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SYNTHESIS 

70-PCL-G3 Structure 

 

 

Figure S1. Structure of 70-PCL-G3 LDBC, consists of 70 wt% hydrophobic (PCL) and 30 wt% 

hydrophilic (PAMAM). 1 n = 34 

The synthesis of 70-PCL-G3 is reported in our previous work. 1 
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Ph-εCL Synthesis 

Scheme S1. Synthesis of Ph-CL2 

 

Phenyl substituted -caprolactone was synthesized via Baeyer–Villiger oxidation of 4-

phenylcyclohexanone.33 (The synthesis was done according to the procedure described in the 

general synthesis section of the main text.) 1H NMR (400 MHz, Chloroform-d) δ 7.37 – 7.15 

(CH(Ph)- , m, 5H), 4.44 – 4.26 (-CH2-O-, m, 2H), 2.91 – 2.70 (-CH2-COO-, Ph-CH-(CH2)2-, m, 

3H), 2.20 – 1.77 (-CH2-CH2-O-, -CH2-CH2-COO-, m, 4H). 

5-PhPCL-G3 

A mixture of PAMAM–G3–Boc (1) (1.0 g, 0.40 mmol), PhPCL (91.6 mg, 0.48 mmol) and 

-caprolactone (1.53 g, 13.4 mmol) in a mixture of chlorobenzene (15 ml) was heated to 90 °C.  

Tin(II) 2-ethylhexanoate ( Sn(Oct)2) (98.74 mg, 0.24 mmol) was then added under an ultra-high 

pure nitrogen environment, and the mixture was heated to 130 ℃. The mixture was stirred at 130 

℃ for 10 h. The reaction mixture was allowed to cool down to room temperature, added dropwise 

into 250 ml of diethyl ether (Et2O) while stirring. A precipitate was formed and settled own to the 

bottom of the flask after stirring stopped. The mixture was vacuum filtered and solid was separated. 

The resulting pale-yellow solid was redissolved in chloroform (5 ml) and added dropwise into 250 

ml of Et2O, similar to the previous step. The precipitation steps were repeated three times to get a 



S5 

 

pure product. The resulting yellow solid was dried under a high vacuum at room temperature for 

24 hours to obtain the pure and dried product with an 85.2 % yield (2.08 g). 

 

10-PhPCL-G3 

A mixture of PAMAM–G3–Boc (1) (1.0 g, 0.40 mmol), PhPCL (160 mg, 0.84 mmol) and 

-caprolactone (1.42 g, 12.5 mmol) in a mixture of chlorobenzene (15 ml) was heated to 90 °C.  

Tin(II) 2-ethylhexanoate ( Sn(Oct)2) (98.82 mg, 0.24 mmol) was then added under an ultra-high 

pure nitrogen environment, and the mixture was heated to 130 ℃. The mixture was stirred at 130 

℃ for 10 h. The reaction mixture was allowed to cool down to room temperature, added dropwise 

into 250 ml of diethyl ether (Et2O) while stirring. A precipitate was formed and stuck on the wall 

of the flask. The mixture was kept stirring until a clear solution is observed (all the precipitate 

stuck onto the walls), and stirring was stopped. Then Et2O was decanted from the mixture. The 

resulting yellow solid was redissolved in chloroform (5 ml) and added dropwise into 250 ml of 

Et2O, similar to the previous step. The precipitation steps were repeated three times to get a pure 

product. The resulting yellow solid was dried under a high vacuum at room temperature for 24 

hours to obtain the pure and dried product with an 83 % yield (2.03 g). 

20-PhPCL-G3 

A mixture of PAMAM–G3–Boc (1) (1.0 g, 0.40 mmol), PhPCL (319.4 mg, 1.68 mmol) 

and -caprolactone (1.28 g, 11.2 mmol) in a mixture of chlorobenzene (15 ml) was heated to 90 

°C.  Tin(II) 2-ethylhexanoate ( Sn(Oct)2) (98.8 mg, 0.24 mmol) was then added under an ultra-

high pure nitrogen environment, and the mixture was heated to 130 ℃. The mixture was stirred at 

130 ℃ for 10 h. The reaction mixture was allowed to cool down to room temperature, added 
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dropwise into 250 ml of diethyl ether (Et2O) while stirring. A precipitate was formed and stuck on 

the wall of the flask. The mixture was kept stirring until a clear solution is observed (all the 

precipitate stuck onto the walls), and stirring was stopped. Then Et2O was decanted from the 

mixture. The resulting dark yellow sticky solid was redissolved in chloroform (5 ml) and added 

dropwise into 250 ml of Et2O, similar to the previous step. The precipitation steps were repeated 

three times. As this reaction was not propagated to 100% conversion, the percentage yield was not 

calculated.  

