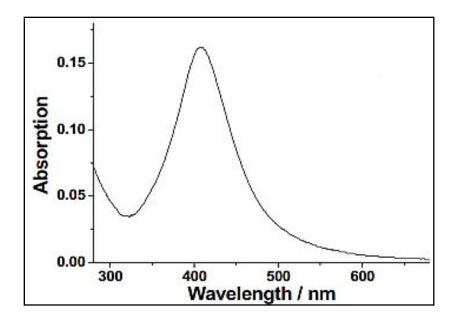
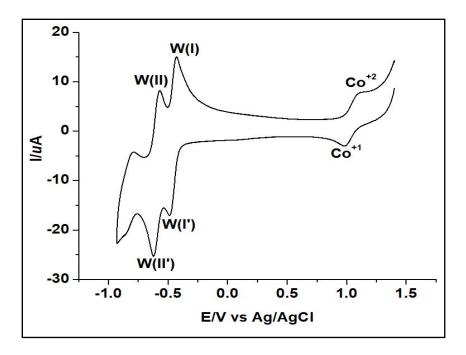
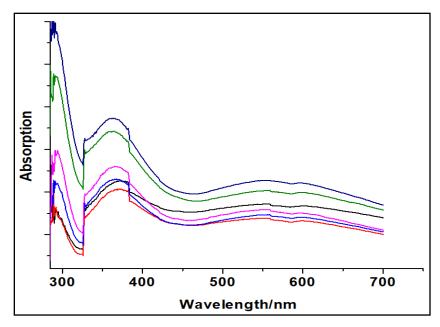
Supplementary Data

Efficient Preparation of a Non-enzymatic Nanoassembly based on Cobalt substituted Polyoxometalates (Co-POM) and Polyethylene imine (PEI) capped Silver Nanoparticles (AgNPs) for the Electrochemical Sensing of Carbofuran

Amna Yaqub^{a*}, Syeda Rubina Gilani^a, Sehrish Bilal^b, Akhtar Hayat^b, Anila Asif^b, Saadat Anwar Siddique^b

- a. University of Engineering and Technology, Lahore, 54000, Pakistan,
- b. Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore 54000, Pakistan

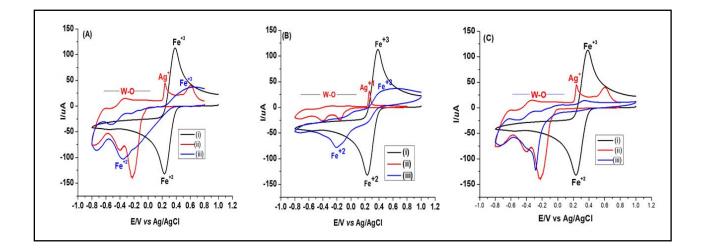

Figure S1: Typical UV-Visible spectrum of silver nanoparticles.

Figure S2: Solution phase cyclic voltammetry of cobalt substituted Dawson type polyoxometalate i.e. $K_8P_2W_{17}O_{61}(Co^{2+}OH_2).16H_2O$ in pH 4.5 buffer vs. Ag/AgCl (reference), Scan rate was 100 mVs⁻¹ at negative scan direction.

Figure S3: UV-Vis spectra of multilayer assembly based on PDDA/(POM/AgNPs)n composition having n=6 fabricated on ITO slide. The blank slide was used as a reference.

