SUPPORTING INFORMATION FOR:

Physically crosslinked polybutadiene by quadruple hydrogen bonding through side-chain incorporation of ureidopyrimidinone with branched alkyl side chains

Jente Verjans,¹ Alexis André,^{2,3} Evelyne Van Ruymbeke,² and Richard Hoogenboom^{1,*}

¹ Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, B-9000 Ghent, Belgium.

² Bio- and Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.

³ Department of Chemical Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.

Table of contents

Figure S1: DOSY NMR spectrum of PB-U4 S2

Figure S2: DOSY NMR spectrum of PB-U8 S2

Figure S3: DOSY NMR spectrum of PB-U13	S3
Figure S4: TGA curves of all PB-UPy polymers	S3
Figure S5: PB-UPy films obtained after compression molding	S4
Figure S6: Test of time-temperature superposition at $T_{ref} = 80 ^{\circ}\text{C}$	S4
Figure S7: Test of time-temperature superposition at $T_{ref} = 60 ^{\circ}\text{C}$	S5
Figure S8: Scaling laws of the storage modulus for (ϵ >1) and (0< ϵ <1)	S5
Figure S9: Predictions of the sticky Rouse model (with the loops) for the system PB-U6	S6
Figure S10: Predictions of the sticky Rouse model (with the loops) for the system PB-U8	S6
Figure S11: Predictions of the sticky Rouse model (with the loops) for the system PB-U13	S 6

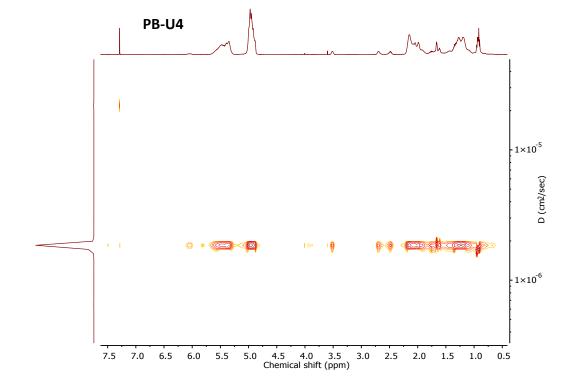
Appendix A	S7

Equation A1 Table A1: Correction factor a_{Tg}

Appendix B

S7

Equation B1 – B4



Additional information and Characterization

Figure S1. DOSY NMR spectrum of PB-U4.

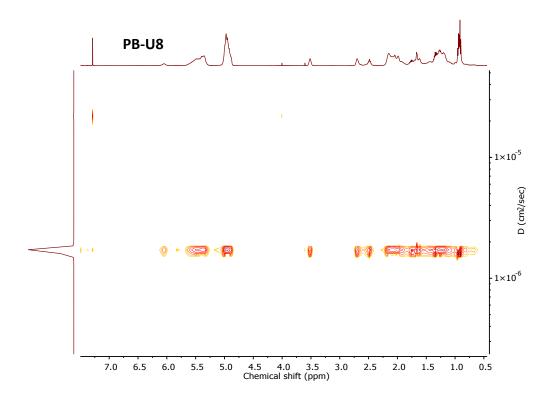


Figure S2. DOSY NMR spectrum of PB-U8.

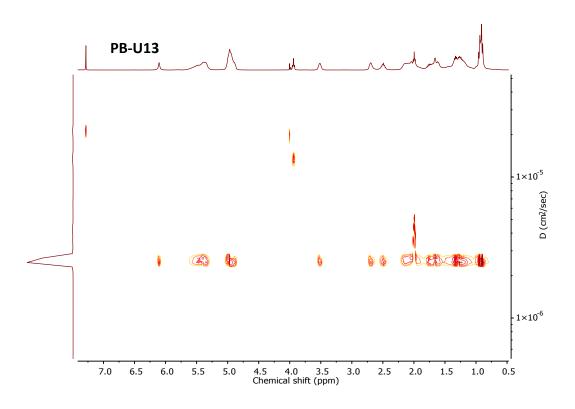


Figure S3. DOSY NMR spectrum of PB-U13.

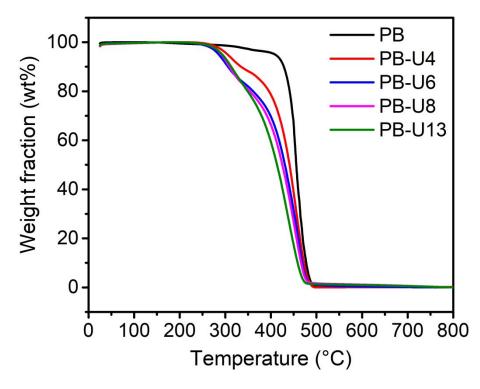


Figure S4. TGA curves of all PB-UPy polymers.