 

Table S1. Theoretical composition wt % of each block concerning the LDBC and wt% of each 

PCL type (i.e., PhPCL or PCL) concerning the hydrophobic block.a 

 wt% of the 

hydrophilic 

block 

(PAMAM-G3) 

wt% of the 

hydrophobic 

block (PCL + 

PhPCL) 

PCL and PhPCL wt% concerning 

hydrophobic block weight 

PhPCL wt% PCL wt% 

5-PhPCL-G3 30 70 5 95 

10-PhPCL-G3 30 70 10 90 

20-PhPCL-G3 30 70 20 80 

a
 Actual composition qualitatively determined via spectroscopy and thermal analysis (Tables S2 and 3) 
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NMR SPECTRA  

Figure S2. 1H NMR for Ph-εCL (400 MHz, Chloroform-d) δ 7.37 – 7.15 (m, 5H), 4.44 – 4.26 (m, 

2H), 2.91 – 2.70 (m, 3H), 2.20 – 1.77 (m, 4H). 
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Figure S3. 1H NMR overlay of the (a) macroinitiator (PAMAM-G3-Boc), (b) LDBC intermediate 

(10-PhPCL-G3Boc), and (c) LDBC after Boc deprotection (10-PhPCL-G3) in CDCl3. 

 

Figure S4. 1H NMR for 10-PhPCL-G3Boc in CDCl3 
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Figure S5. 1H NMR for 5-PhPCL-G3Boc in CDCl3 
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GPC ANALYSIS  

Table S2. Molecular weight analysis of LDBCs by NMR spectroscopy and GPC. 

 Mth DP th nPhPCL th Mn 

NMR 

DP       

NMR 

nPhPCL 

NMR 

%Ph Mn Mw Ð  

5-PhPCL-

G3Boc 

6350 34 1 6247 33 1 5.4 6143 7676 1.25 

10-

PhPCL-

G3Boc 

6350 34 2 6386 34 2 9.6 5280 6929 1.31 

The notation of PhPCL-G3 denotes the LDBC composition, where phenyl substituted PCL 

connected to a G3 PAMAM with a weight percentage is in respect to the caprolactone monomer 

used; Mth, theoretical molar mass; DPth, theoretical degree of polymerization; Mn, number average 

molar mass; Mw, weight-average molar mass; and Ð , dispersity. 

 

Figure S6. GPC chromatograms of PhPCL-G3Boc LDBC precursors.  
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THERMAL ANALYSIS  

Table S3. Predicted and Experimental Thermal Analysis Data (TGA) Confirming the Weight 

Ratios for Each LDBC. 

System Composition 1st step 2nd step 3rd step 

 PAMAM PCL + 

PhPCL 

Ph 

substituents 

(wrt total 

molar mass) 

Td 

(°C) 

ΔW 

(wt%) 

Td 

(°C) 

ΔW    

(wt%) 

Td 

(°C) 

ΔW    

(wt%) 

10-

PhPCL-

G3 

30 70 7 226 32.5 321 67.5 422 8 

5-PhPCL-

G3 

30 70 3.5 220 33 314 67 410 NA 

 

TGA 

 

 

Figure S7. TGA of PAMAM-G3Boc; 95 % decomposition at 223.4oC 
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Figure S8. TGA of 5-PhPCL-G3 

 

 

Figure S9. TGA of 10-PhPCL-G3. 
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Figure S10. TGA and derived TG analysis of 5-PhPCL-G3. TGA (green) and derivative 

thermogravimetry (DTG) (black) 
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Figure S11. TGA and derived TG analysis of PCL-G3 (70-PCL-G3). TGA (green) and derivative 

thermogravimetry (DTG) (black)1 
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DSC 

 

Figure S12. DSC thermogram for 5-PhPCL-G3; 3rd and 4th cycle 

 

Figure S13. DSC thermogram for 10-PhPCL-G3; 3rd and 4th cycle 
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CRITICAL AGGREGATION CONCENTRATION (CAC) 

Figure S14. CAC plots of 5-PhPCL-G3 (left) 10-PhPCL-G3 (right). ( Y axis - ratio of emission 

intensities at 338 and 333 nm) 
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DYNAMIC LIGHT SCATTERING (DLS) and TEM 

  

Figure  S15. Number average size distributions for 5-PhPCL-G3. 

