Supporting Information

Combining Hydroxyl-Yne and Thiol-Ene Click Reactions to Facilely Access Sequence-Defined Macromolecules for High-Density Data Storage

Bo Song,[†] Dan Lu,[†] Anjun Qin, $*^{\dagger}$ Ben Zhong Tang $*^{\dagger,\ddagger,\#}$

[†] State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China. E-mail: msqinaj@scut.edu.cn

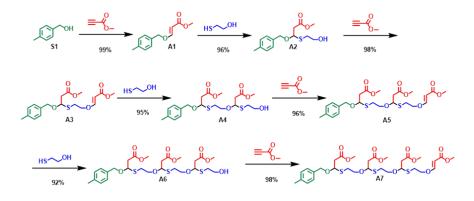
[‡] Shenzhen Institute of Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China. E-mail: tangbenz@cuhk.edu.cn

[#] Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

Contents

Materials and instruments								
Synthetic procedure and characterization data for A1-A7								
Proposed mechanism	S 8							
Synthetic procedure and characterization data for B2-B11	S 9							
ESI-MS and NMR spectra of B2-B11	S17							
Tandem ESI-MS/MS decoding of oligo(monothioacetal)s	S22							
Synthetic procedure and characterization data for C1-C5, D1, and E1-E3								
GPC, ESI-MS and NMR spectra of C1-C5, D1, and E1-E3								
Tandem ESI-MS/MS decoding and translation of the miktoarm	star							
oligo(monothioacetal) E3	S37							
References	S52							
Additional data	S53							

Materials and instruments


All manipulations involving air- and/or water-sensitive compounds were carried out in a glove box or with the standard Schlenk techniques. **M5**, **M7** and **S3** was prepared according to our previous procedures.^[1] **M1-M4**, **M6**, **M8**, **S1**, **S2**, γ-terpinene (1-isopropyl-4-methylcyclohexa-1,4-diene), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), triethylamine (TEA), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) were purchased from Energy Chemical, Sigma-Aldrich, TCI, and Aladdin, and used without further purification.

¹H and ¹³C NMR spectra were measured on a Bruker Avance 400 MHz NMR spectrometer using deuterated DMSO as solvent and tetramethylsilane (TMS, $\delta = 0$) as internal reference. The gel permeation chromatography (GPC) data of sequence-defined macromolecules were estimated by GPC system, and tetrahydrofuran (THF) was used as eluent at a flow rate of 0.5 mL/min.

High-resolution ESI-MS and MS/MS measurements were performed using Agilent1290/Bruker maXis impact (Bruker, Germany) equipped with an ESI source operated in the positive mode. The capillary voltage was set at +4500 V. In this hybrid instrument, ions were measured using an orthogonal acceleration time-of-flight mass analyzer. In the MS mode, accurate mass measurements were performed using reference ions from Tuning Mix internal standard. In the MS/MS mode, a quadrupole was used for selection of precursor ions to be further submitted to collision-induced dissociation in a collision cell. The precursor ion was used as the reference for

accurate measurements of product ions in MS/MS spectra. Instrument control, data acquisition and data processing were achieved using the Compass Data Analysis provided by Bruker. Macromolecules solutions were prepared in MeOH/THF and introduced in the ionization source with a syringe pump (flow rate: 5 mL min⁻¹).

Synthetic procedure and characterization data for A1-A7

Scheme S1. Synthetic routes to A1-A7.

A1: *p*-Tolylmethanol S1 (12.9 g, 105 mmol), methyl propiolate M1 (8.9 mL, 100 mmol), DABCO (560 mg, 5 mmol), and 50 mL THF were placed into a 250 mL round-bottom flask equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (20:1, v/v) as eluent. The product A1 (20.4 g) was obtained in 99% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.68 (d, *J* = 12.5 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.9 Hz, 2H), 5.35 (d, *J* = 12.5 Hz, 1H), 4.97 (s, 2H), 3.60 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 167.68, 163.04, 138.20, 133.20, 129.57, 128.66, 97.12, 73.16, 51.24, 21.24. ESI-MS: m/z calculated for [M+Na]⁺ C₁₂H₁₄NaO₃: 229.0841, found 229.0837.

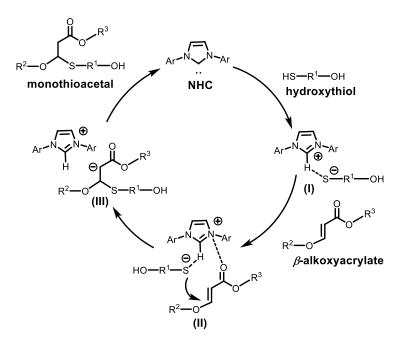
A2: A1 (10.3 g, 50 mmol), 2-mercaptoethanol M2 (5.3 mL, 75 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (972 mg, 2.5 mmol), and 20 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (4:1, v/v) as eluent. The product A2 (13.7 g) was obtained in 96% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.17 (d, *J* = 2.6 Hz, 4H), 4.95 (m, 1H), 4.83 (t, *J* = 5.5 Hz, 1H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 3.59 (s, 3H), 3.56 – 3.47 (m, 2H), 2.88 (m, 2H), 2.66 (m, 2H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.23, 137.31, 134.82, 129.30, 128.38, 81.13, 69.25, 61.69, 51.97, 42.11, 30.90, 21.22. ESI-MS: m/z calculated for [M+Na]⁺ C₁₄H₂₀NaO₄S: 307.0980, found 307.0975.

A3: **A2** (11.4 g, 40 mmol), methyl propiolate **M1** (3.9 mL, 44 mmol), DABCO (224 mg, 2 mmol), and 20 mL THF were placed into a 100 mL round-bottom flask equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (10:1, v/v) as eluent. The product **A3** (14.4 g) was obtained in 98% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.61 (d, J = 12.5 Hz, 1H), 7.17 (d, J = 6.9 Hz, 4H), 5.25 (d, J = 12.5 Hz, 1H), 5.00 (m, 1H), 4.66 (d, J = 11.5 Hz, 1H), 4.45 (d, J = 11.5 Hz, 1H), 4.07 (t, J = 6.4 Hz, 2H), 3.60 (d, J = 5.0 Hz, 6H), 2.91 (m, 4H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.17, 167.63, 163.01, 137.37, 134.68, 129.31, 128.43, 96.82, 81.30, 71.43, 69.43,

52.00, 51.24, 41.92, 27.20, 21.22. ESI-MS: m/z calculated for [M+Na]⁺ C₁₈H₂₄NaO₆S: 391.1191, found 391.1193.

A4: **A3** (11.0 g, 30 mmol), 2-mercaptoethanol **M2** (3.2 mL, 45 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (583 mg, 1.5 mmol), and 15 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (4:1, v/v) as eluent. The product **A4** (12.7 g) was obtained in 95% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.25 – 7.10 (m, 4H), 4.99 – 4.89 (m, 2H), 4.85 – 4.76 (m, 1H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.44 (d, *J* = 11.5 Hz, 1H), 3.86 – 3.71 (m, 1H), 3.65 – 3.57 (m, 6H), 3.57 – 3.46 (m, 3H), 2.97 – 2.59 (m, 8H), 2.35 – 2.23 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.20, 137.34, 134.76, 129.30, 128.42, 81.70, 81.19, 69.37, 67.68, 61.67, 52.00, 51.99, 42.02, 41.92, 31.00, 30.96, 27.49, 21.22. ESI-MS: m/z calculated for [M+Na]⁺ C₂₀H₃₀NaO₇S₂: 469.1331, found 469.1342.

A5: A4 (8.9 g, 20 mmol), methyl propiolate M1 (2.0 mL, 22 mmol), DABCO (112 mg, 1 mmol), and 10 mL THF were placed into a 50 mL round-bottom flask equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (10:1, v/v) as eluent. The product A5 (10.2 g) was obtained in 96% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.61 (d, *J* = 12.5 Hz, 1H), 7.20 – 7.10 (m, 4H), 5.28 (d, *J* = 12.5, 1H), 5.03 – 4.92 (m, 2H), 4.66 (d, *J* = 11.5 Hz, 1H),


4.43 (d, *J* = 11.5 Hz, 1H), 4.14 – 3.99 (m, 2H), 3.86 – 3.73 (m, 1H), 3.64 – 3.55 (m, 10H), 2.98 – 2.71 (m, 8H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.19, 170.12, 167.63, 163.02, 137.33, 134.75, 129.29, 128.40, 96.83, 81.73, 81.20, 71.48, 69.37, 67.78, 52.04, 51.23, 42.00, 41.73, 27.48, 27.27, 27.21, 21.21. ESI-MS: m/z calculated for [M+Na]⁺ C₂₄H₃₄NaO₉S₂: 553.1542, found 553.1559.

