A Small Footprint and Robust Interface for Solid Phase Microextraction and Mass Spectrometry based on Vibrating Sharpedge Spray Ionization

Jing Wang,^[a] Chong Li,^[a] Peng Li^{*[a]}

[a]. C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.

* Correspondence should be addressed to P.L. (peng.li@mail.wvu.edu)

- Table S1 Low flow rates achieved by cVSSI
- Table S2 Recovery test for spiked samples
- Table S3 Data for all the calibration curves
- Table S4 Typical Therapeutic concentrations of drugs tested.
- Figure S1 Optimization of device distance to the mass spectrometer inlet
- Figure S2 Optimization of capillary angle to the mass spectrometer inlet
- Figure S3 A close up picture of the cVSSI-MS setup
- Figure S4 Comparison of mass spectra with different capillary temperature
- Figure S5 Comparison of mass spectra with different spray time
- Figure S6 Comparison of capillaries with 15 μm and 50 μm tip size
- Figure S7 Comparison of mass spectra obtained with glue seal and without glue
- Figure S8 Study of desorption time for 100 nM samples
- Figure S9 A full range calibration curve of SPME-cVSSI-MS for metoprolol in serum
- Figure S10 A full range calibration curve of SPME-nESI-MS for metoprolol in serum
- Figure S11 Calibration curves for 4 different drug compounds from serum samples.

Frequency (kHz)	Amplitude (V _{pp})	Volume (μL)	Flow Rate (μL/min)
93	7	6	0.46±0.02
93	9	6	0.58±0.03
93	11	6	0.70±0.02

Table S1 Spray flow rates of the cVSSI for a 15 μm pulled-tip capillary under different input voltage.

Analyte	Spiked Concentration (ng/mL)	Found Concentration (ng/mL)	(%) Recovery (±SD)
metoprolol	0.267	0.24(±0.01)	91(±4)
	6.675	5.54 (±0.20)	83(±3)
	13.36	10.69 (±0.20)	80(±2)
	20.25	17.62 (±0.91)	87(±5)
	26.7	21.89 (±0.99)	82(±4)

Table S2 Recovery test for spiked metoprolol samples at different concentrations.

Analyte	Dynamic Range (ng/mL)	Linear Curve	R ²
Metoprolol	0.267-26.7	Y=0.038X-0.007	0.9968
Pindolol	0.249-24.9	Y=0.006X+0.040	0.9701
Irinotecan	0.585-58.5	Y=0.016-0.045	0.9856
Capecitabine	0.360-36.0	Y=0.010X+0.082	0.9918
Acebutolol	0.337-33.7	Y=0.010X-0.040	0.9920
Oxprenolol	0.266-26.6	Y=0.010X+0.054	0.9924

Table S3 Calibration curves for all the compounds tested.

Analyte	Therapeutic Concentration (ng/mL)	Limit of Detection of the present method (ng/mL)	Reference
Metoprolol	14 to 212	0.27	[1]
Pindolol	100	0.25	[2]
Irinotecan	1600	0.59	[3]
Capecitabine	2700 to 4000	0.36	[4]
Acebutolol	200 to 2000	0.34	[5]
Oxprenolol	680	0.27	[6]

Table S4 Typical Therapeutic concentrations of drugs tested.