 

Figure S16. Intensity average size distributions for 5-PhPCL-G3. 

 

Figure S17. Volume average size distributions for 5-PhPCL-G3.  
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Figure  S18. Number average size distributions for 10-PhPCL-G3. 

 

Figure S19. Intensity average size distributions for 10-PhPCL-G3. 
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Figure S20. Volume average size distributions for 10-PhPCL-G3. 

 

Figure S21. Additional TEM images that show evidence of bilayer vesicles and size distributions 

observed from DLS. Standard TEM (a-c) and cryo-TEM (d). 
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ENCAPSULATION STUDIES  

Table S4. DL % comparison between phenyl substituted and non-substituted LDBCs formed via 

conventional nanoprecipitation. 

 Encapsulation efficiency (DL %) 

 Curcumin C3 C5 

70-PCL-G3 13.70 1.70 2.58 

5-PhPCL-G3 13.73 1.94 2.88 

10-PhPCL-G3 17.50 2.40 3.41 

 

EMISSION SPECTRA 

.   

 

Figure S22. Emission spectra for free C5 in the solution and encapsulated in 10-PhPCL-G3 

nanoparticles. Excitation wavelengths are 700 nm and 810 nm.  
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ABSORPTION SPECTRA AT DIFFERENT TIME INTERVALS  

 

 

Figure S23. Absorption spectra of C5 loaded 10-PhPCL-G3 nanoparticles obtained in different 

time intervals via nanoprecipitation (NP)  
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Figure S24. Excite state lifetimes for free C5 in the solution and encapsulated in 10-PhPCL-G3 

nanoparticles, excitation wavelength 810nm.  
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PHOTOTHERMAL DATA  

Table S5. Photothermal efficiency calculations 

 

 

𝜂: photothermal efficiency 

ℎ: heat transfer coefficient 

𝐴: surface area of the container 

𝑘
𝑡~ ln(

Δ𝑇

Δ𝑇𝑚𝑎𝑥
)
: slope obtained from the fitting of 𝑡~ ln (

Δ𝑇

Δ𝑇𝑚𝑎𝑥
) during the naturally cooling 

process, Δ𝑇 is the difference between liquid temperature and room temperature 

Δ𝑇𝑚𝑎𝑥: the maximum temperature change of the liquid. 

Δ𝑇𝑠𝑜𝑙: the maximum temperature change of MilliQ water irradiated by the 808 nm laser 

𝐼: irradiation power 

𝐴𝜆: the absorbance of nanoparticles with photothermal agents loaded at 808 nm. 

 

 

 

 

Sample 𝜂 

ℎ𝐴 
𝛥𝑇𝑚𝑎𝑥 

 

(K) 

𝛥𝑇𝑠𝑜𝑙  
 

(K) 

𝐼 (J/sec) 
𝐴𝜆  

(estimated) ℎ𝐴 
𝑘𝑡~  

 

(s) 

𝑚𝑐𝑝 

(J/K) 

C5-

PhPCL 48.2% 0.011119 376.43 4.1855 43.4 2.2 0.95 
9.555589 

ICG-

PhPCL 45.7% 0.010749 389.4 4.1855 42.6 2.2 0.95 
27.17803 
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STORAGE STABILITY 

Table S6. Storage stability of C5 loaded and empty 10-PhPCL-G3 nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IN VITRO PHOTOTHERMAL EXPERIMENTS 

  

Figure S25. Representative trial experiments: cells treated with varying concentrations of the 

nanoparticle suspension where either irradiated with a 100W red LED lamp for 0, 8, or 80 mins. 

 

day Empty nanoparticles C5 loaded nanoparticles  
PDI Size/nm PDI Size/nm 

1 0.436 43.22 0.022 193.5 

2 0.444 44.09 0.046 205.3 

3 0.465 50.03 0.114 215.6 

4 0.589 56.99 0.066 219.2 

5 0.708 59.77 0.074 230.0 

7 0.772 61.22 0.083 219.8 

9 0.446 126.8 0.053 220.6 

11 0.482 90.99 0.102 214.4 
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Figure S26. Quantified cell death upon irradiation time (x-axis concentration, y-axis dead cell %); 

cell death % determined as 100 x (Red/(Red+Green)) n = 4 technical replicates across 2 

independent experiments error bars are SD; 0, 8, 80 = minutes 
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