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Methods

Scanning tunneling microscopy (STM) and spectroscopy (STS) measurements: After the

sample preparation, it was inserted into a low-temperature STM (Unisoku USM-1300) housed

in the same UHV system and all subsequent experiments were performed at T = 350 mK.

STM images were taken in constant-current mode. dI/dVb spectra were recorded by standard

lock-in detection while sweeping the sample bias in an open feedback loop configuration, with

a peak-to-peak bias modulation of 30-50 µV for a small bias range and 10 mV for a larger bias

range, respectively, at a frequency of 707 Hz. Spectra from grid spectroscopy experiments

were normalized by the normal state conductance, i.e. dI/dVb at a bias voltage corresponding

to a few times the superconducting gap.

Sample preparation: The details of the sample preparation can be found in.S1 Briefly,

the CrBr3 thin film was grown on a freshly cleaved NbSe2 substrate by compound source

molecular beam epitaxy (MBE) by evaporating anhydrous CrBr3 powder from a Knudsen
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cell. The growth speed was determined by checking the coverage of the as-grown samples by

scanning tunneling microscopy (STM). The optimal substrate temperature for the growth

of CrBr3 monolayer films was ∼ 270◦C.

Theoretical model

We model the moiré modulated system by a tight binding (TB) model in a triangular lattice

of the form

H =
∑
〈ij〉,s

t

(
ri + rj

2

)
c†i,scj,s +

∑
i,s

µ(r)c†i,sci,s+

i
∑
〈ij〉,s,s′

λ

(
ri + rj

2

)
dij · σs,s′c†i,scj,s′+

∑
i,s,s′

J(ri)σ
s,s′

z c†i,sci,s′ +
∑
i

∆(ri)c
†
i,↑c
†
i,↓ + h.c.

(1)

where 〈〉 denotes sum over first neighbors, c†i,s is the creation operator of an electron with

spin s in site i, dij = ri−rj, µ(r) is the spatially dependent band off-set, J(r) is the spatially

dependent exchange coupling, and ∆(r) is the spatially dependent superconducting order.

We denote the different average value in the moiré unit cell as

t̄ = 〈t(ri)〉ri

J̄ = 〈J(ri)〉ri

∆̄ = 〈∆(ri)〉ri

λ̄ = 〈λ(ri)〉ri

µ̄ = 〈µ(ri)〉ri

(2)
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and their spatial variation as

δt = max(t(ri))−min(t(ri))

δJ = max(J(ri))−min(J(ri))

δ∆ = max(∆(ri))−min(∆(ri))

δλ = max(λ(ri))−min(λ(ri))

δµ = max(µ(ri))−min(µ(ri))

(3)

If the physics created by the modulation is ignored, all the different phases would depend

on the average values X̄, with no dependence on the spatial variations χ ≡ δX.

For the two-dimensional model used to capture the moiré physics, we include the modu-

lation of the different terms in the Hamiltonian by taking a spatial profile that respects the

C3 symmetry of the structure

Ξ(r) = c0 + c1

3∑
n=1

cos (Rnk · r + φ) (4)

where R is the 120◦ rotation matrix, k is the wavevector of the modulation and φ a shift

in the pattern. By definition, the previous functional form displays the C3 symmetry of

the structure, and for φ = 0 the symmetry becomes C6. The previous functional form can

thus be used to parametrize different terms of the Hamiltonian, including exchange, Rashba,

onsite modulations, superconducting proximity effect or strain.