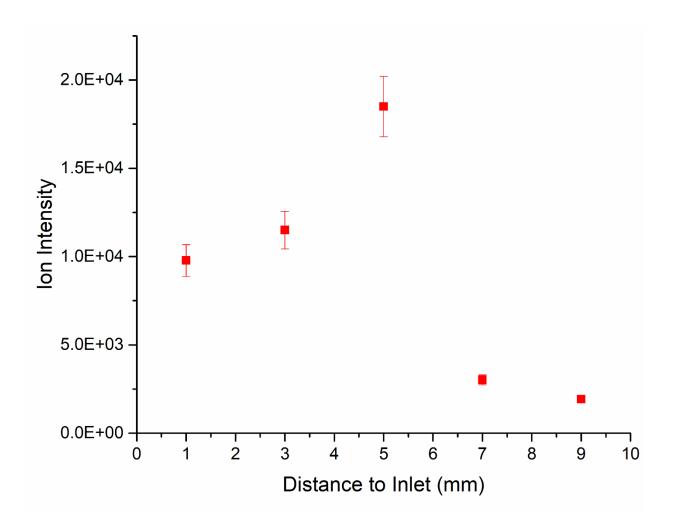


Figure S1: The relationship between ion intensity and the distance to the mass spectrometer inlet. The optimal distance to the inlet was determined to be 5 mm.

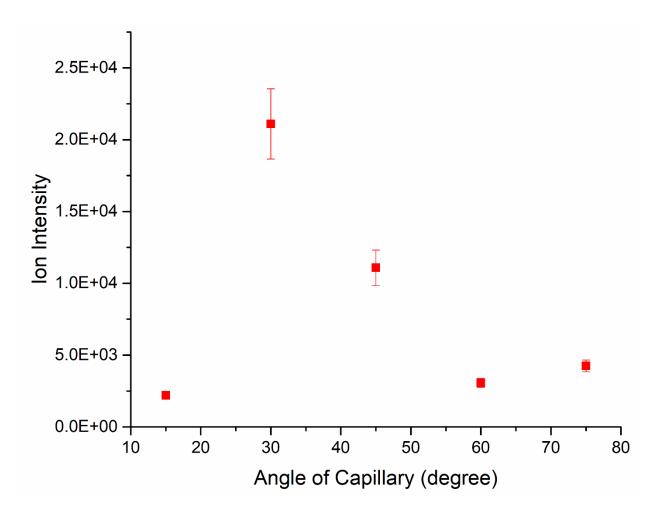


Figure S2: The relationship between ion intensity and the angle to the mass spectrometer inlet. The optimal distance to the inlet was determined to be 30 degree.

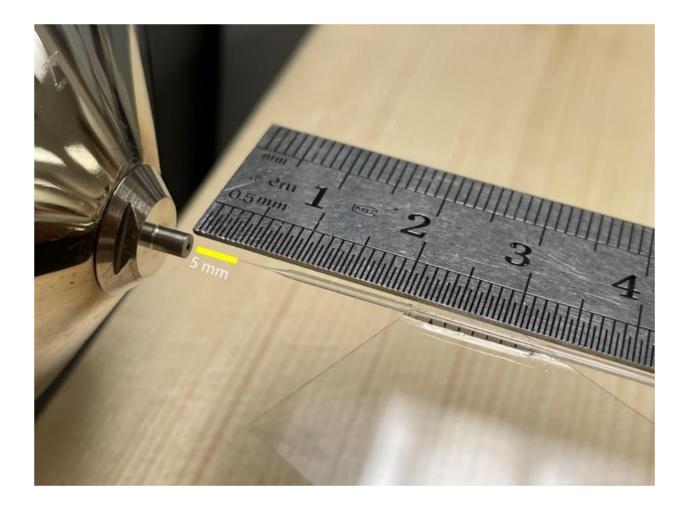


Figure S3 A close up picture of the cVSSI-MS setup

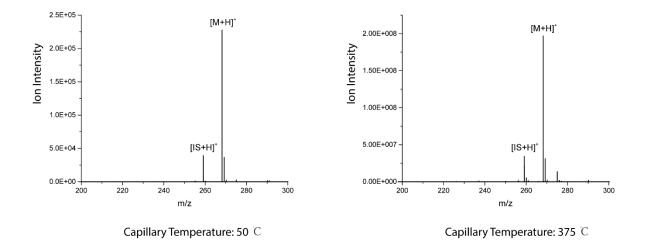


Figure S4 Comparison of mass spectra of 10 μM metoprolol with different capillary temperatures. Left: 50 °C; Right: 375 °C

