Supporting Information

Decagram-scale Synthesis of Multicolor Carbon Nanodots: Self-tracking Nano-heaters with Inherent and Selective Anticancer Properties

Nicolò Mauro¹*, Mara Andrea Utzeri¹, Alice Sciortino², Fabrizio Messina^{2,3}, Marco Cannas², Radian Popescu⁴, Dagmar Gerthsen⁴, Gianpiero Buscarino^{2,3}, Gennara Cavallaro^{1,3} and Gaetano Giammona¹

¹Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy;

²Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy;

³ATeN Center, University of Palermo, Viale delle Scienze – Ed. 18/A, 90128 – Palermo, Italy;

⁴Karlsruhe Institute of Technology | KIT · Laboratory for Electron Microscopy, Finanzmanagement

Kaiserstraße 12 D-76131, Karlsruhe, Germany

*Corresponding author: nicolo.mauro@unipa.it; Tel. +39-092-238-91908

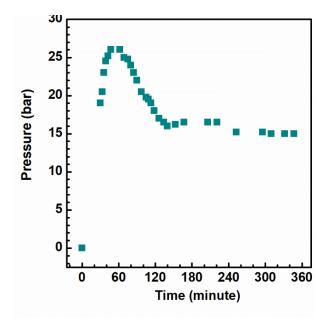


Figure S1. Pressure of the autoclave during the reaction

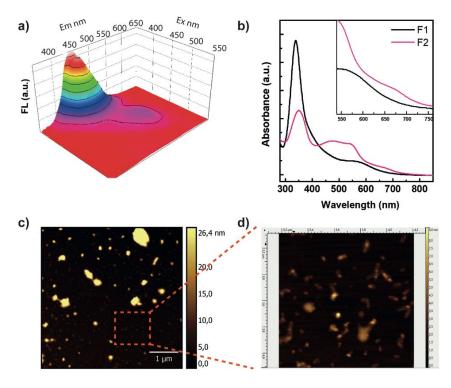


Figure S2. Preliminary characterization of the F1 fraction. a) 3D emission spectrum of the F1 fraction; b) absorption spectra of the F1 and F2 fractions. c-d) AFM micrographs of the F1 fraction

1. Mathematical model for evaluation of the photothermal conversion efficiency

The photothermal efficiency of the SO_x -CDs carbon nanodots were calculated by considering the photothermal kinetic of a dispersion of carbon nanodots in ultrapure water () place into a 1 cm quartz cuvette and irradiated using a diode laser of proper wavelength, and the dissipation curve obtained after the heating processes during the cooling period.

Under NIR irradiation, the change in temperature *T* is described by the energy balance equation (1):

$$\sum m_i C_i dT dt = E_{abs} - E_{loss} \tag{1}$$

Equation (2) can be used to describe the energy transfer

$$T(t) = T_0 + \frac{A}{B} (1 - e^{-Bt}) + (T_i - T_0)$$
⁽²⁾

where A is the rate of energy absorption and B is the rate of heat dissipation, T_0 is the ambient temperature and T_i is the initial temperature value.

In order to retrieve the photothermal conversion efficiency η , it is needed to measure the temperature variation of the SO_x-CDs dispersions as a function of time during both the photothermal heating (laser on, $A \neq 0$ and $T_i = T_0$) and the subsequent cooling (laser off, A = 0 and $T_i > T_0$).

Thus obtaining equation (3) and (4), respectively:

$$T(t) = T_0 + \frac{A}{B}(1 - e^{-Bt})$$
(3)

$$T(t) = T_0 + \frac{A}{B} (1 - e^{-Bt}) + (T_i - T_0)$$
(4)

By fitting the experimental curve with equation (1), the values of *A* and *B* can be obtained and employed to calculate the experimental photothermal conversion efficiency η :

$$\eta = \frac{A\Sigma_i m_i C_i}{P\left(1 - 10^{-A_{\lambda}}\right)}$$
(5)

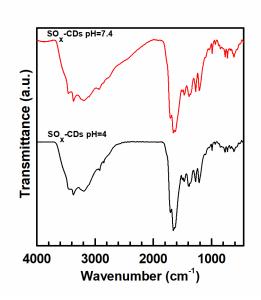


Figure S3. FTIR spectrum of SO_x-CDs at pH 7.4 and pH 4 after two days incubation.