Moiré-induced topological phase transition in 1D

It is instructive to first focus on how a topological phase transition can be induced in a one-

dimensional system just by switching on the moiré potential. For the sake of that, we will

take the Hamiltonian of Eq. 1 for a linear tight-binding chain, and explore how the system

develops a topological phase as a moiré potential in different terms is switched on. We will

take a modulation of the form Ξ(r) = c0 + c1 cos k · r and we will focus on three specific
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Figure S1: Gap (a,c,e) and topological phase diagram (b,d,f) for a 1D chain as function of
the µ̄ and the the modulation χ of exchange (a,b), exchange and superconductivity (c,d)
and hopping (e,f). For each case, the rest of the parameters are kept unmodulated. It is
observed that as the modulation strength χ is increased, new topological regions appear in
the phase diagram (b,d,f), that are acompanied by gap closings (a,c,e). We took δJ = χ for
(a,b), δJ = χ, δ∆ = χ/2 for (c,d) and δt = χ for (e,f).

cases (Fig. S1): i) modulation in the exchange (Fig. S1a,b), ii) modulation in the exchange

and superconducting proximity (Fig. S1c,d), iii) modulation in the hopping (Fig. S1e,f).

For each one of the previous cases, the rest of the parameters λ̄, J̄ , ∆̄, t̄ are kept constant

and without modulation. We will explore the topological phase diagram as a function of the

chemical potential µ̄ of the chain, which highlights the non-trivial impact of the modulation
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at the different fillings. In the absence of any modulation, the previous model displays a

topological superconducting state only at the top and bottom of the band. As the modulation

in any of the parameters is switched on, a new topological regions appear, demonstrating

that any of those modulations is capable of driving a topological superconducting state.

Moiré-induced topological phase transition in a simple triangular

lattice model

Figure S2: Band structure for a triangular lattice in a NN TB model with Rashba (a), and
with Rashba and exchange field (b), where it is shown that pseudo helical states appear at
Γ, M and K. Panel (c) shows the topological phase diagram, showing that at the energies
of those points a topological states appears, which is accompanied by a gap closing and
reopening (d). It is clearly observed that close to charge neutrality no topological state
appears.

Unmodulated limit

We now move on to consider how the moiré modulation can drive a topological phase tran-

sition in a two-dimensional model using a nearest neighbor (NN) tight-binding model on a

triangular lattice. As a starting point, it is instructive to consider the phase diagram for a

simple triangular lattice model without modulation, shown in Fig. S2.
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This would correspond to taking δµ = δλ = δJ = δt = δ∆ = 0. The topological regions

appear when the chemical potential crosses a parabolic band that happens at the bottom

of the spectra (K point), below charge neutrality (M points) and at the top of the band

(Γ point). This can be understood from the fact that at those high symmetry points, the

combination of Rashba spin-orbit coupling and exchange field creates pseudo-helical states,

that can be then gapped in a topologically non-trivial way when s-wave superconductivity

is turned on.S2 In particular, it is seen that around charge neutrality (above the M point

maxima), no topological state appears by increasing the exchange coupling.

Modulated exchange

We now move on to the case in which a modulation in the model is present , and we focus

on the region around charge neutrality, which was before shown to be topologically trivial

(Fig. S2). We focus first on a minimal case, in which the only modulated term is the exchange,

with all the other terms uniform in space. We take the exchange profile of Fig. S3a, with

λ̄ = 4∆̄, with an average value of J̄ = 1.25∆ and a modulation δJ = 4λ̄, leading to a profile

positive at the center of the supercell, and with an opposite sign in the hexagonal-like spots.

We take a 6×6 supercell for the tight binding model, the chemical potential at half filling of

the supercell. In the absence of exchange field, the electronic structure shows a topologically

trivial gap, as shown in Fig. S3b. If the non-uniform exchange is switched on, taking zero

Rashba spin-orbit coupling, the electronic structure shows gapless Yu-Shiba-Rusinov states

(Fig. S3c). When the the Rashba spin-orbit coupling is included, a gap opens up in the YSR

bands, leading to the emergence of a topological gap with Chern number C = 2 at half filling

of the triangular superlattice (Fig. S3c). The topological gap obtained is of magnitude 0.2∆.