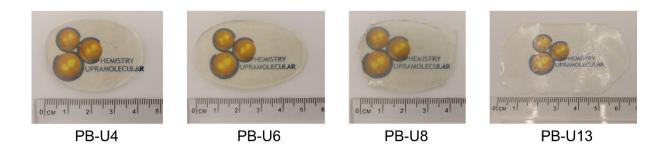


Figure S5. PB-UPy films obtained after compression molding.

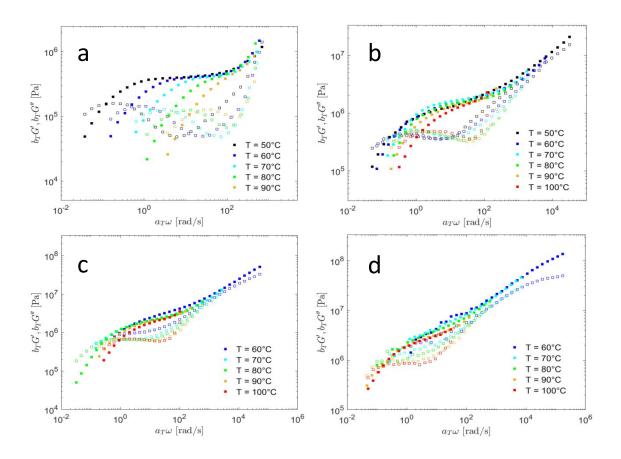


Figure S6. Test of time-temperature superposition of the storage and loss moduli, G' and G", of a) PB-U4 b) PB-U6 c) PB-U8 d) PB-U3 at $T_{ref} = 80^{\circ}C$.

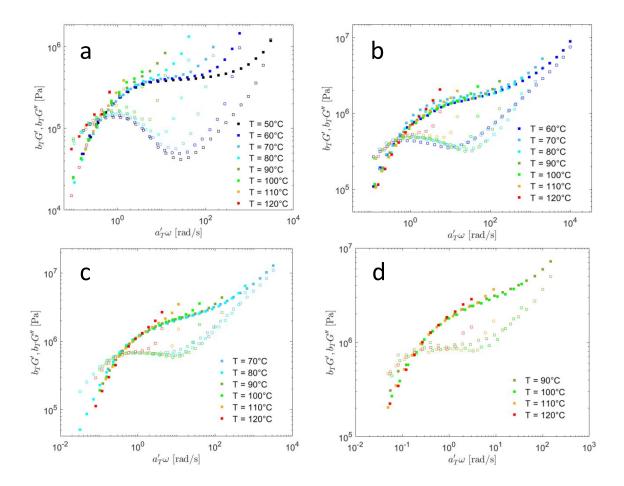


Figure S7. Test of time-temperature superposition of the storage and loss moduli, G' and G", of a) PB-U4 b) PB-U6 c) PB-U8 d) PB-U13 at $T_{ref} = 60^{\circ}C$.

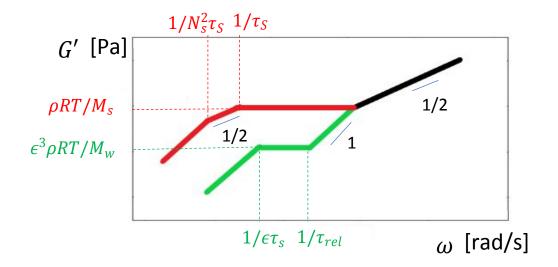


Figure S8. Scaling laws of the storage modulus for reversible network ($\epsilon > 1$) and mixture of sol and gel ($0 < \epsilon < 1$) (with mean-field percolation statistics).

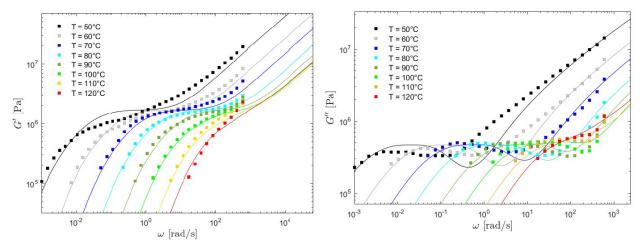


Figure S9. Predictions of the sticky Rouse model (with the loops) for the system PB-U6 at different temperatures. The relaxation has been computed based on the value in **Table 2**, and on equation 3) and 4). To account for temperature effect, the values of τ_0 and τ_s have been modified by the shift factors a_T and a'_T shown in **Figure 9.** The symbols are the experimental results and the solid lines are the predictions.