A6: **A5** (5.3 g, 10 mmol), 2-mercaptoethanol **M2** (1.1 mL, 15 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (196 mg, 0.5 mmol), and 5 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (4:1, v/v) as eluent. The product **A6** (5.6 g) was obtained in 92% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.23 – 7.11 (m, 4H), 5.01 – 4.87 (m, 3H), 4.81 (m, 1H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.44 (d, *J* = 11.5 Hz, 1H), 3.86 – 3.69 (m, 2H), 3.64 – 3.57 (m, 9H), 3.57 – 3.45 (m, 4H), 2.97 – 2.57 (m, 12H), 2.35 – 2.25 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.20, 137.33, 134.77, 129.31, 128.42, 128.40, 81.67, 81.52, 81.20, 69.34, 67.68, 61.66, 52.01, 42.02, 41.93, 41.82, 30.96, 27.50, 21.23. ESI-MS: m/z calculated for [M+Na]⁺ C₂₆H₄₀NaO₁₀S₃: 631.1681, found 631.1687.

A7: A6 (1.2 g, 2 mmol), methyl propiolate M1 (0.2 mL, 2.2 mmol), DABCO (11.2 mg, 0.1 mmol), and 2 mL THF were placed into a 10 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 $^{\circ}$ C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum

ether/ethyl acetate (10:1, v/v) as eluent. The product **A7** (1.36 g) was obtained in 98% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): δ 7.61 (d, *J* = 12.5 Hz, 1H), 7.17 (m, 4H), 5.28 (d, *J* = 12.5 Hz, 1H), 4.98 – 4.90 (m, 3H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 4.07 (m, 2H), 3.83 – 3.72 (m, 2H), 3.60 (m, 14H), 2.95 – 2.73 (m, 12H), 2.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.20, 170.16, 170.11, 167.63, 163.03, 137.33, 134.76, 129.30, 128.40, 96.83, 81.70, 81.20, 71.48, 69.33, 67.73, 52.04, 51.99, 51.24, 42.02, 41.79, 41.72, 27.48, 27.24, 21.22. ESI-MS: m/z calculated for [M+Na]⁺ C₃₀H₄₄NaO₁₂S₃: 715.1893, found 715.1887.

Proposed mechanism

Scheme S2. Proposed mechanism of NHC-catalyzed thiol-ene click reaction.

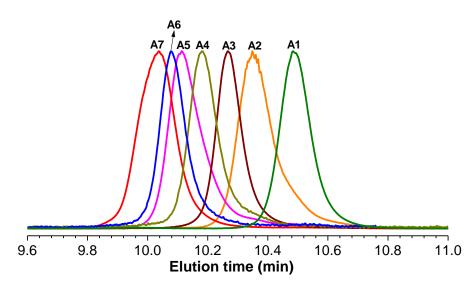
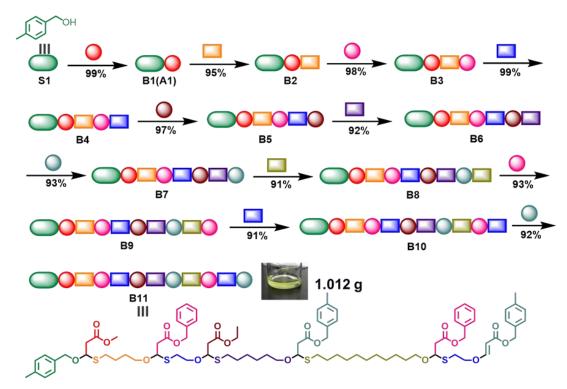



Figure S1. GPC traces of A1-A7.

Synthetic procedure and characterization data for B2-B11

Scheme S3. Synthetic routes to B2-B11.

B2: B1(A1) (4.12 g, 20 mmol), 4-mercapto-1-butanol **M4** (3.1 mL, 30 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (389 mg, 1 mmol), and 20 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 % for 5 h under nitrogen, and then extracted three times

with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (5:1, v/v) as eluent. The product **B2** (5.9 g) was obtained in 95% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.16 (d, *J* = 3.1 Hz, 4H), 4.92 (m, 1H), 4.65 (d, *J* = 11.5 Hz, 1H), 4.44 (d, *J* = 11.5 Hz, 1H), 4.40 (t, *J* = 5.2 Hz, 1H), 3.59 (s, 3H), 3.39 (d, *J* = 5.3 Hz, 3H), 2.88 (m, 2H), 2.59 (t, *J* = 7.3 Hz, 2H), 2.29 (s, 3H), 1.63 – 1.44 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.24, 137.30, 134.85, 129.30, 128.39, 81.06, 69.25, 60.66, 51.98, 41.98, 32.22, 27.94, 26.77, 21.22. ESI-MS: m/z calculated for [M+Na]⁺ C₁₆H₂₄NaO₄S: 335.1293, found 335.1295.

B3: **B2** (3.1 g, 10 mmol), **M5** (1.8 g, 11 mmol), DABCO (56 mg, 0.5 mmol), and 10 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (10:1, v/v) as eluent. The product **B3** (4.6 g) was obtained in 98% yield. ¹H NMR (400 MHz, DMSO-*d*₆) *δ* (TMS, ppm): 7.64 (d, *J* = 12.6 Hz, 1H), 7.40 – 7.28 (m, 5H), 7.15 (d, *J* = 5.0 Hz, 4H), 5.31 (d, *J* = 12.5 Hz, 1H), 5.12 (s, 2H), 4.93 (m, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 3.92 (t, *J* = 6.3 Hz, 2H), 3.58 (s, 3H), 2.88 (m, 2H), 2.61 (t, *J* = 7.3 Hz, 2H), 2.27 (s, 3H), 1.81 – 1.54 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆), *δ* (ppm): 170.23, 167.21, 163.62, 137.30, 137.08, 134.81, 129.29, 128.88, 128.37, 128.34, 96.37, 81.10, 71.14, 69.29, 65.20, 51.98, 41.90, 28.10, 27.57, 26.48, 21.21. ESI-MS: m/z calculated for [M+Na]⁺ C₂₆H₃₂NaO₆S: 495.1817, found 495.1815.

B4: B3 (3.3 g, 7 mmol), 2-mercaptoethanol **M2** (0.74 mL, 10.5 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (136 mg, 0.35 mmol), and 10 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (3:1, v/v) as eluent. The product **B4** (3.8 g) was obtained in 99% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.36 (m, 5H), 7.16 (d, *J* = 2.0 Hz, 4H), 5.11 (s, 2H), 4.90 (m, 2H), 4.81 (t, *J* = 5.5 Hz, 1H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 3.69 – 3.46 (m, 6H), 3.34 (s, 1H), 2.98 – 2.78 (m, 4H), 2.67 – 2.53 (m, 4H), 2.28 (s, 3H), 1.52 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.81, 170.23, 169.75, 137.30, 136.46, 134.83, 129.30, 128.86, 128.48, 128.37, 81.72, 81.08, 69.26, 67.27, 66.09, 61.75, 60.23, 51.98, 30.95, 30.89, 28.46, 27.73, 26.86, 26.84, 25.60, 21.23, 21.22, 14.56. ESI-MS: m/z calculated for [M+Na]⁺ C₂₈H₃₈NaO₇S₂: 573.1957, found 573.1965.

B5: **B4** (2.75 g, 5 mmol), ethyl propriolate **M3** (0.56 mL, 5.5 mmol), DABCO (28 mg, 0.25 mmol), and 5 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (8:1, v/v) as eluent. The product **B5** (3.14 g) was obtained in 97% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.58 (d, *J* = 12.5 Hz, 1H), 7.44 – 7.26 (m, 5H), 7.15 (d, *J* = 2.3 Hz, 4H), 5.24 (d, *J* = 12.5 Hz, 1H), 5.11 (s, 2H), 4.98 – 4.86 (m, 2H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 4.12 – 4.00 (m,

4H), 3.58 (m, 4H), 3.40 – 3.32 (m, 1H), 2.99 – 2.80 (m, 6H), 2.56 (m, 2H), 2.28 (s, 3H), 1.53 (m, 4H), 1.18 (t, J = 7.1, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.22, 169.68, 167.19, 162.88, 137.29, 136.42, 134.82, 129.29, 128.86, 128.49, 128.40, 128.35, 97.08, 81.85, 81.07, 71.50, 69.25, 67.49, 67.39, 66.14, 60.23, 59.64, 51.97, 42.18, 41.95, 28.44, 27.70, 27.21, 26.86, 26.84, 25.60, 21.23, 21.21, 14.73, 14.55. ESI-MS: m/z calculated for [M+Na]⁺ C₃₃H₄₄NaO₉S₂: 671.2324, found 671.2337.