It must be emphasized that taking δJ = 0 in the previous case would lead to a topologically

trivial state. The previous results demonstrate that the existence of a modulated exchange

alone allows to create a topological superconducting state in an otherwise forbidden region,

even with the rest of the parameters constant.
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Figure S3: (a) Spatial profile of the exchange for a supercell, the rest of the parameters of
the Hamiltonian will be taken constant and uniform in space. Panel (b) shows the band of
the supercell in the absence of exchange, showing a topological trivial gap form the s-wave
superconducting order. Panel (c) shows the bandstructure is the absence of Rashba SOC,
showing gapless YSR states. Panel (d) shows the bandstructure with all the terms included,
showing the emergence of a topological gap.

Modulated exchange and potential

In the following, we will show that the previous phenomenology also emerges when the

exchange and local potential is modulated. This is the case shown in the main manuscript,

associated with a topological state with Chern number C = 3. In particular, we now explore

the phase diagram in which the chemical potential µ and the exchange J are modulated. We

will keep all the average values constant, and we will increase both δJ and δµ with a control

parameter χ as δJ ∼ χ and δµ ∼ χ. The phase diagram of the triangular lattice around

charge neutrality is shown in Fig. S4a. It is clearly seen that as the modulation strength is

increased, a topological region emerges at charge neutrality. A gap closing appears associated

with the emergence of this topological region as shown in Fig. S4b. Let us now focus on two

specific points of the phase diagram, one trivial (Fig. S4c,e) and one topological (Fig. S4d,f).
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Figure S4: Topological phase diagram (a) and gap (b) for the NN TB triangular 2D lattice
model, as a function of the average chemical potential µ̄ and the modulation strength χ.
The modulation of the exchange and onsite energies are given by δJ = χ and δµ = 4χ, and
the other parameters are kept unmodulated and constant J̄ = 0.2t, ∆̄ = 0.05t and λ̄ = 0.3t.
It is clearly observed that as the modulation is switched on, a topological states appears.
Panels (c,d) show the band structures for a trivial (c) and topological (d) points in the phase
diagram. The surface spectral functions are shown in (e,f), that show the absence of surface
modes for the trivial case (e) and their presence for (f).

The band structures of the supercells are shown in Fig. S4c,d, that both feature a set of

minibands. Whereas distinguishing between the two cases is not simple from their band

structure, a dramatically different spectra would be observed at the edges. In particular, in

Fig. S4e,f we show the spectral functions A(r, ω) for a semi-infinite slab for the previous two

cases, showing that the trivial case does not show in-gap edge modes (Fig. S4e), whereas the
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topological one features topological Majorana modes (Fig. S4f).

We finally comment on the real-space profile of the edge states. The moiré pattern ef-

fectively creates a new lattice, whose lattice constant is determined by the moiré length

scale, leading to a electronic structure with a periodicity of the moiré length. In particular,

this implies that both the YSR states, and their associated edge modes will be modulated

following the moire length. The dispersion of the edge mode now is associated with the

quasi-momentum of the moiré lattice, in contrast with the unmodulated case in which it

is associated with the quasi-momentum of the original atomic lattice. We note that this

scenario is analogous to the Chern insulating state observed in twisted graphene bilayers, in

which the edge states emerge associated with the new moiré length scale.S3 Of course, directly

probing the dispersion of the edge mode via quasi-particle interference would be challeng-

ing for this system. Technically, the emergence of chiral modes can be probed via thermal

conductivity measurements in chiral topological superconductors.S4 While this would be cer-

tainly interesting, such measurements are extremely challenging and well beyond the scope

of our work. We finally want to note that our approach for addressing the emergence of

topological modes is analogous to those used in other STM studies of topological supercon-

ductors with chiral edge states,S5 in which also demonstrating the chirality of the states

remains an open challenge.

Moiré Yu-Shiba-Rusinov bands

In this section, we address the relationship between the modulated exchange coupling in the

twisted structure and the emergence of Yu-Shiba-Rusinov moiré bands (Fig. S5). It is first

worth recalling that the modulated stacking in the supercell is expected to be the ultimate

driving force of the modulated exchange coupling. In particular, the stacking can change

not only the effective exchange coupling but also its sign. Here, we will show how this

effect easily accounts for the emergence of moiré Yu-Shiba-Rusinov bands using an effective

model. Even though we here will focus on an effective model, it is worth to mention that
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a quantitative prediction of the change of exchange couplings with the stacking could be

performed by first-principles methods.

