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Experimental Section

Material preparation: Highly crystalline microscale MoO3 powder was prepared by a solid-

state synthesis reaction. Ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24•4H2O; 81–

83 %, Alfa, USA) was heated at 600 °C for 10 h in air to produce MoO3. The obtained MoO3 

was ball-milled, using a planetary ball mill (Planetary Micro Mill PULVERISETTE 7 premium 

line, FRITSCH, Germany), at a low speed (300 rpm) to minimize the changes in the Mo 

oxidation state in MoO3. Ball milling was performed for 0 min (pristine), 5 min, 30 min, 2 h, 

and 4 h. Next, the pristine and 30 min ball-milled MoO3 electrodes were examined by 

electrochemical and spectroscopic methods. In addition, nanoscale MoO3 particles with 

diameters of hundreds of nanometers were synthesized through a solid-state reaction at 500 °C, 

with the same heating time and environment as the sample prepared at 600 °C.

Electrode fabrication: The composite electrodes were fabricated by mixing the active material, 

Super P (carbon black) and carboxymethyl cellulose (CMC, binder) at a weight ratio of 80:10:5. 

The active material and Super P were mixed with a CMC solution (1.2 wt.% in distilled water) 

to obtain a slurry. Then, 5 wt.% of styrene butadiene resin was added to the slurry to enhance 

the binding ability. Finally, the slurry was coated on a copper foil and the electrode was vacuum 

dried at 120 °C for 12 h.



Electrochemical characterization: The electrochemical performance was evaluated using a 

two-electrode 2032-type coin cell. The electrolyte was 1.0 M LiPF6, dissolved in a mixture of 

ethylene carbonate and diethyl carbonate (1:1, volume ratio). A porous polypropylene (PP) – 

polyethylene – PP multilayer film was used as the separator. Galvanostatic charge/discharge 

experiments were conducted at a current density of 100 mA g-1, over a voltage range of 0–3 V 

(vs. Li/Li+), in a temperature-controlled oven (25 °C). For complete charging (lithiation), a 

constant voltage step at 0 V (vs. Li/Li+) was added until the current density decayed to 10 mA 

g-1. Cycle performances were evaluated at a current density of 500 mA g-1. The GITT 

experiments were conducted during 10 min charge/discharge and 50 min rest with the same 

voltage and current conditions in the galvanostatic cycling.

Physical analysis: The particle size, morphology, and surface area of the ball-milled MoO3 

powders were examined by FE-SEM (JEOL JSM-6700F, Japan), TEM (JEOL JEM-3010, 

Japan), and BET method (Micromeritics analyzer, ASAP 2000, USA). The XRD patterns were 

obtained using Cu Kα radiation (1.54056 Å) with a D8-Bruker diffractometer (Bruker, 

Germany), operated at 40 kV and 40 mA with continuous scanning at a rate of 5° min-1. To 

estimate the change in the oxidation state of MoO3 after long-term ball milling, TGA (TA 

Instrument Q600 analyzer, USA) was performed in air or under N2 environments, with a 

heating rate of 10 °C min-1. The change in the Mo valency during the charging/discharging was 

examined via the Mo K-edge XANES spectra, obtained at the 7D XAFS beamline at the 

Pohang Light Source, with a ring current of 120–170 mA at 2.5 GeV. The energy of the Mo 

absorption edge was calibrated using the spectrum of a thin film of Mo metal as the reference. 

XPS (Sigma probe, USA) was conducted via Al-Kα (1486.6 eV) X-ray radiation produced at a 

constant power of 100 W (15 kV and 6.67 mA) with a spot radius of 200 µm and the pass 

energy for the detector of 30 eV.



Computational simulation: The governing equation, initial and boundary conditions, and 

parameters are presented in Table S1. The differential equation was solved using a numerical 

solver embedded in the software, MATLAB R2020b. 



Figure S1. Mo 3d XPS spectra of MoO2, pristine (MoO3), and BM-4h samples.



Figure S2. Second-cycle galvanostatic voltage profiles of pristine, BM-5m, and BM-30m 

electrodes. The circles indicate the initial voltages for the second cycle (2.48 V, 2.61 V and 

2.85 V (vs. Li/Li+), for pristine, BM-5m, and BM-30m, respectively).



Figure S3. FE-SEM images of the pristine and 30 min ball-milled MoO3 powders, synthesized 

at 600 °C and 500 °C.



Figure S4. (a) First-cycle galvanostatic voltage profiles and (b) delithiation dQ/dV plots of the 

pristine and 30 min ball-milled MoO3 electrodes, synthesized at 600 °C and 500 °C.



Figure S5. TEM images of the pristine and 30 min ball-milled MoO3 powders, synthesized at 

600 °C and 500 °C.



Figure S6. The GITT of (a) pristine MoO3 and (b) BM-30m samples during the first cycle.  



Figure S7. Low magnification FE-SEM images of the BM-30m, BM-2h, and BM-4h 

electrodes. Notably, there are severe cracks in the BM-2h and BM-4h electrodes, which were 

formed due to the water solubility of MoO3-x.



Table S1. The governing equation, initial and boundary conditions, and parameters used to 

simulate the concentration gradient of lithium ion in MoO3 particles.

Mass balance equation
Initial & Boundary conditions

Parameters

Mass balance
∂𝐶
∂𝑡 = 𝐷∇2𝐶

Initial condition  𝐶(0,𝑟) = 𝐶0 𝑎𝑡 𝑡 = 0

Boundary condition

∂𝐶
∂𝑟 = 0  𝑎𝑡 𝑟 = 0

𝐷
∂𝐶
∂𝑟 = ―

𝐼 ∙ 𝑉 ∙ 𝜌
𝐹 ∙ 𝐴   𝑎𝑡 𝑟 = 𝑅

Diffusion coefficient 𝐷 = 1.5 × 10 ―17 m2 s ―1

Initial concentration 𝐶0 = 0.1117 mol cm ―3

Current density 𝐼 = 100 mA g ―1

Particle volume and area ,     𝑉 =
4
3𝜋𝑅3 𝐴 = 4𝜋𝑅2

Radius  𝑅 = 10 nm (or 1 μm)

Density 𝜌 = 4.69 g cm ―3

Faraday constant 𝐹 = 96485 C mol ―1



Table S2. First-cycle lithiation, delithiation, and the Coulombic efficiency of pristine MoO3, 

BM-5m, BM-30m, BM-2h, and BM-4h electrodes.

First cycle
Lithiation
capacity

(mAh g-1)

Delithiation 
capacity

(mAh g-1)

Coulombic 
efficiency

(%)

Pristine 1465 890 60.8

BM-5m 1454 1010 69.5

BM-30m 1503 1176 78.2

BM-2h 1442 1057 73.3

BM-4h 1463 648 44.3



Table S3. Initial Coulombic efficiency of 30 min ball-milled MoO3 electrodes with various 

ball-milling conditions: speed and ball-to-powder ratios.

Ball-milling speed (rpm)Initial Coulombic 
efficiency (%) 100 200 300 400

Bare 60.8

5 : 1 - - 62.1 -

10 : 1 60.8 63.6 70.6 76.1

20 : 1 62.0 74.4 78.2 78.0

Ball to
powder ratio

40 : 1 - 75.0 75.5 -


