Supporting Information

for

Concentration Gradient Induced Delithiation Failure

of MoO₃ for Li-ion Batteries

Jihyun Jang¹, Hyun-seung Kim², San Moon³, Oh B. Chae¹, Sung-Jin Ahn⁴, Heechul Jung⁵,

Junghyun Choi⁶, Seung M. Oh¹, Ji Heon Ryu⁷*, and Taeho Yoon⁸*

¹Department of Chemical and Biological Engineering, Seoul National University, Seoul,

08826, Republic of Korea

²Advanced Batteries Research Center, Korea Electronic Technology Institute, Seongnam,

13509, Republic of Korea

³Energy Material Research Center, Korea Research Institute of Chemical Technology,

Daejeon, 34114, Republic of Korea

⁴Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea

⁵Energy and Mineral Resources Engineering, Dong-A University, Busan, 49315, Republic of

Korea

⁶Energy Storage Materials Center, Energy & Environmental Division, Korea Institute of

Ceramic Engineering & Technology, Jinju, 52852, Republic of Korea

⁷Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic

University, Siheung, 15073, Republic of Korea

⁸School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of

Korea

Corresponding Author: J. H. Ryu: ryujh@kpu.ac.kr, T. Yoon: tyoon@yu.ac.kr

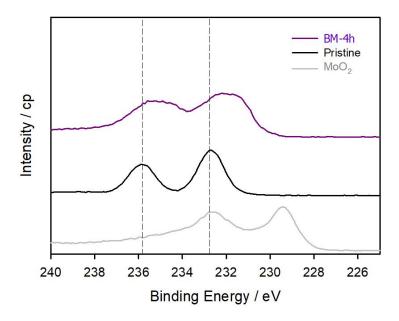
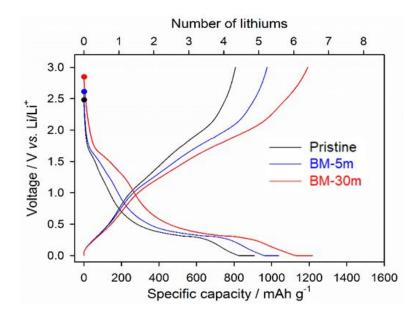
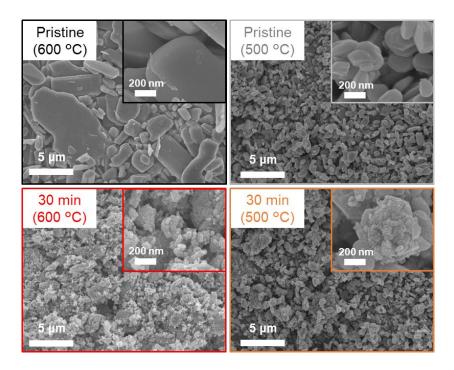
Experimental Section

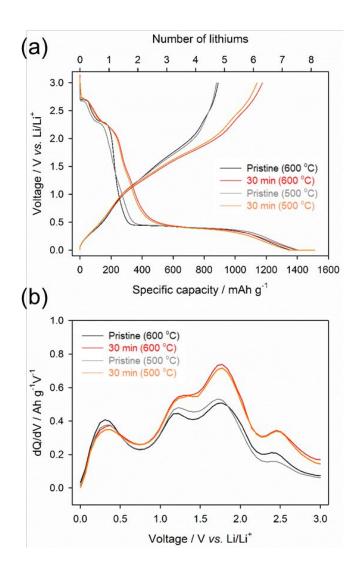
Material preparation: Highly crystalline microscale MoO₃ powder was prepared by a solidstate synthesis reaction. Ammonium heptamolybdate tetrahydrate ((NH₄)₆Mo₇O₂₄•4H₂O; 81– 83 %, Alfa, USA) was heated at 600 °C for 10 h in air to produce MoO₃. The obtained MoO₃ was ball-milled, using a planetary ball mill (Planetary Micro Mill PULVERISETTE 7 premium line, FRITSCH, Germany), at a low speed (300 rpm) to minimize the changes in the Mo oxidation state in MoO₃. Ball milling was performed for 0 min (pristine), 5 min, 30 min, 2 h, and 4 h. Next, the pristine and 30 min ball-milled MoO₃ electrodes were examined by electrochemical and spectroscopic methods. In addition, nanoscale MoO₃ particles with diameters of hundreds of nanometers were synthesized through a solid-state reaction at 500 °C, with the same heating time and environment as the sample prepared at 600 °C.