For the sake of concreteness we will focus on a profile for the exchange coupling with

C6 symmetry, as shown in Fig. S5a. The density of states (Fig. S5b) of such a modulated

system is shown in Fig. S5b, which features both a superconducting gap and in-gap YSR

bands. It is observed that a strong modulation of the in-gap YSR modes appear (Fig. S5c),

reflecting the original modulation of the exchange coupling (Fig. S5a). In stark contrast,

above the superconducting gap the modulation of the states is shown to be much weaker

(Fig. S5d). This phenomenology can be rationalized from the fact the in-gap YSR modes

will be strongly dependent on the exchange coupling, whereas states above the gap are much

more insensitive to such a perturbation. Finally, it is worth to emphasize that modulation

Figure S5: Exchange profile imposed in the supercell (a), and associated density of states
including exchange, superconductivity and Rashba. The exchange profile is now define to
have its minimum values at zero. Panel (c) shows the local density of states at the energy
of the YSR bands, showing a strong localization where the exchange is stronger. For higher
biases (panel d), the states are mostly delocalized in the supercell.
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in other terms in the Hamiltonian can also be the driving force for localized YSR bands, yet

we have found that modulation of the exchange is the most effective mechanism.

We finally comment on how the modulation of the Yu-Shiba-Rusinov bands can be ratio-

nalized. For this sake, let us enumerate the possible dependencies of the in-gap modes with

the real-space location. First, let us consider the case in which there is a moiré pattern, but

it has no influence on the electronic spectra. In this situation, it is clear that there would

be no modulation in the YSR energies nor in the intensity, given that the induced exchange

coupling and superconductivity will be effectively uniform. This is, of course, in stark con-

trast with our findings, so we can discard this trivial scenario. Second, let us assume that

the moiré pattern gives rise to an exchange coupling modulated in space, but that each YSR

state is decoupled from the neighbouring one, meaning that YSR bands do not appear. In

this scenario, locally, we would have local exchange coupling with different strengths, which

in turn gives rise to an in-gap YSR state whose energy is controlled by the local exchange

coupling. This is the typical scenario for individual magnetic atoms in a superconducting

surface, where the absorption site determines the effective exchange coupling leading to a

site-dependent YSR state. In our system, we do not observe a YSR state whose energy is

spatially dependent but rather a band of in-gap states with a spatially modulated intensity.

Third, let us consider a case with a spatially modulated exchange field, and coupling between

YSR states giving rise to a YSR band. In this situation, the whole bandwidth of the YSR can

be observed at every location in the moiré pattern, yet with an intensity that depends on the

specific location. This feature signals the emergence of a moiré YSR band and is analogous

to the emergence of electronic moire states in other twisted van der Waals materials. Given

the discussion above, we conclude that the scenario observed experimentally corresponds to

the emergence of moiré YSR bands, leading to an electronic structure associated with the

moiré length.
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Figure S6: Band structure without (a-d) and with (e-h) charge density wave. Panel (a,e)
show a sketch of the unfolded Fermi surface of NbSe2 in the minimal unit cell. Panels (b,f)
show the band structure with Ising SOC, panels (c,g) with Ising SOC and exchange, and
panels (d,h) with Ising SOC, exchange, Rashba SOC and s-wave superconductivity. It is
observed that in the absence of CDW the band structure with superconductivity is gapless
(d). The band structures of (b,c,d,f,g,h) are computed in a 3× 3 supercell.