B6: B5 (1.95 g, 3 mmol), 6-mercapto-1-hexanol M6 (0.62 mL, 4.5 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (58.3 mg, 0.15 mmol), and 10 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (3:1, v/v) as eluent. The product **B6** (2.16 g) was obtained in 92% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.44 – 7.27 (m, 5H), 7.22 – 7.09 (m, 4H), 5.11 (s, 2H), 4.96 – 4.83 (m, 3H), 4.64 (d, J = 11.5 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.31 (t, J = 5.1 Hz, 1H), 4.13 – 3.96 (m, 2H), 3.75 (m, 1H), 3.66 – 3.48 (m, 5H), 3.41 – 3.33 (m, 3H), 2.97 – 2.65 (m, 8H), 2.60 – 2.51 (m, 4H), 2.28 (s, 3H), 1.59 – 1.22 (m, 12H), 1.20 – 1.14 (m, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.21, 169.69, 169.66, 137.29, 136.44, 134.82, 129.29, 128.85, 128.48, 128.36, 128.35, 81.80, 81.67, 81.63, 81.06, 69.25, 67.74, 67.70, 67.35, 66.11, 61.11, 60.61, 51.98, 42.23, 41.95, 32.90, 30.89, 30.09, 28.74, 28.47, 27.94, 27.88, 27.71, 27.55, 26.87, 26.85, 25.55, 21.22, 14.51 ESI-MS:

S12

m/z calculated for [M+Na]⁺ C₃₉H₅₈NaO₁₀S₃: 805.3090, found 805.3099.

B7: B6 (1.96 g, 2.5 mmol), M7 (479 mg, 2.75 mmol), DABCO (14 mg, 0.125 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 3 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (5:1, v/v) as eluent. The product **B7** (2.23 g) was obtained in 93% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.62 (d, J = 12.6 Hz, 1H), 7.39 – 7.28 (m, 5H), 7.28 - 7.11 (m, 8H), 5.28 (d, J = 12.5 Hz, 1H), 5.10 (s, 2H), 5.05 (s, 2H), 4.94 - 4.82(m, 3H), 4.64 (d, J = 11.5 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.11 – 4.00 (m, 2H), 3.88 (t, J = 6.5 Hz, 2H), 3.75 (m, 1H), 3.67 - 3.48 (m, 5H), 3.34 (m, 1H), 2.98 - 2.66(m, 8H), 2.60 - 2.51 (m, 4H), 2.28 (d, J = 5.1 Hz, 6H), 1.63 - 1.44 (m, 8H), 1.34 - 1.441.25 (m, 4H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.20, 169.68, 169.65, 167.23, 163.58, 137.64, 137.29, 136.43, 134.81, 134.05, 129.40, 129.29, 128.84, 128.49, 128.34, 96.32, 81.78, 81.62, 81.06, 71.55, 69.25, 67.33, 66.10, 65.10, 60.61, 51.97, 42.21, 41.94, 41.91, 34.86, 30.89, 29.90, 28.74, 28.47, 28.36, 27.70, 27.52, 26.86, 25.21, 21.22, 14.50. ESI-MS: m/z calculated for [M+Na]⁺ C₅₀H₆₈NaO₁₂S₃: 979.3771, found 979.3770.

B8: B7 (1.91 g, 2 mmol), 11-mercapto-1-undecanol **M8** (612 mL, 3 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (39 mg, 0.1 mmol), and 5 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 $^{\circ}$ C for 7 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a

silica gel column using petroleum ether/ethyl acetate (3:1, v/v) as eluent. The product **B8** (2.11 g) was obtained in 91% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.35 (m, 5H), 7.27 – 7.08 (m, 8H), 5.10 (s, 2H), 5.05 (s, 2H), 4.94 – 4.79 (m, 4H), 4.64 (d, *J* = 11.5 Hz, 1H), 4.43 (d, *J* = 11.5 Hz, 1H), 4.30 (t, *J* = 4.9 Hz, 1H), 4.06 (d, *J* = 7.1 Hz, 2H), 3.75 (m, 1H), 3.58 (m, 6H), 3.36 (m, 4H), 2.97 – 2.66 (m, 10H), 2.60 – 2.52 (m, 6H), 2.28 (d, *J* = 4.2 Hz, 6H), 1.45 (m, 12H), 1.25 (m, 18H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.19, 169.71, 169.66, 169.62, 137.77, 137.28, 136.42, 134.81, 133.44, 129.37, 129.28, 128.84, 128.50, 128.47, 128.33, 81.63, 81.05, 69.25, 67.60, 67.34, 66.10, 65.98, 61.19, 60.60, 51.97, 42.18, 41.95, 41.92, 33.03, 30.07, 29.98, 29.58, 29.45, 29.43, 29.11, 29.04, 28.77, 28.54, 28.47, 27.85, 27.69, 27.52, 25.99, 25.69, 21.22, 14.49. ESI-MS: m/z calculated for [M+Na]⁺ C₆₁H₉₂NaO₁₃S₄: 1183.5318, found 1183.5375.

B9: **B8** (1.74 g, 1.5 mmol), **M5** (264 mg, 1.65 mmol), DABCO (8.4 mg, 0.075 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 5 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (5:1, v/v) as eluent. The product **B9** (1.84 g) was obtained in 93% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.64 (d, J = 12.5 Hz, 1H), 7.43 – 7.27 (m, 10H), 7.27 – 7.06 (m, 8H), 5.30 (d, J = 12.5 Hz, 1H), 5.10 (d, J = 1.8 Hz, 4H), 5.05 (s, 2H), 4.93 – 4.79 (m, 4H), 4.64 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.04 (m, 2H), 3.90 (t, J = 6.5 Hz, 2H), 3.75 (m, 1H), 3.57 (m, 7H), 3.27 (m, 1H), 2.96 – 2.65 (m, 10H), 2.54 (m, 6H), 2.28 (d, J = 4.0 Hz, 6H), 1.52 (m, 12H), 1.24 (m, 20H), 1.16 (t, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.81, 170.18, 169.70, 169.65, 169.60, 167.22, 163.71, 137.77, 137.27, 137.09, 136.42, 134.81, 133.44, 129.36, 129.27, 128.86, 128.83, 128.49, 128.47, 128.34, 128.32, 96.23, 81.62, 81.05, 71.67, 69.25, 67.59, 67.49, 67.33, 66.10, 65.97, 65.17, 60.60, 60.23, 51.96, 42.17, 41.95, 41.91, 30.89, 30.05, 29.98, 29.37, 29.11, 29.08, 29.00, 28.86, 28.74, 28.54, 28.47, 27.83, 27.69, 27.50, 26.86, 25.69, 25.64, 25.60, 21.24, 21.22, 14.56, 14.48. ESI-MS: m/z calculated for [M+Na]⁺ C₇₁H₁₀₀NaO₁₅S₄: 1343.5843, found 1343.5838. **B10: B9** (1.32 g, 1 mmol), 2-mercaptoethanol **M2** (105 µL, 1.5 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (19 mg, 0.05 mmol), and 2 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 $\,^{\circ}$ C for 10 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (3:1, v/v) as eluent. The product **B10** (1.27 g) was obtained in 91% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.35 (m, 10H), 7.19 (m, 8H), 5.10 (s, 4H), 5.05 (s, 2H), 4.94 - 4.73 (m, 6H), 4.64 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.05 (m, 2H), 3.74 (m, 1H), 3.67 -3.42 (m, 10H), 3.30 - 3.23 (m, 2H), 2.80 (m, 20H), 2.28 (d, J = 4.0 Hz, 6H), 1.55 - 3.42 (m, 10H), 3.30 - 3.23 (m, 2H), 2.80 (m, 20H), 2.28 (d, J = 4.0 Hz, 6H), 1.55 - 3.23 (m, 2H), 2.80 (m, 2H), 2.28 (m, 2H), 1.19 (m, 32H), 1.16 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.20, 169.72, 169.66, 169.63, 169.62, 139.67, 137.78, 137.29, 136.42, 134.80, 133.44, 129.37, 129.28, 128.84, 128.50, 128.34, 125.39, 81.63, 81.05, 69.25, 67.60, 67.34, 66.10, 65.98, 61.19, 60.61, 51.97, 42.18, 41.95, 34.86, 33.02, 30.89, 30.06, 29.98, 29.57, 29.45, 29.42, 29.10, 29.04, 28.98, 28.76, 28.53, 28.47, 28.17, 27.85,

27.69, 25.98, 25.68, 21.22, 14.49. ESI-MS: m/z calculated for [M+Na]⁺ C₇₃H₁₀₆NaO₁₆S₅: 1421.5982, found 1421.6075.