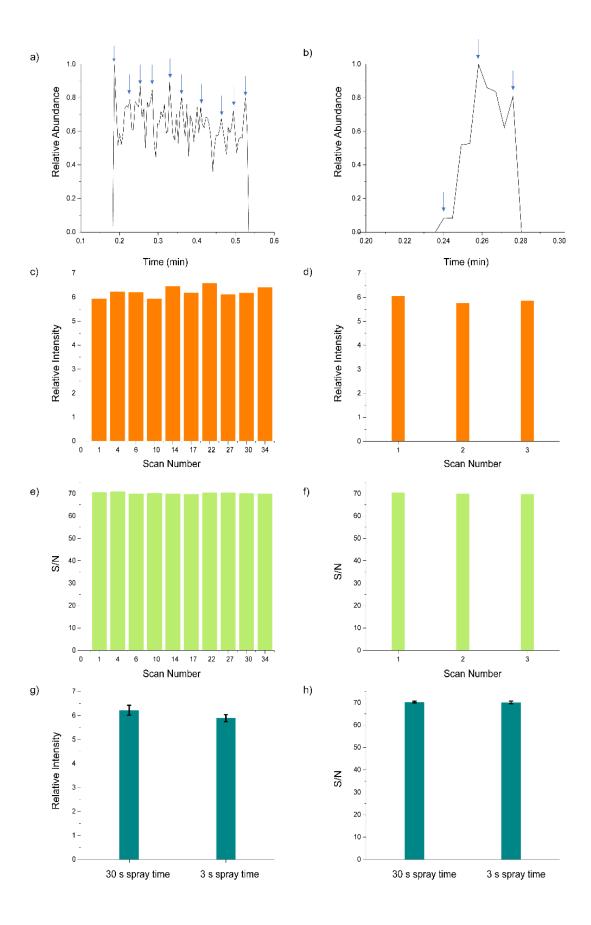


Figure S5 Comparison of MS signals with different spray time using 10 μ M metoprolol. a) and b) ion chronograms of a 30 s spray and a 3 s spray, respectively. c) and d) Relative intensity of each scan of a 30 s spray and a 3 s spray, respectively. e) and f) S/N of each scan of a 30 s spray and a 3 s spray, respectively. e) and f) S/N of each scan of a 30 s spray and a 3 s spray, respectively. e) and f) S/N of each scan of a 30 s spray and a 3 s spray and h) comparison of average relative intensity and S/N of a 30 s spray and a 3 s spray, respectively.