Electrode fabrication: The composite electrodes were fabricated by mixing the active material, Super P (carbon black) and carboxymethyl cellulose (CMC, binder) at a weight ratio of 80:10:5. The active material and Super P were mixed with a CMC solution (1.2 *wt*.% in distilled water) to obtain a slurry. Then, 5 wt.% of styrene butadiene resin was added to the slurry to enhance the binding ability. Finally, the slurry was coated on a copper foil and the electrode was vacuum dried at 120 °C for 12 h. *Electrochemical characterization*: The electrochemical performance was evaluated using a two-electrode 2032-type coin cell. The electrolyte was 1.0 M LiPF₆, dissolved in a mixture of ethylene carbonate and diethyl carbonate (1:1, volume ratio). A porous polypropylene (PP) – polyethylene – PP multilayer film was used as the separator. Galvanostatic charge/discharge experiments were conducted at a current density of 100 mA g⁻¹, over a voltage range of 0–3 V (*vs.* Li/Li⁺), in a temperature-controlled oven (25 °C). For complete charging (lithiation), a constant voltage step at 0 V (*vs.* Li/Li⁺) was added until the current density decayed to 10 mA g⁻¹. Cycle performances were evaluated at a current density of 500 mA g⁻¹. The GITT experiments were conducted during 10 min charge/discharge and 50 min rest with the same voltage and current conditions in the galvanostatic cycling.

Physical analysis: The particle size, morphology, and surface area of the ball-milled MoO₃ powders were examined by FE-SEM (JEOL JSM-6700F, Japan), TEM (JEOL JEM-3010, Japan), and BET method (Micromeritics analyzer, ASAP 2000, USA). The XRD patterns were obtained using Cu K_a radiation (1.54056 Å) with a D8-Bruker diffractometer (Bruker, Germany), operated at 40 kV and 40 mA with continuous scanning at a rate of 5° min⁻¹. To estimate the change in the oxidation state of MoO₃ after long-term ball milling, TGA (TA Instrument Q600 analyzer, USA) was performed in air or under N₂ environments, with a heating rate of 10 °C min⁻¹. The change in the Mo valency during the charging/discharging was examined via the Mo K-edge XANES spectra, obtained at the 7D XAFS beamline at the Pohang Light Source, with a ring current of 120–170 mA at 2.5 GeV. The energy of the Mo absorption edge was calibrated using the spectrum of a thin film of Mo metal as the reference. XPS (Sigma probe, USA) was conducted via Al-K_a (1486.6 eV) X-ray radiation produced at a constant power of 100 W (15 kV and 6.67 mA) with a spot radius of 200 µm and the pass energy for the detector of 30 eV.

Computational simulation: The governing equation, initial and boundary conditions, and parameters are presented in Table S1. The differential equation was solved using a numerical solver embedded in the software, MATLAB R2020b.


Figure S1. Mo 3d XPS spectra of MoO₂, pristine (MoO₃), and BM-4h samples.

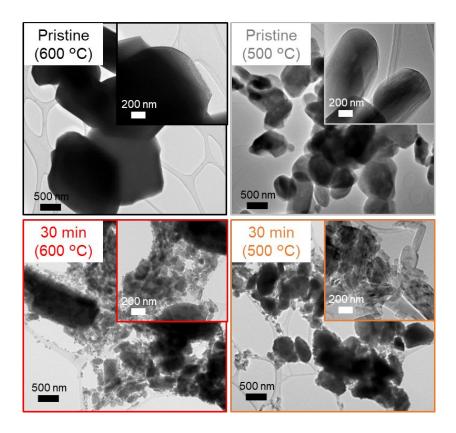

Figure S2. Second-cycle galvanostatic voltage profiles of pristine, BM-5m, and BM-30m electrodes. The circles indicate the initial voltages for the second cycle (2.48 V, 2.61 V and 2.85 V (*vs.* Li/Li⁺), for pristine, BM-5m, and BM-30m, respectively).