B11: B10 (0.98 g, 0.7 mmol), M7 (134 mg, 0.77 mmol), DABCO (4 mg, 0.035 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (4:1, v/v) as eluent. The product **B11** (1.012 g) was obtained in 92% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.62 (d, J = 12.5 Hz, 1H), 7.38 – 7.27 (m, 10H), 7.27 - 7.08 (m, 12H), 5.28 (d, J = 12.5 Hz, 1H), 5.10 (s, 4H), 5.05 (s, 4H), 4.97 - 4.76(m, 5H), 4.64 (d, J = 11.5 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.11 – 4.00 (m, 4H), 3.75 (m, 1H), 3.57 (m, 7H), 3.27 (m, 3H), 2.97 – 2.53 (m, 20H), 2.28 (m, 9H), 1.59 – 1.18 (m, 32H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 169.60, 169.12, 169.07, 166.47, 162.68, 137.18, 137.04, 136.69, 135.84, 134.22, 133.41, 132.85, 128.80, 128.78, 128.69, 128.25, 127.91, 127.86, 127.73, 96.25, 81.24, 81.04, 80.46, 70.97, 68.66, 67.33, 67.01, 66.75, 65.51, 65.49, 65.39, 64.56, 60.02, 51.38, 41.62, 41.36, 41.33, 30.31, 29.48, 29.40, 28.85, 28.83, 28.65, 28.60, 28.52, 28.44, 28.19, 27.96, 27.89, 27.26, 27.11, 26.92, 26.58, 26.28, 25.49, 25.10, 20.64, 13.90. ESI-MS: m/z calculated for [M+Na]⁺ C₈₄H₁₁₆NaO₁₈S₅: 1595.6663, found 1595.6664.

S16

ESI-MS and NMR spectra of B2-B11

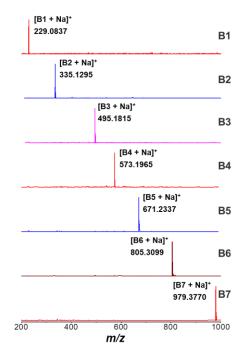


Figure S2. ESI mass spectra of B1-B7.

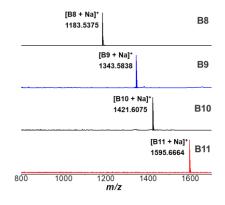


Figure S3. ESI mass spectra of B8-B11.

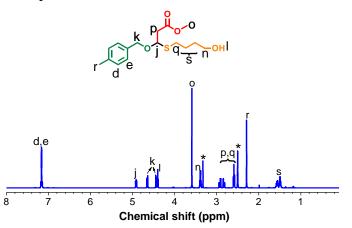


Figure S4. ¹H NMR spectrum of B2 in DMSO- d_6 . The solvent peaks are marked with asterisks.

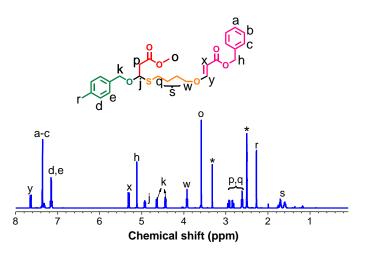


Figure S5. ¹H NMR spectrum of B3 in DMSO- d_6 . The solvent peaks are marked with asterisks.

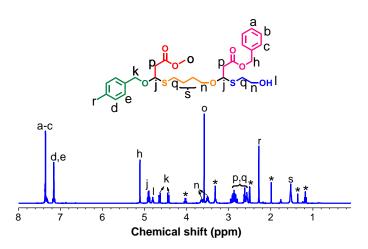
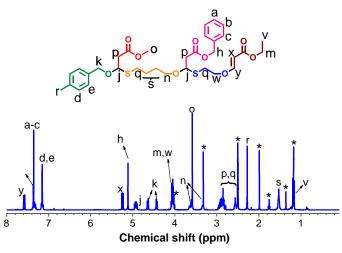



Figure S6. ¹H NMR spectrum of B4 in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S7. ¹H NMR spectrum of **B5** in DMSO- d_6 . The solvent peaks are marked with asterisks.

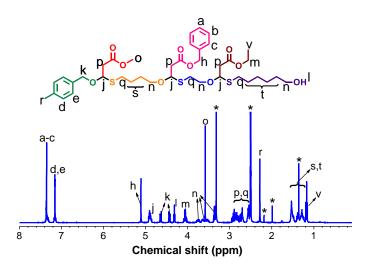


Figure S8. ¹H NMR spectrum of B6 in DMSO- d_6 . The solvent peaks are marked with asterisks.

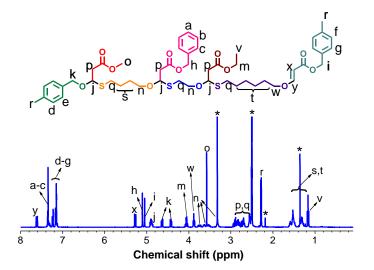
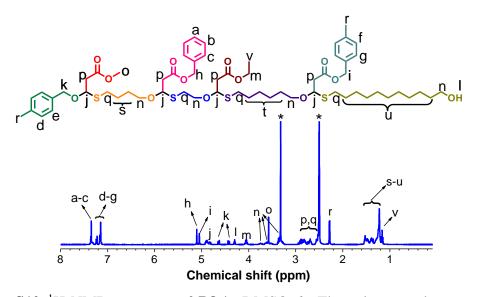
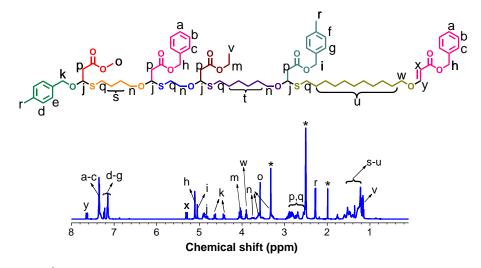
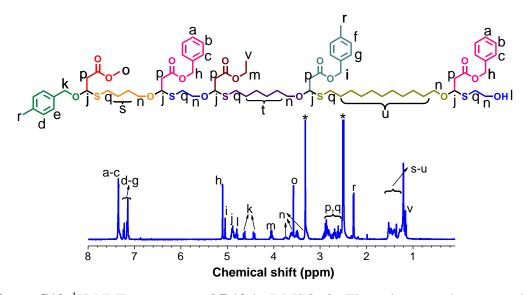


Figure S9. ¹H NMR spectrum of B7 in DMSO- d_6 . The solvent peaks are marked with asterisks.

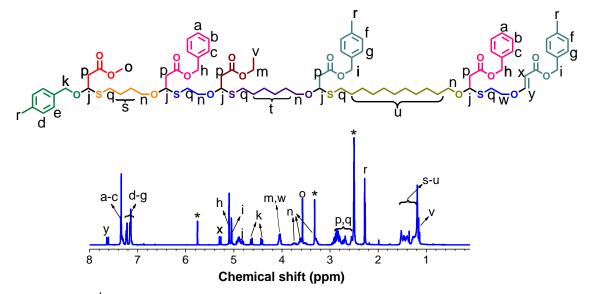

Figure S10. ¹H NMR spectrum of **B8** in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S11. ¹H NMR spectrum of **B9** in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S12. ¹H NMR spectrum of **B10** in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S13. ¹H NMR spectrum of **B11** in DMSO- d_6 . The solvent peaks are marked with asterisks.

Tandem ESI-MS/MS decoding of oligo(monothioacetal)s

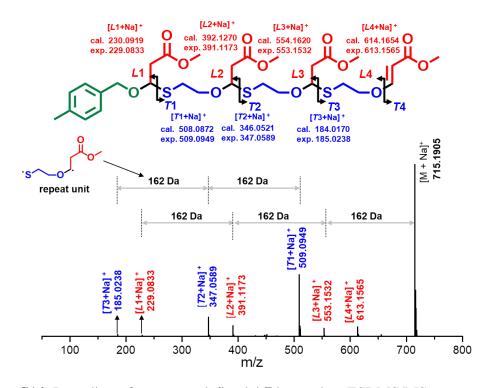


Figure S14. Decoding of sequence-defined A7 by tandem ESI-MS/MS spectrometry.

00		M _w (Da) 84		0000	ا 	И _w (Da) 162	1000	/ _w (Da) 218
01	0	98		0001		176	1001	232
10	0	160		0010		238	1010	294
11	\bigcirc	174	$ \longrightarrow $	0011		252	1011	308
00		78		0100		190	1100	288
01		106		0101		204	1101	302
10		134		0110		266	1110	364
11		204		0111		280	1111	378

Figure S15. 4 + 4 monomer strategy and 4×4 combinations for M-ary encoding.

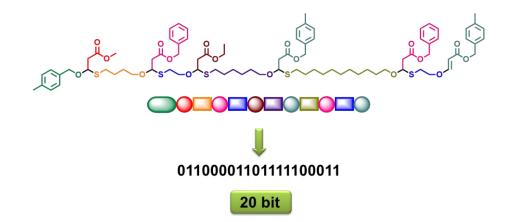


Figure S16. MS/MS translation of B11.