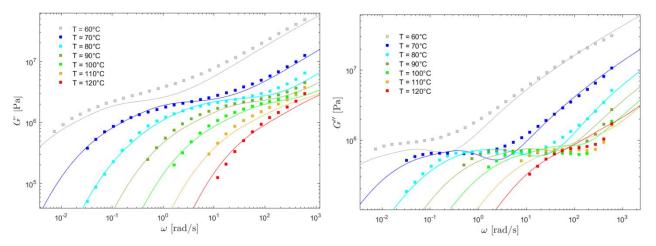


Figure S10. Predictions of the sticky Rouse model (with the loops) for the system PB-U8 at different temperatures. The relaxation has been computed based on the value in **Table 2**, and on equation 3) and 4). To account for temperature effect, the values of τ_0 and τ_s have been modified by the shift factors a_T and a'_T shown in **Figure 9.** The symbols are the experimental results and the solid lines are the predictions.

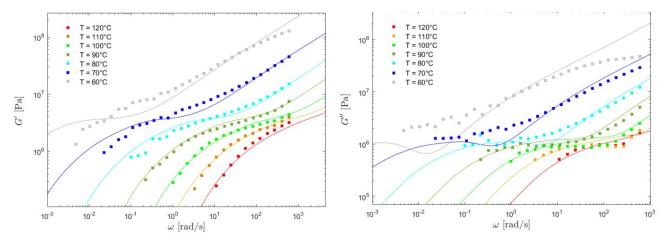


Figure S11. Predictions of the sticky Rouse model (with the loops) for the system PB-U13 at different temperatures. The relaxation has been computed based on the value in **Table 2**, and on equation 3) and 4). To account for temperature effect, the values of τ_0 and τ_s have been modified by the shift factors a_T and a'_T shown in **Figure 9.** The symbols are the experimental results and the solid lines are the predictions.

Appendix A

Due to the different glass transition temperatures of the systems, the horizontal shift factors of the PB – Upy systems are different and have a smaller temperature dependence with decreasing the UPy concentration. Indeed, as $T_{ref} - T_g$ increases, the activation energy decreases and so does the dependence of the relaxation times with the temperature. Despite this, as demonstrated by Wagner¹ and Liu *at al.*,² it is still possible to draw a mastercurve for the shift factors of all the systems. This can be done by multiplying the shift factors of the systems by a correction factor a_{T_g} which takes into account the effect of the different T_g . This shift a_{T_g} can be computed by a WLF-like equation:

$$\log_{10} a_{T_g} = \frac{-c_1^0 (T_{g,ref} - T_g)}{c_2^0 + (T_{g,ref} - T_g)} \# (A1)$$

with the glass transition temperature T_g of the solutions and a reference glass transition temperature $T_{g,ref}$. The computed shift a_{T_g} are shown in Table 6. Here, PB – U13 is considered as the reference material.

Table A1. Correction factor a_{T_g}

	PB – U13	PB – U8	PB – U6
a_{T_g}	1	0.0791	0.0126

Appendix B

If a variable M is log-normally distributed, then its probability density function is given by

$$p(M = m) = \begin{cases} \frac{1}{m\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln m - \mu)^2}{2\sigma^2}\right), & m > 0\\ 0, & \text{elsewhere} \end{cases}$$

The parameters μ and σ^2 can be expressed as a function of the mean E[X] and the variance Var[X] of the distribution in the following way.

$$\mu = \ln\left(\frac{E[X]^2}{\sqrt{E[X]^2 + Var[X]^2}}\right) \#(B2)$$
$$\sigma^2 = \ln\left(1 + \frac{Var[X]}{E[X]^2}\right) \#(B3)$$

The mean E[X] is by definition equal to M_n and the variance Var[X] can de deduced from

$$Var[X] = E[X^{2}] - E[X]^{2} = M_{w}M_{n} - M_{n}^{2} = M_{n}^{2}(PDI - 1) #(B4)$$

As a consequence, one can model the molecular weight distribution from the values of the PDI and M_w .

References

- (1) Wagner, M. H. Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. *Rheol. Acta*, **2014**, *53*, 765–777
- (2) Liu, C.-Y., He, J., Keunings, R. & Bailly, C. New Linearized Relation for the Universal Viscosity–Temperature Behavior of Polymer Melts. *Macromolecules*, 2006, 39, 8867–8869