Figure S4: Permeability study: (A) Cyclic voltammograms recorded for (i) 1 mM $[Fe(CN)_6]^{3-}$ in buffer (0.1 M Na₂SO₄/pH 2.0) at clean GCE before any deposition, (ii) Co-POM/AgNP multilayer nanoassembly comprising of 4 bilayers with outermost POM layer (anionic) in the same buffer, (iii) Co-POM/AgNP hybrid film in 1 mM $[Fe(CN)_6]^{3-}$ in pH 2.0 buffer. (B) Overlay of cyclic voltammograms of (i) 1 mM $[Fe(CN)_6]^{3-}$ in buffer (0.1 M Na₂SO₄/pH 2.0) at clean GCE, (ii) Co-POM/AgNP multilayer film of 4 bilayers with outermost layer of cationic nanoparticles in the same buffer solution, (iii) Co-POM/AgNP hybrid film in of 1 mM $[Fe(CN)_6]^{3-}$ in pH 2.0 buffer. (C) Overlay of cyclic voltammograms of (i) 1 mM $[Fe(CN)_6]^{3-}$ in pH 2.0 buffer on clean GCE, (ii) Co-POM/AgNP hybrid film comprising 8 bilayers with outermost layer of anionic POM in pH 2.0 buffer, (iii) hybrid film in 1 mM $[Fe(CN)_6]^{3-}$ in pH 2.0 buffer (Scan rate was 100 mVs⁻¹).

Table S1: Comparison of average	recovery values c	of carbamate	pesticide i	in real	samples	with the
previously reported methods.						

Method	Sample	Analysis time (min)	Concentrations (µg/kg)	Recoveries (%)	References
Micellar electrokinetic chromatography tandem mass spectrometry	Tomatoes	>120	10	81-99	1
HPLC	Tomatoes	>180	10	-	2
AChE/Con A/PDA- RGO-GNP/GCE	Tomatoes	15-20	10	101	3
HPLC-MS/MS	Tomatoes	8	-	Avg.63	4
HPLC/DAD	Tomatoes	10	30	84.5-88.1	5
icELISA	Mango	>30	10	83.3	6
UPLC-MS/MS	Mango	>10	10	84.7	6
LC/DAD	Tomatoes	10	60	65.8	7
PDDA/Co- POM/AGNP/GCE	Tomatoes	<2	10	102	This work

References:

1: Moreno-Gonzalez, D., J. F. Huertas-Perez, A. M. Garcia-Campana, L. Gamiz-Gracia. Vortex-assisted surfactant-enhanced emulsification liquid–liquid microextraction for the determination of carbamates in juices by micellar electrokinetic chromatography tandem mass spectrometry. *Talanta* 2015, 139:174–80

2: Li, N., Chen J., Shi Y.P., Magnetic graphene solid-phase extraction for the determination of carbamate pesticides in tomatoes coupled with high performance liquid chromatography. *Talanta*, 2015, 141, 212–219.

3: Li Y., Li Y.,Yu X., Sun Y., Electrochemical Determination of Carbofuran in Tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP) Glassy Carbon Electrode (GCE) with Immobilized Acetylcholinesterase (AChE), Analytical Letters, 2019, 14, 2283-2299.

4: Goto T., Ito Y, Oka H., Saito I., Matsumoto H., Sugiyama H., Ohkubo C., Nakazawa H., Nagase H., The high throughput analysis of N-methyl carbamate pesticides in wine and juice by electrospray ionization

liquid chromatography tandem massspectrometry with direct sample injection into a short column, Anal. Chim. Acta, 2005, 531, 79-86

5: Lin X.Y., Chen X.H., Huo X., Yu Z.G., Bi K.S., Li Q. Dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-diode array detection for the determination of *N*-methyl carbamate pesticides in vegetables, J. Sep. Sci., 2011, 34, 202-209.

6: Lan J., Wang M., Ding S., Fan Y, Diao X., Li Qing X., Zhao H., Simultaneous detection of carbofuran and 3-hydroxy-carbofuran in vegetables and fruits by broad-specific monoclonal antibody-based ELISA, Food Agric Immunol .2019, 30, 1085-1096.

7: Paíga P., Morais S., Correia M., Alves A., Matos C., Screening of Carbamates and Ureas in Fresh and Processed Tomato Samples using Microwave-Assisted Extraction and Liquid Chromatography, Anal. Lett., 2009, 42 265-283