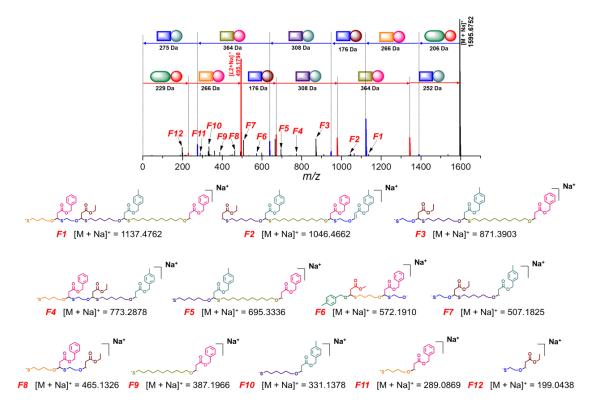
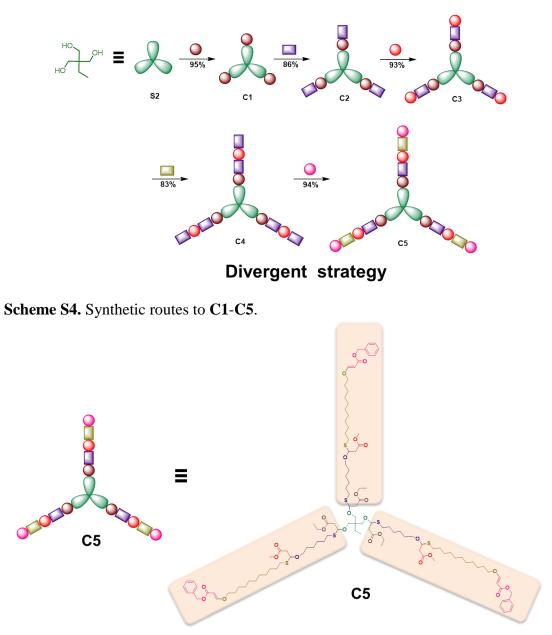



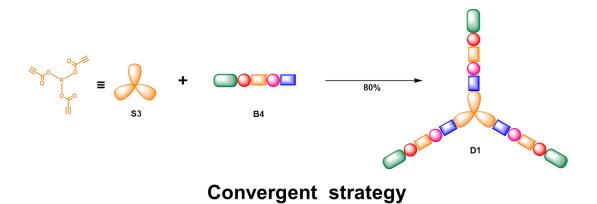
Figure S17. Proposed secondary product ions formed during secondary dissociation reactions in ESI-MS/MS of B11.

Synthetic procedure and characterization data for C1-C5, D1, and E1-E3

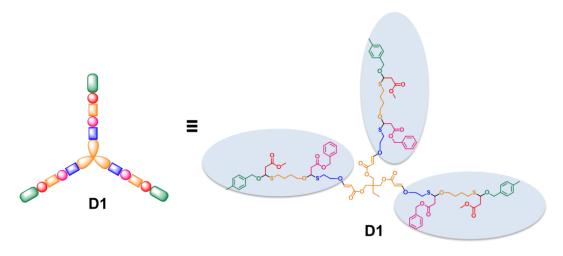
Scheme S5. The molecular structure of C5.

C1: 2-Ethyl-2-(hydroxymethyl)propane-1,3-diol (S2, 6 g, 50 mmol), ethyl propiolate M3 (16.7 mL, 165 mmol), DABCO (840 mg, 7.5 mmol), and 50 mL THF were placed into a 250 mL round-bottom flask equipped with a magnetic stir bar. The mixture was stirred at 25 $^{\circ}$ C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (8:1, v/v) as eluent.

The product **C1** (20.3 g) was obtained in 95% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.57 (d, J = 12.5 Hz, 3H), 5.31 (d, J = 12.5 Hz, 3H), 4.06 (m, 6H), 3.86 (s, 6H), 1.50 – 1.37 (m, 2H), 1.18 (t, J = 7.1 Hz, 9H), 0.83 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 167.09, 162.92, 97.19, 70.79, 59.66, 42.30, 22.51, 14.70, 7.50. ESI-MS: m/z calculated for [M+Na]⁺ C₂₁H₃₂NaO₉: 451.1944, found 451.1960.


C2: C1 (6.4 g, 15 mmol), 6-mercapto-1-hexanol M6 (9.3 mL, 68 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (875 mg, 2.25 mmol), and 20 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 10 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (1:2, v/v) as eluent. The product C2 (10.7 g) was obtained in 86% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 4.82 – 4.72 (m, 3H), 4.32 (t, *J* = 5.1 Hz, 3H), 4.13 – 4.00 (m, 6H), 3.52 (d, *J* = 9.2 Hz, 3H), 3.37 (m, 6H), 3.16 – 3.05 (m, 3H), 2.86 – 2.67 (m, 6H), 2.54 (t, *J* = 7.1 Hz, 6H), 1.57 – 1.45 (m, 6H), 1.44 – 1.23 (m, 20H), 1.19 (t, *J* = 7.2 Hz, 9H), 0.76 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 169.76, 82.31, 68.83, 61.11, 60.61, 42.22, 32.92, 30.15, 28.87, 28.85, 27.99, 27.87, 25.61, 14.52, 7.92. ESI-MS: m/z calculated for [M+Na]⁺ C₂₉H₇₄NaO₁₂S₃: 853.4240, found 853.4272.

C3: C2 (9.9 g, 12 mmol), methyl propiolate M1 (3.6 mL, 40 mmol), DABCO (202 mg, 1.8 mmol), and 10 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 $^{\circ}$ C for 6 h in air. After solvent


evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (5:1, v/v) as eluent. The product **C3** (12.1 g) was obtained in 93% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.59 (d, J = 12.6 Hz, 3H), 5.24 (d, J = 12.6 Hz, 3H), 4.77 (m, 3H), 4.15 – 4.00 (m, 6H), 3.90 (t, J = 6.5 Hz, 6H), 3.59 (s, 9H), 3.52 (d, J = 8.0 Hz, 3H), 3.12 (m, 3H), 2.77 (m, 6H), 2.52 (m, 6H), 1.68 – 1.48 (m, 12H), 1.32 (m, 14H), 1.21 – 1.16 (m, 9H), 0.76 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 169.76, 82.31, 68.83, 61.11, 60.61, 42.22, 32.92, 30.15, 28.87, 28.85, 27.99, 27.87, 25.61, 14.52, 7.92. ESI-MS: m/z calculated for [M+Na]⁺ C₅₁H₈₆NaO₁₈S₃: 1105.4874, found 1105.4873.

C4: C3 (1.08 g, 1 mmol), 11-mercapto-1-undecanol M8 (920 mg, 4.5 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (59 mg, 0.15 mmol), and 2 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 10 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (1:2, v/v) as eluent. The product C4 (1.41 g) was obtained in 83% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 4.87 (m, 3H), 4.81 (m, 3H), 4.14 (m, 6H), 3.77 – 3.67 (m, 12H), 3.62 (m, 9H), 3.38 (d, *J* = 9.1 Hz, 3H), 3.17 (d, *J* = 9.3 Hz, 3H), 2.95 – 2.68 (m, 12H), 2.56 (t, *J* = 7.4 Hz, 12H), 1.61 – 1.51 (m, 24H), 1.40 – 1.24 (m, 65H), 0.82 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.58, 81.40, 67.91, 63.05, 60.69, 51.84, 41.97, 32.81, 30.11, 29.57, 29.49, 29.42, 29.25, 29.19, 29.04, 27.89, 25.74, 14.19, 7.50. ESI-MS: m/z calculated for [M+Na]⁺ C₈₄H₁₅₈NaO₂₁S₆: 1717.9518, found 1717.9592.

C5: C4 (848 mg, 0.5 mmol), M5 (264 mg, 1.65 mmol), DABCO (8.4 mg, 0.075 mmol), and 1 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (5:1, v/v) as eluent. The product C5 (1.023 g) was obtained in 94% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.64 (d, J = 12.6 Hz, 3H), 7.42 – 7.28 (m, 15H), 5.24 (d, J = 12.6 Hz, 3H), 5.16 (s, 6H), 4.90 – 4.75 (m, 6H), 4.15 (m, 6H), 3.83 (t, J = 6.5 Hz, 6H), 3.77 – 3.66 (m, 12H), 3.61 (d, J = 9.5 Hz, 3H), 3.41 – 3.32 (m, 3H), 3.17 (d, J = 8.6 Hz, 3H), 2.98 – 2.62 (m, 12H), 2.55 (t, J = 7.3 Hz, 12H), 1.71 – 1.52 (m, 24H), 1.39 – 1.22 (m, 65H), 0.81 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.54, 167.77, 163.06, 136.49, 128.53, 128.13, 128.06, 96.00, 82.23, 81.42, 71.22, 67.95, 65.60, 60.68, 51.83, 42.00, 30.33, 30.14, 30.09, 29.50, 29.23, 29.08, 28.96, 28.86, 27.91, 25.91, 25.75, 14.27, 7.66. ESI-MS: m/z calculated for [M+Na]⁺ C₁₁₄H₁₈₂NaO₂₇S₆: 2198.1090, found 2198.1133.

Scheme S6. Synthetic route to D1.

