Design of One-dimensional Cadmium Sulfide/Polydopamine Hetero-nanotube Photocatalysts for Ultrafast Degradation of Antibiotics

Jingyu Lu, Chuanjie Fang, Guitu Wang, and Liping Zhu*

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of

Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China.

* Corresponding Author

E-mail: lpzhu@zju.edu.cn

Figure S1. The XPS high-resolution spectra of (a) C1s and (b) O1s in PDA NTs.

Figure S2. The FT-IR curves of CdS/PDA HNTs and PDA NTs.

P/Po	$\begin{aligned} & \text { Volume } \\ & {[\mathrm{cc} / \mathrm{g}] \mathrm{ST}} \end{aligned}$	1/(W (P / $/ \mathrm{P}$) -1))
$3.1387 \mathrm{e}-02$	0.0241	$1.075 \mathrm{E}+03$
$3.6486 \mathrm{e}-02$	0.0252	$1.204 \mathrm{E}+03$
$4.1460 \mathrm{e}-02$	0.0254	1.362E+03
	Area $=$	m?g
	Slope =	
	ercept $=$	
Correlation Coefficient $=0.997931$		
$C=1.648 \mathrm{E}+02$		

Figure S3. BET results of CdS.

Figure S4. XPS valence band spectra of CdS/PDA HNTs nanostructure.

Figure S5. Photocurrent-time curves of (a) CdS and (b) CdS/PDA HNTs.

Figure S6. The catalytic degradation of TC with $0,2,4,6$, and10 mg of $\mathrm{CdS} / \mathrm{PDA}$ HNTs.

Figure S7. The molecular structure of TC under different pH .

Figure S8. Reusability of CdS/PDA HNTs for catalytic degradation of TC.

Figure S9. XRD patterns and TEM image of the CdS/PDA HNTs after three-time reactions.

Figure S10. Photodegradation of TC by CdS/PDA HNTs with IPA, AO, BQ, and AgNO_{3} as active species scavengers. The four specific trapping agents $(\mathrm{AgNO} 3, \mathrm{IPA}, \mathrm{BQ}$, and AO$)$ contribute directional inactivate electrons $\left(\mathrm{e}^{-}\right), \cdot \mathrm{OH}, \cdot \mathrm{O}_{2}{ }^{-}$and active holes $\left(\mathrm{h}^{+}\right)$, respectively.

Table S1. The mass-to-charge ratio (m / z) and retention time of the TC degradation intermediates obtained through HPLC-MS, and the purposed chemical structures.

Number	Retention Time/min	\mathbf{m} / \mathbf{z}	Support Structure
TC	7.320	445	

(1900

12	12.779	321	
13	17.118	296	
14	16.507	250	
15	1.161	224	
16	1.202	224	
17	15.767	209	
18	1.334	171	
19	20.181	149	
20	2.042	121	

Original MS spectra of TC degradation intermediates.

1	
2	
3	
4	
5	
6	
7	
8	

9	
10,11	
12	
13	
14	
15	
16	
17	
18	

