro
w t w c

n

w n
w w n w

t

fkq fq K p g

S fkfq K p g
t

CS fkCf S C q CK S C p
t t

C S C K C g S D C

   
 

   
  




    


     

     

                   


         

       


rr r r

rr r

rr

r rr

When making the additional assumptions below for previously suggested models:

i. No dissolved components exist, C = 0;
ii. The porous medium is homogeneous;

iii. The medium is one-dimensional and horizontal so that gravity can be ignored;
iv. There is no sink or source term.

Applying these assumptions, the final equation form would be like below:
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D(Sw) has also the following equation form:
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Appendix B

The net accumulated volume of wetting fluid is:
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where R is the ratio of total flow to water flux at x = 0 ( ). Clearly, for 0qqR t

unidirectional displacement,  and R = 1. For counter-current flow, total flux 0tq q

is equal to zero and R = 0. 

The total imbibed volume of water would be:
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The magnitude of A determines the speed of SI, and it is a function of the rock-fluid 
system. The fractional flow functions for spontaneous imbibition are [1]:
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With R = 0 for counter-current imbibition and Equation (B-3) and Equation (11) 
turns into:
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When considering Equation (A-2), the general 1D continuity equation simplifies to:
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Substituting Equation (B-4) into Equation (B-5), and using the similarity variable ω 
= x/√t:
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The derivative of Equation (B-6) is:
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Now consider Equation (A-9) for qw (where qt = 0):
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Combined with Equation (B-4):
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Inserting Equation (B-9) in Equation (B-7):
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This is an Ordinary Differential Equation (ODE) with respect to F. The solution for 
Equation (B-10) can be obtained by integrating twice and applying initial and 
boundary conditions:
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Appendix C

Since F also depends on the constant A, iteration for A is required; in this case, an 
initial estimation of A is required. As  at the inlet, iteration of A is repeated until1F 

. The backward derivative of F" is as follows: 0, 1F x t 
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Considering Equation (B-9) and rearranging for counter-current imbibition, we 
have:
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When using the numerical form as in Equation (C-2), we can find an approximation 
of knowing and beforehand, based on some starting  wF S  w wF S S   2w wF S S 

value of . The value of  is considered as that starting value. The  ,w StartF S  0, 1F x t 

other required value of is obtained by expansion into a Taylor series: ,maxw wF S S 

(C-3)     ,max ,max ,max 1 0 1w w w w wF S S F S S F S        

It is assumed that the maximum saturation is always provided at the inlet and 
consequently . ,max 0wF S 

Convergence of F is achieved by applying two criteria, firstly, as F is a fractional 
flow function and we have no flow at initial water saturation (Swir), then ;   0wirF S 

secondly, due to the mass balance condition, the integrated saturation curve must 
equal the total imbibed pore volume, i.e.:
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Again, a numerical approximation is applied for Equation (C-4) to give:
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