Realistic tight-binding model for CrBr3/NbSe2 heterostructure

So far we have considered that the main contribution to the spin-orbit coupling comes from

mirror symmetry breaking leading to a Rashba SOC term. However, dichalcogenides have

an additional intrinsic term known as Ising spin-orbit coupling, that leads to a momentum-

dependent splitting in the z-direction. Moreover, in the discussion so far we have included

the effect of the modulated moiré potential, but the intrinsic charge density wave modulation

was not considered. In this section, we show that the charge density wave order quenches

the intrinsic effect of Ising spin-orbit coupling.

The charge density wave order is incorporated in the Hamiltonian as

HCDW =
∑
n,s

εnc
†
n,scn,s (5)

where εn = ε for bright sites and εn = 0 for dark sites. Ising spin-orbit coupling is incorpo-
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rated as a term of the form

HIsing = i
∑
〈ij〉,s,s′

γijσ
s,s′

z c†i,scj,s′ (6)

where γij = ±1 alternating signs in C3 symmetric fashion.S6

To account for the existence of two pockets in the NbSe2 band structure, we now use a

modified tight binding model incorporating further neighbor hoppings, whose band structure

at charge neutrality leads to a pocket around each valley and one around the Γ0 point

Hkin =
∑
i,j,s

tijc
†
i,sci,s (7)

with first neighbor hopping 0.1t and second neighbor hopping t, that reproduces the band

dispersion and Fermi surface of NbSe2.
S7 As a summary, the inclusion of Ising spin-orbit

coupling in a minimal model without modulations is found to be dramatically detrimental

to a topological superconducting state (Fig. S6). In particular, even modest values of this

parameter turn a topological state into a gapless regime, a phenomenon that stems from the

presence of a strong momentum-dependent spin splitting in the Fermi surface (Fig. S6a).

To understand the underlying mechanism of this critical impact (Fig. S6(a-d)), and most

importantly, how the CDW avoids this dramatic effect (Fig. S6(e-h)), it is convenient to

see how the band structure is modified by this term. In the following, we will denote by

Γ0, K0, K
′
0 the high symmetry points of the minimal unit cell, whereas Γ, K,K ′ will denote

the high symmetry points of a 3× 3 supercell.

For the sake of concreteness, in the following we will take a 3× 3 supercell, which would

correspond to the periodicity of the CDW order. In a minimal model without external

modulations, the effect of Ising spin-orbit coupling is to create a momentum-dependent

splitting in the band structure (Fig. S6a), keeping the z−direction of the spin a good quantum

number. In particular, Ising spin-orbit coupling creates a positive exchange field around the

K0 pocket, an effective negative exchange field at the K ′0 pocket, and an oscillating (and
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nearly vanishing) exchange field around the Γ pocket (Fig. S6a). In particular, in the folded

3× 3 band structure, this is seen as some states having a large spin-splitting, those coming

from the K0 and K ′0 points, coexisting with states with a substantially smaller spin-splitting,

coming from the Γ0 pocket (Fig. S6b).

Upon introduction of the exchange bias created by CrBr3, the combined effect of Ising

spin-orbit coupling and exchange field breaks the degeneracy between states at +k and states

at −k (Fig. S6c). This breaking of degeneracy is the ultimate responsible of the dramati-

cally detrimental effect of Ising spin-orbit coupling. In particular, when a superconducting

proximity effect is included, the absence of the degeneracy between states at +k and −k

will drive the system to a gapless regime, as superconductivity pairs states with the same

energy and opposite momentum (Fig. S6d). Note that such breaking of degeneracy does not

happen for Rashba spin-orbit coupling in combination with an exchange field.

We now move on to consider the effect of the CDW order. The presence of a CDW creates

scattering between the states in the Fermi surface, in particular, gapping away mostly the

Fermi surface around K0 and K ′0 due to almost perfect nesting of those pockets with the

wavevector of the CDW (Fig. S6e). In terms of the folded bandstructure, the states close to

the Fermi surface now have a substantially smaller Ising splitting in the presence of the CDW

(Fig. S6f). When an exchange bias is now included, the degeneracy breaking between states

at +k and states at −k is now dramatically smaller in the presence of the CDW (Fig. S6g).