Scheme S7. The molecular structure of D1.

D1: The triyne S3 (145 mg, 0.5 mmol), B4 (880 mg, 1.6 mmol), DABCO (16.8 mg, 0.15 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (2:1, v/v) as eluent. The product **D1** (776 mg) was obtained in 80% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): 7.54 (d, J = 12.6 Hz, 3H), 7.41 - 7.30 (m, 15H), 7.17 (m, 12H), 5.18 - 5.09 (m, 9H), 4.98 - 4.86 (m, 6H), 4.72 (d, J = 11.2 Hz, 3H), 4.48 (d, J = 11.3 Hz, 3H), 4.08 (s, 6H), 3.94 (m, 6H), 3.78 - 3.58 (m, 12H), 3.36 (m, 3H), 2.85 (m, 18H), 2.59 (m, 6H), 2.33 (s, 9H), 1.62 (m, 14H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.34, 169.49, 167.22, 162.16, 137.59, 135.61, 134.22, 129.26, 129.10, 128.59, 128.48, 128.37, 128.21, 127.13, 125.53, 96.58, 81.44, 80.54, 70.39, 69.48, 67.63, 66.68, 65.31, 63.46, 51.84, 42.13, 41.97, 40.92, 34.23, 30.32, 28.54, 27.25, 26.75, 26.73, 26.28, 21.19, 21.16, 7.49. ESI-MS: m/z calculated for [M+Na]⁺ C₉₉H₁₂₈NaO₂₇S₆: 1963.6865, found 1963.6896.

E1: S3 (290 mg, 1 mmol), A2 (966 mg, 3.4 mmol), DABCO (33.6 mg, 0.3 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (2:1, v/v) as eluent. The product E1 (950 mg) was obtained in 83% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.56 (d, *J* = 12.7 Hz, 3H), 7.17 (m, 12H), 5.17 (d, *J* = 12.6 Hz, 3H), 4.99 (m, 3H), 4.72 (d, *J* = 11.3 Hz, 3H), 4.51 (d, *J* = 11.3 Hz, 3H), 4.09 (s, 6H), 3.98 (m, 6H), 3.68 (s, 9H), 3.01 – 2.76 (m, 12H), 2.34 (s, 9H), 1.54 – 1.46 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.04, 167.25, 162.18, 137.84, 133.78, 129.20, 128.29, 96.59, 80.49, 70.35, 69.75, 63.52, 51.95, 41.92, 40.93, 26.20, 21.21, 7.49. ESI-MS: m/z calculated for [M+Na]⁺ C₅₇H₇₄NaO₁₈S₃: 1165.3935, found 1165.3972.

E2: **E1** (572 mg, 0.5 mmol), 11-mercapto-1-undecanol **M8** (460 mg, 2.25 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (29 mg, 0.075 mmol), and 2 mL DMSO were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 10 h under nitrogen, and then extracted three times with ethyl acetate. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (1:2, v/v) as eluent. The product **E2** (764 mg) was obtained in 87% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ (TMS, ppm): 7.17 (m, 12H), 4.97 (m, 5.4 Hz, 3H), 4.91 – 4.82 (m, 3H), 4.73 (d, *J* = 11.3 Hz, 3H), 4.48 (d, *J* = 11.3 Hz, 3H), 4.06 (m, 6H), 3.89 (m, 3H), 3.71 – 3.51 (m, 18H), 2.94 (m, 6H), 2.80 (m, 12H), 2.56 (m, 6H), 2.33 (s, 9H), 1.62 – 1.52 (m, 12H), 1.39 – 1.19

(m, 44H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6), δ (ppm): 170.25, 169.87, 169.51, 137.62, 134.09, 129.11, 128.28, 81.35, 80.52, 69.62, 67.45, 63.06, 51.86, 42.09, 32.82, 30.01, 29.59, 29.53, 29.43, 29.24, 29.14, 25.75, 21.21, 7.42. ESI-MS: m/z calculated for $[M+Na]^+ C_{90}H_{146}NaO_{21}S_6$: 1777.8579, found 1777.8544. E3: E2 (176 mg, 0.1 mmol), M5 (96 mg, 0.6 mmol), DABCO (4 mg, 0.03 mmol), and 2 mL THF were placed into a 50 mL Schlenk tube equipped with a magnetic stir bar. The mixture was stirred at 25 °C for 6 h in air. After solvent evaporation, the crude product was purified by a silica gel column using petroleum ether/ethyl acetate (2:1, v/v) as eluent. The product E3 (210 mg) was obtained in 94% yield. ¹H NMR (400 MHz, DMSO- d_6) δ (TMS, ppm): ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 12.6 Hz, 3H), 7.34 (m, 15H), 7.17 (m, 12H), 5.23 (d, J = 12.6 Hz, 3H), 5.16 (s, 6H), 4.96 (m, 3H), 4.88 (m, 3H), 4.73 (d, J = 11.4 Hz, 3H), 4.47 (d, J = 11.3 Hz, 3H), 4.06 (m, 6H), 3.85 (m, 9H), 3.70 – 3.52 (m, 12H), 2.91 (m, 6H), 2.85 – 2.71 (m, 12H), 2.54 (m, 6H), 2.33 (s, 9H), 1.67 (d, J = 7.2 Hz, 6H), 1.30 (d, J = 33.9 Hz, 50H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆), δ (ppm): 170.21, 169.50, 167.78, 163.06, 137.61, 136.48, 134.09, 129.11, 128.53, 128.27, 128.13, 128.07, 96.00, 81.15, 80.52, 71.21, 69.62, 67.46, 65.61, 51.84, 42.09, 41.75, 30.34, 30.02, 29.55, 29.52, 29.26, 29.18, 28.87, 26.89, 25.77, 21.21, 7.43. ESI-MS: m/z calculated for [M+Na]⁺ C₁₂₀H₁₇₀NaO₂₇S₆: 2258.0151, found 2258.0156.

GPC, ESI-MS and NMR spectra of C1-C5, D1, and E1-E3

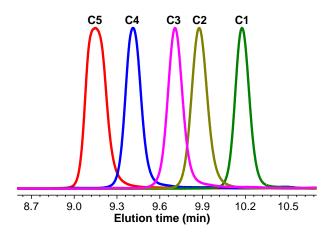


Figure S18. GPC traces of C1-C5.

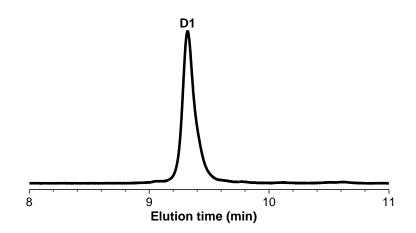


Figure S19. GPC trace of D1.

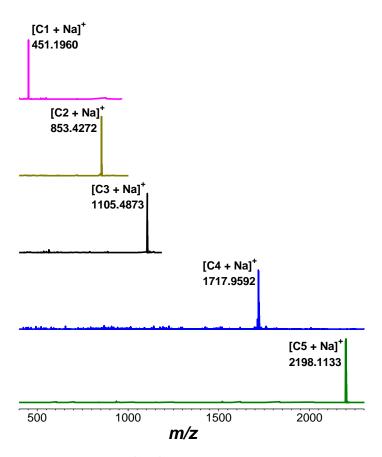


Figure S20. ESI mass spectra of C1-C5.

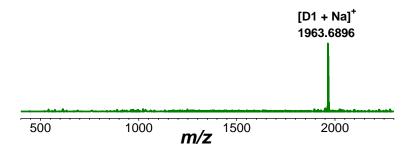


Figure S21. ESI mass spectra of D1.

Figure S22. ¹H NMR spectrum of C1 in DMSO- d_6 . The solvent peaks are marked with asterisks.

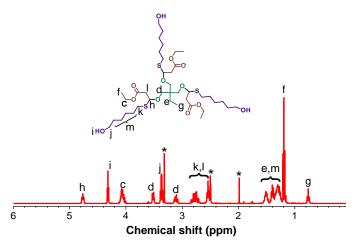
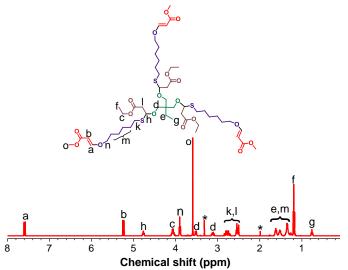



Figure S23. ¹H NMR spectrum of C2 in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S24. ¹H NMR spectrum of C3 in DMSO- d_6 . The solvent peaks are marked with asterisks.