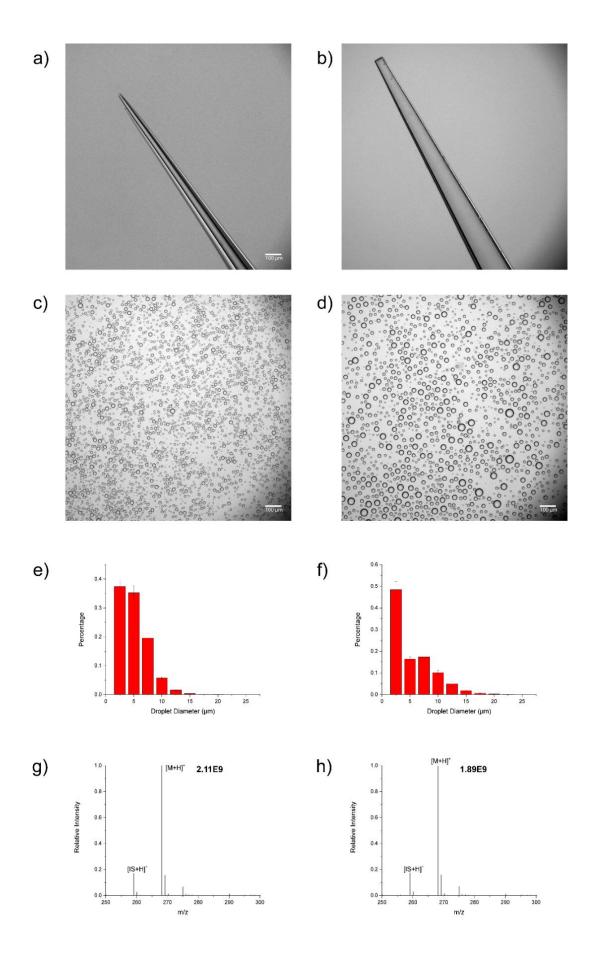


Figure S6 Comparison of capillaries with 15 μ m and 50 μ m tip size. a) and b) microscopy images of a 15 μ m tip and a 50 μ m tip, respectively. c) and d) microscopy images of droplets generated by a 15 μ m tip and a 50 μ m tip, respectively. e) and f) size distribution of droplets generated by a 15 μ m tip and a 50 μ m tip, respectively. g) and h) comparison of mass spectra of 10 μ M metoprolol generated by a 15 μ m tip and a 50 μ m tip, respectively. g) and h) comparison of mass spectra of 10 μ M metoprolol generated by a 15 μ m tip and a 50 μ m tip, respectively.

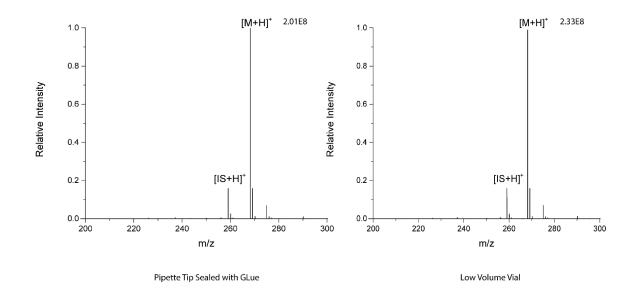


Figure S7 Comparison of mass spectra 10 μ M metoprolol obtained with glue seal (left) and without glue (right).

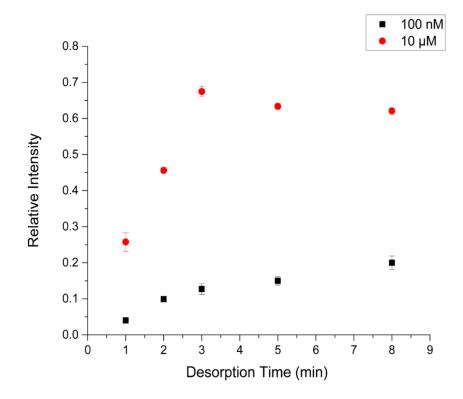


Figure S8 The relationship between the signal response and the desorption time with 500 μL extraction volume, 24 min extraction time, and 6 μL desorption volume for 100 nM and 10 μM metoprolol samples.

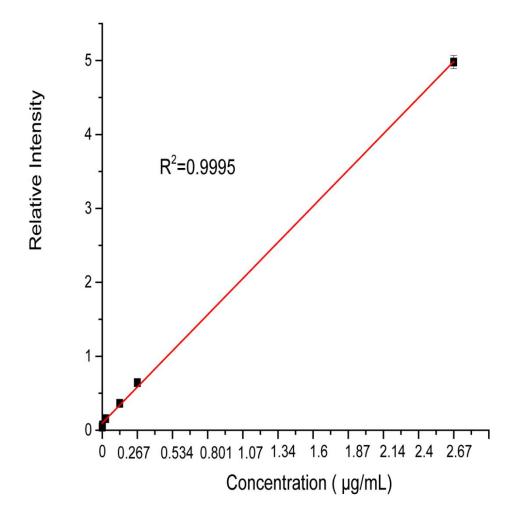


Figure S9: The calibration curve for metoprolol in serum samples obtained using SPME-cVSSI-MS.