As the degeneracy between those states is a necessary condition for having a gapped state,

in the presence of the CDW, inclusion of superconductivity now leads to a fully gapped state

(Fig. S6h).

Therefore, the presence of the charge density wave in the system has a crucial role for the

emergence of a topological superconducting state, by quenching the effect of the critically

detrimental effect of the Ising spin-orbit coupling. Given that upon inclusion of the CDW, the

effective Fermi surface of the system is formed essentially by a pocket around the Γ0 point, the

combined effect of Ising spin-orbit coupling, charge density wave, and the different pockets
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of NbSe2, leads to an effective model that is captured by a triangular lattice at half-filling,

as used in previous sections.
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Spatially resolved YSR band energy and intensity

Fig. S7 covers a single grid spectroscopy measurement. To spatially resolve the YSR band

energy and amplitude, the same procedure was applied to each spectrum. First, the spectrum

was fitted by the two-band McMillan model with interband coupling. The fit excluded energy

range of the YSR bands, i.e. region from −1 mV to 1 mV. Example of such a fit is shown

in Fig. S7a, where the fitted curve is an average of all spectra of the grid spectroscopy.

Next, the fit is subtracted from the spectrum, which results in two YSR bands as shown in

Fig. S7b. Then an energy and dI/dV intensity of the YSR band at positive bias voltage

was extracted by searching for maximum. Since this was done for each spectrum of the grid

spectroscopy, we were able to obtain maps of energy of the YSR band and dI/dV intensity

at the energy of the YSR band (Fig. S7d and Fig. S7e, respectively).

Figure S7: (a) Averaged dI/dV spectrum of the grid spectroscopy fitted by the two-band
McMillan model with interband coupling. (b) YSR bands resulting from subtraction of
the fit from the dI/dV spectrum. (c) 20 × 20 nm2 STM image of an area where the grid
spectroscopy was taken. (d,e) Spatially resolved YSR band energy (d) and intensity (e).
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There is a very faint modulation of the extracted YSR band energy in space (Fig. S7d).

This comes from the method of extracting this quantity from the measurement by searching

for energy position of a maximum. However, no such energy modulation can be seen when

looking at subtracted spectra across moiré sites (Fig. S8).

Figure S8: (a) STM image of CrBr3 ML on NbSe2 obtained at V = 1.5 V and I = 300 pA,
image size is 20 × 20 nm2. (b) dI/dV map at the energy of Shiba bands V = 0.8 mV. (c)
dI/dV spectra along the red line displayed in (a) and (b).
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Large bias dI/dV spectroscopy of CrBr3 monolayer on

NbSe2

STM and STS reveal detailed information on how the interlayer atomic registry affects the

local electronic structure of the CrBr3/NbSe2 van der Waals (vdW) heterostructure. To

show the spatial modulation of the local electronic structure, we have recorded the dI/dV

Figure S9: (b) dI/dV spectroscopy along the blue dashed line displayed on STM image
shown in (a). The image size is 11 × 35 nm2 and it is taken at Vbias = 1.5 V and I = 200
pA. (c) 20× 20 nm2 STM image taken at Vbias = 1.5 V and I = 200 pA. (d-e) dI/dV maps
taken at an area shown in (c) and at corresponding Vbias values. All dI/dV spectra in this
figure were normalized such that integral of the whole dI/dV spectrum is equal to one.
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spectroscopy along the blue line indicated in Fig. S9a and the result is shown in Fig. S9b.

The conduction band edge of CrBr3 is modulated with exactly the periodicity of the moiré

pattern of CrBr3/NbSe2 heterostructure, with magnitude of the modulation around 50 mV.

This modulation with moiré pattern is also observed in the dI/dV maps (Fig. S9d,e) taken

on the area shown in Fig. S9c. The periodic variation of local electronic structure as a

consequence of the moiré pattern indicates the existence of a periodic electrostatic potential

in this heterostructure.
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