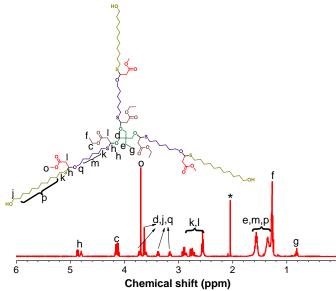
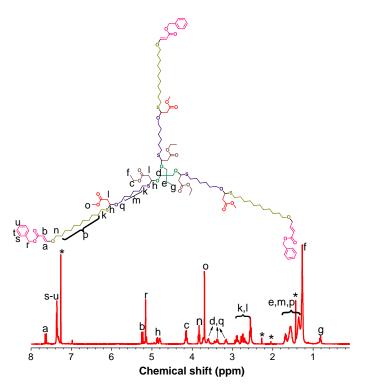



Figure S25. ¹H NMR spectrum of C4 in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S26. ¹H NMR spectrum of C5 in DMSO- d_6 . The solvent peaks are marked with asterisks.

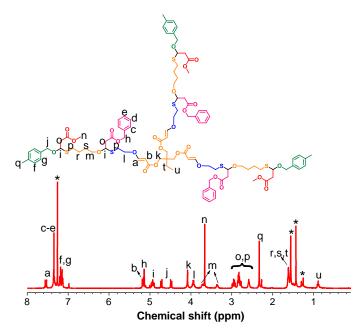


Figure S27. ¹H NMR spectrum of D1 in DMSO- d_6 . The solvent peaks are marked with asterisks.

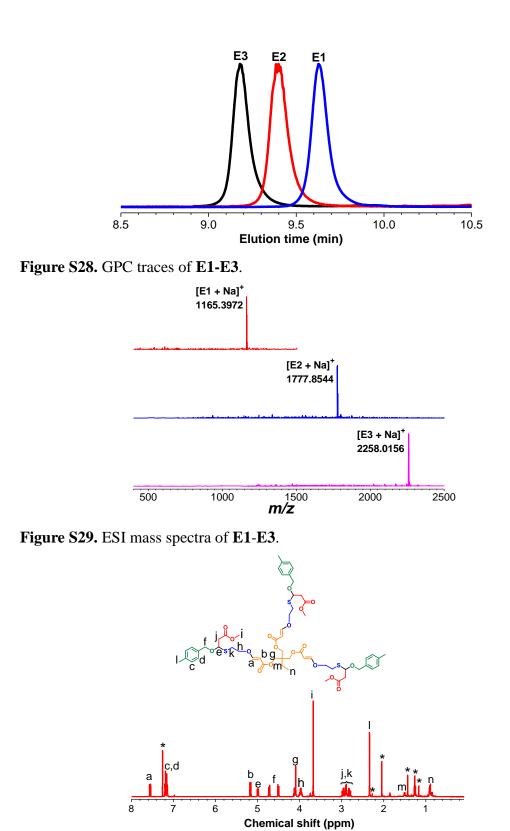


Figure S30. ¹H NMR spectrum of E1 in DMSO- d_6 . The solvent peaks are marked with asterisks.

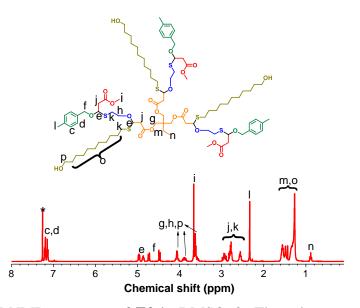
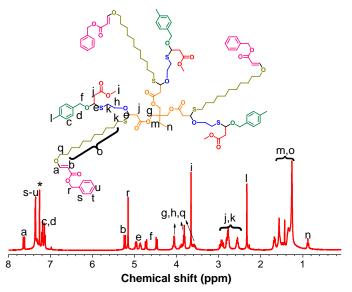



Figure S31. ¹H NMR spectrum of E2 in DMSO- d_6 . The solvent peaks are marked with asterisks.

Figure S32. ¹H NMR spectrum of **E3** in DMSO- d_6 . The solvent peaks are marked with asterisks.

Tandem ESI-MS/MS decoding and translation of the miktoarm star oligo(monothioacetal) E3

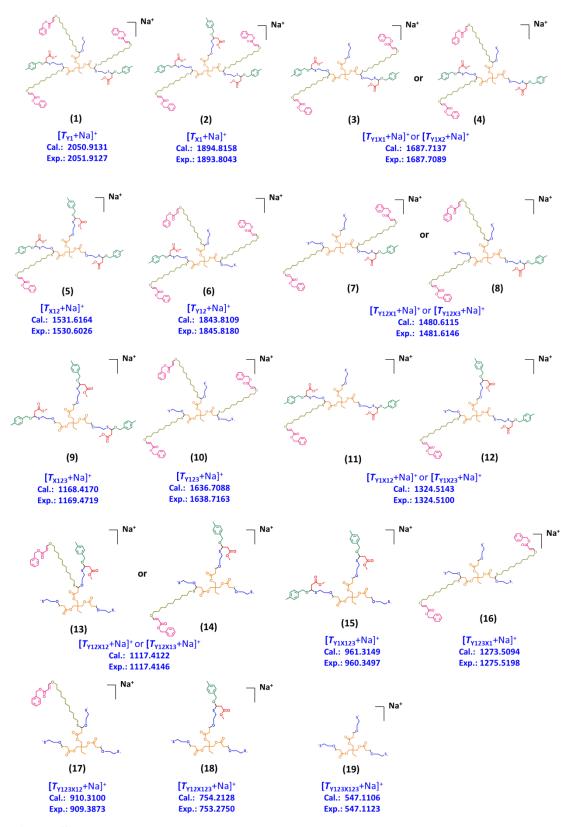
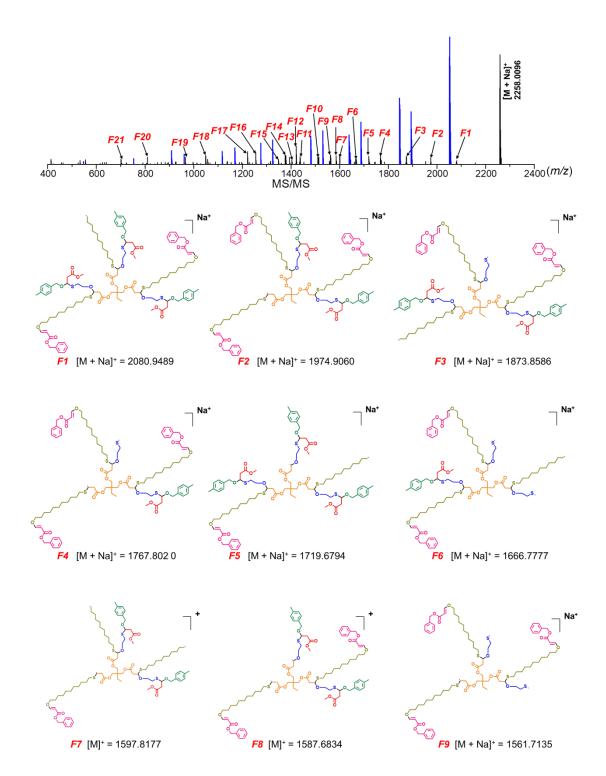



Figure S33. 19 main fragment ions of E3.

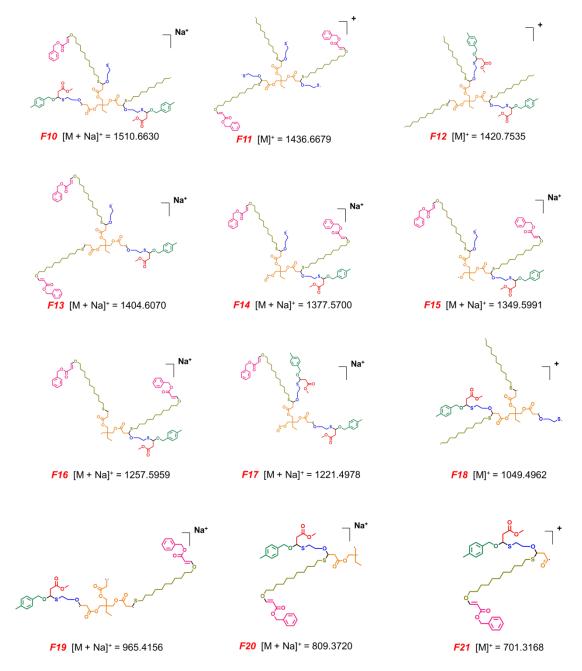


Figure S34. Proposed secondary product ions formed during secondary dissociation reactions in ESI-MS/MS of E3.

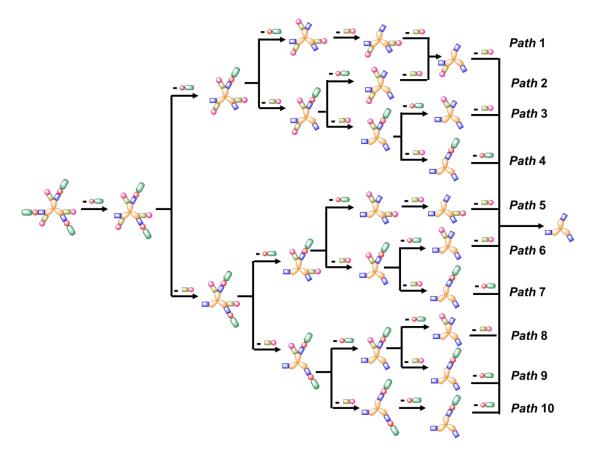


Figure S35. Schematic fragmentation path 1-10.