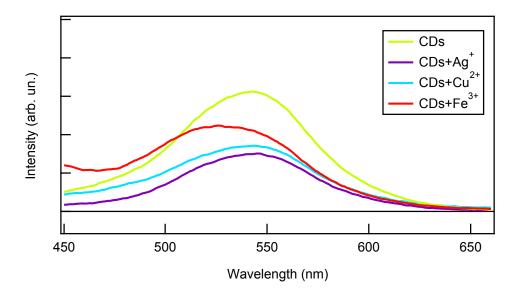


Figure S4. Fluorescence spectra of CDs in presence of metal ions.

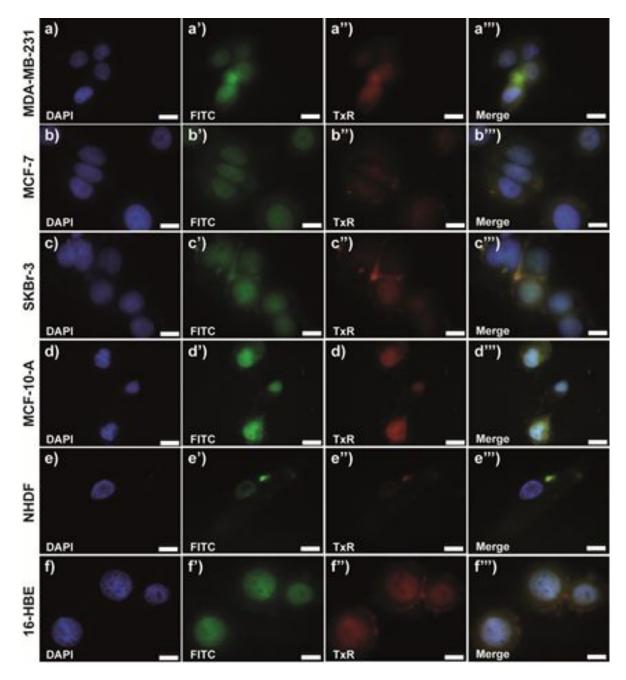


Figure S5. Fluorescence imaging of cancerous breast cell lines (MDA-MB-231, **a-a**^{***}; MCF-7, **b-b**^{***}; and SKBr-3, **c-c**^{***}), pre-cancerous (MCF-10A, **e-e**^{***}) and healthy (16-HBE, **f-f**^{***}) cell lines treated with SO_x-CDs (0.25 mg ml⁻¹) for 2 h. Nuclei are marked with DAPI (**a-f**), SO_x-CDs self-fluorescence in the green (**a'-f**^{**}) and red (**a''-f**^{***}) region, and merge channels (**a'''-f**^{***}). Scale bar: 10 μm.

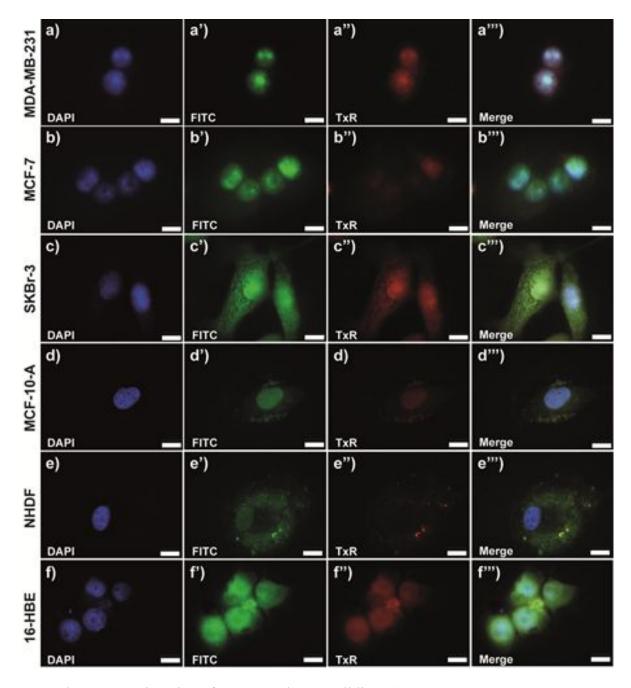


Figure S6. Fluorescence imaging of cancerous breast cell lines (MDA-MB-231, **a-a**^{'''}; MCF-7, **b-b**^{'''}; and SKBr-3, **c-c**^{'''}), pre-cancerous (MCF-10A, **e-e**^{'''}) and healthy (16-HBE, **f-f**^{'''}) cell lines treated with SO_x-CDs (0.25 mg ml⁻¹) for 6 h. Nuclei are marked with DAPI (**a-f**), SO_x-CDs self-fluorescence in the green (**a'-f'**) and red (**a''-f'''**) region, and merge channels (**a'''-f'''**). Scale bar: 10 μ m.