Figure S3. FE-SEM images of the pristine and 30 min ball-milled MoO₃ powders, synthesized at 600 °C and 500 °C.

Figure S4. (a) First-cycle galvanostatic voltage profiles and (b) delithiation dQ/dV plots of the pristine and 30 min ball-milled MoO₃ electrodes, synthesized at 600 °C and 500 °C.

Figure S5. TEM images of the pristine and 30 min ball-milled MoO₃ powders, synthesized at 600 °C and 500 °C.

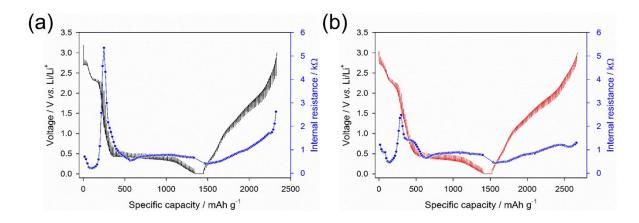


Figure S6. The GITT of (a) pristine MoO₃ and (b) BM-30m samples during the first cycle.

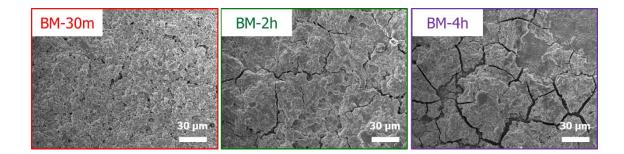


Figure S7. Low magnification FE-SEM images of the BM-30m, BM-2h, and BM-4h electrodes. Notably, there are severe cracks in the BM-2h and BM-4h electrodes, which were formed due to the water solubility of MoO_{3-x} .

	Mass balance equation Initial & Boundary conditions Parameters	
Mass balance	$\frac{\partial C}{\partial t} = D\nabla^2 C$	
Initial condition	$C(0,r) = C_0 at t = 0$	
Boundary condition	$\frac{\partial C}{\partial r} = 0 at \ r = 0$ $D\frac{\partial C}{\partial r} = -\frac{I \cdot V \cdot \rho}{F \cdot A} at \ r = R$	
Diffusion coefficient	$D = 1.5 \times 10^{-17} \mathrm{m^2 s^{-1}}$	
Initial concentration	$C_0 = 0.1117$ mol cm $^{-3}$	
Current density	$I = 100 \text{ mA g}^{-1}$	
rticle volume and area	$V = \frac{4}{3}\pi R^3, \qquad A = 4\pi R^2$	
Radius	$R = 10 \text{ nm} (\text{or } 1 \mu \text{m})$	
Density	$ ho=4.69~{ m g~cm^{-3}}$	
Faraday constant	$F = 96485 \text{ C mol}^{-1}$	

Table S1. The governing equation, initial and boundary conditions, and parameters used to simulate the concentration gradient of lithium ion in MoO₃ particles.

Table S2. First-cycle lithiation, delithiation, and the Coulombic efficiency of pristine MoO₃, BM-5m, BM-30m, BM-2h, and BM-4h electrodes.

First cycle	Lithiation capacity (mAh g ⁻¹)	Delithiation capacity (mAh g ⁻¹)	Coulombic efficiency (%)
Pristine	1465	890	60.8
BM-5m	1454	1010	69.5
BM-30m	1503	1176	78.2
BM-2h	1442	1057	73.3
BM-4h	1463	648	44.3

Initial Cou	Initial Coulombic		Ball-milling speed (rpm)		
efficiency (%)		100	200	300	400
	Bare		60	60.8	
5 : 1 Ball to powder ratio 20 : 1 40 : 1	5:1	-	-	62.1	-
	10:1	60.8	63.6	70.6	76.1
	20:1	62.0	74.4	78.2	78.0
	40:1	-	75.0	75.5	-

Table S3. Initial Coulombic efficiency of 30 min ball-milled MoO₃ electrodes with various ball-milling conditions: speed and ball-to-powder ratios.