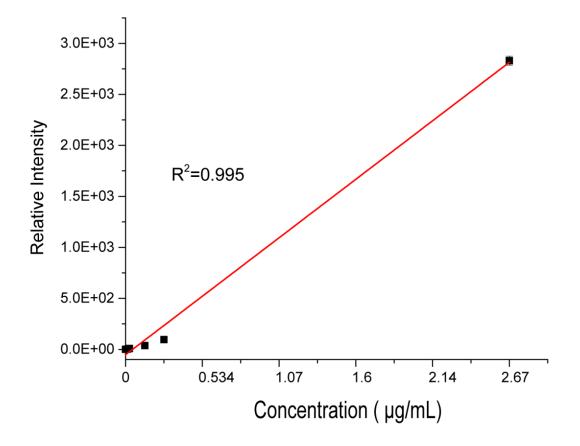


Figure S10: The calibration curve for metoprolol in serum samples obtained using SPME-nESI-MS.

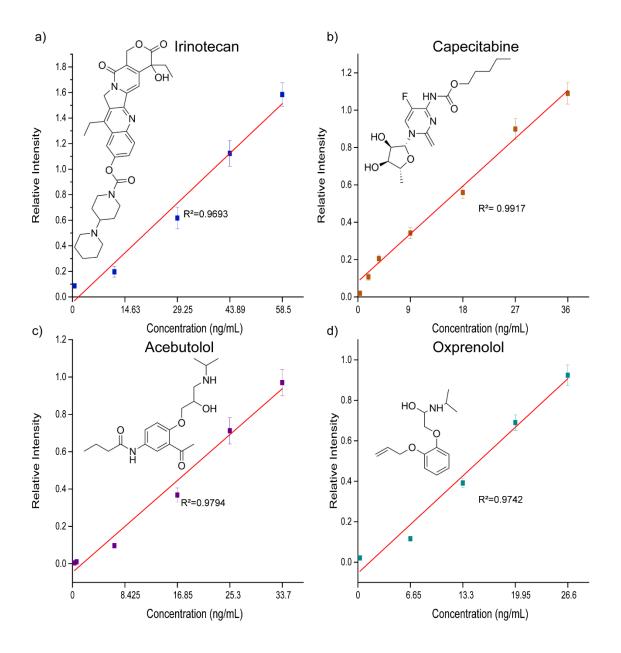


Figure S11: Calibration curves for 4 different drug compounds from serum samples. (a)-(d) irinotecan, capecitabine, acebutolol, and oxprenolol, respectively.

•

References:

1. Lundborg, P., Steen, B.: Plasma levels and effect on heart rate and blood pressure of metoprolol after acute oral administration in 12 geriatric patients. Acta medica Scandinavica. 200, 397-402 (1976)

2. Abdel-Hamid, M.E., Phillips, O.A.: LC–MS/MS Determination of Carbamazepine, Pindolol, and Theophylline in Human Serum. Journal of Liquid Chromatography & Related Technologies. 26, 1937-1957 (2003)

3. Satoh, T., Yasui, H., Muro, K.E.I., Komatsu, Y., Sameshima, S., Yamaguchi, K., Sugihara, K.: Pharmacokinetic Assessment of Irinotecan, SN-38, and SN-38-Glucuronide: A Substudy of the FIRIS Study. Anticancer Research. 33, 3845 (2013)

4. Reigner, B., Blesch, K., Weidekamm, E.: Clinical Pharmacokinetics of Capecitabine. Clinical pharmacokinetics. 40, 85-104 (2001)

5. Love, J.N.: Acebutolol overdose resulting in fatalities. The Journal of emergency medicine. 18, 341-344 (2000)

6. Bolli, P., Bühler, F.R., Raeder, E.A., Amann, F.W., Meier, M., Rogg, H., Burckhardt, D.: Lack of beta-adrenoreceptor hypersensitivity after abrupt withdrawal of long-term therapy with oxprenolol. Circulation. 64, 1130-1134 (1981)