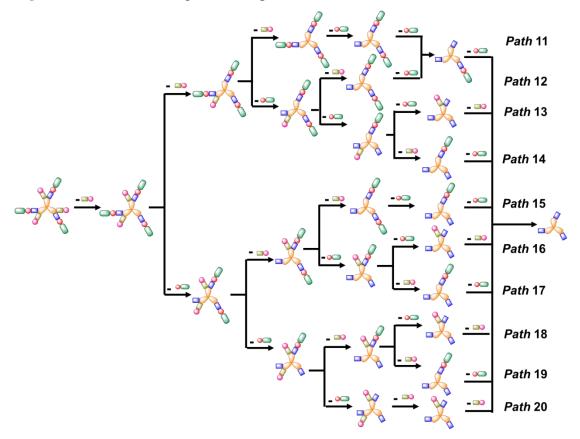
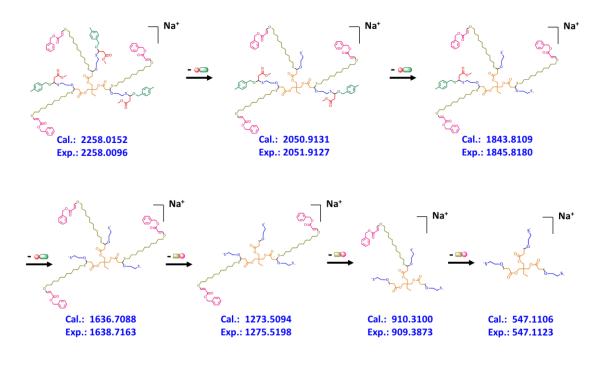



Figure S36. Schematic fragmentation path 11-20.

Path 1 → 111011101110000000

Figure S37. Fragmentation path 1 of E3.

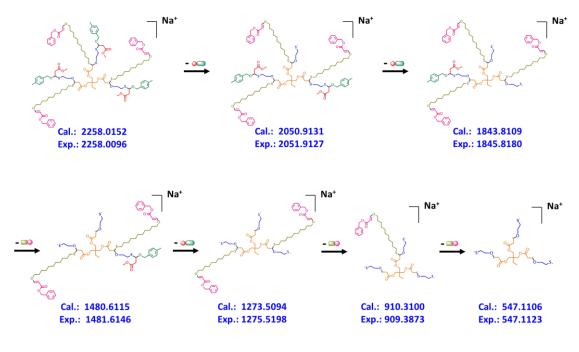
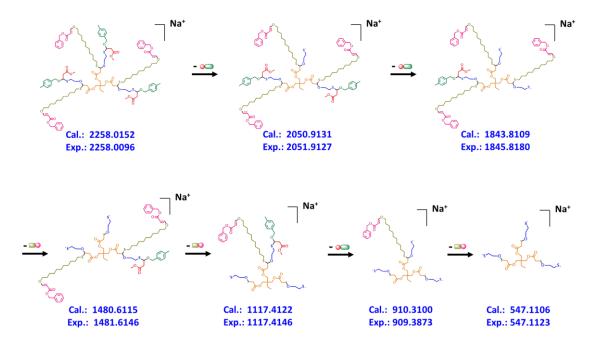
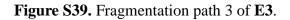
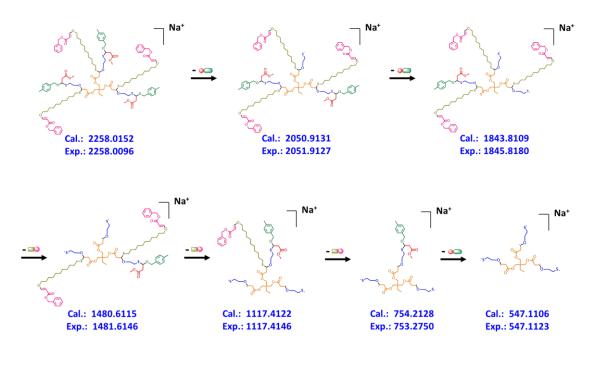
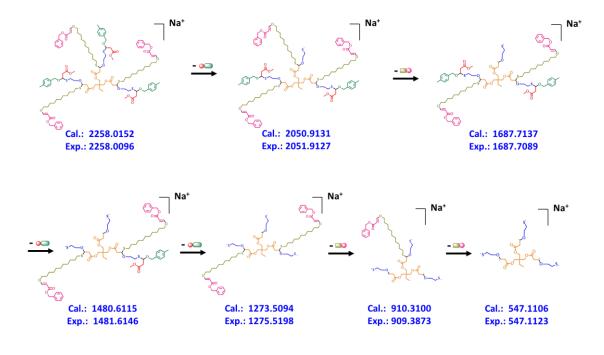
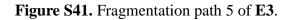




Figure S38. Fragmentation path 2 of E3.

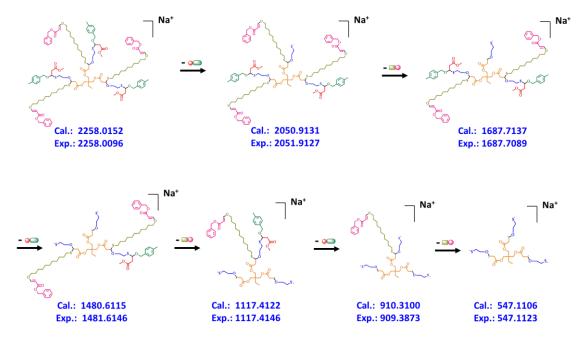
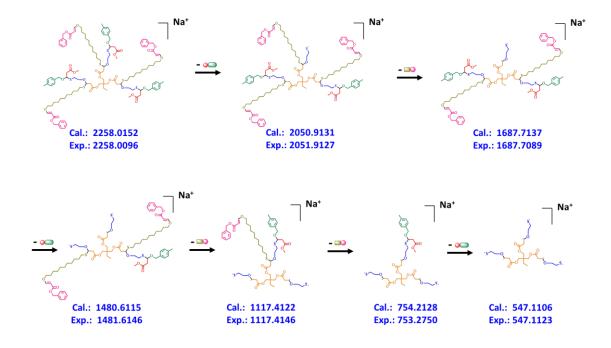
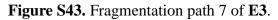


Figure S40. Fragmentation path 4 of E3.

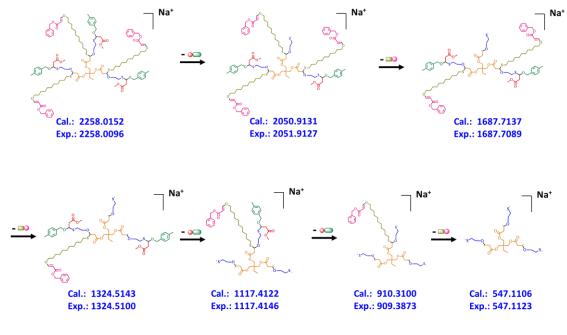
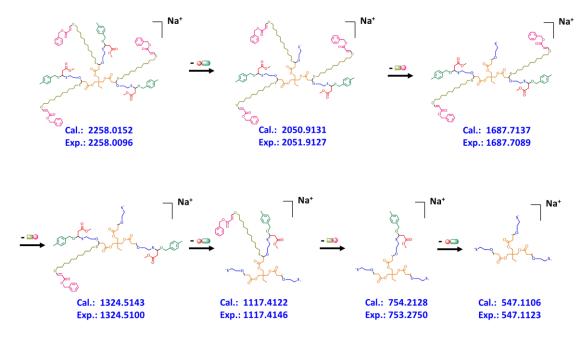
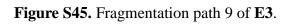

Path 5 → 111011100000111000



Path 6 → 111000111000111000

Figure S42. Fragmentation path 6 of E3.

Path 7 → 001110111000111000

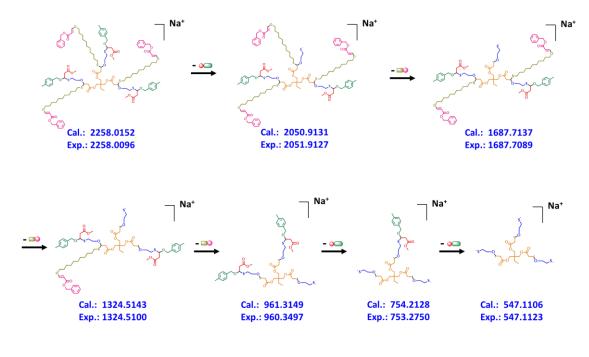


Figure S44. Fragmentation path 8 of E3.

Path 9 → 001110001110111000

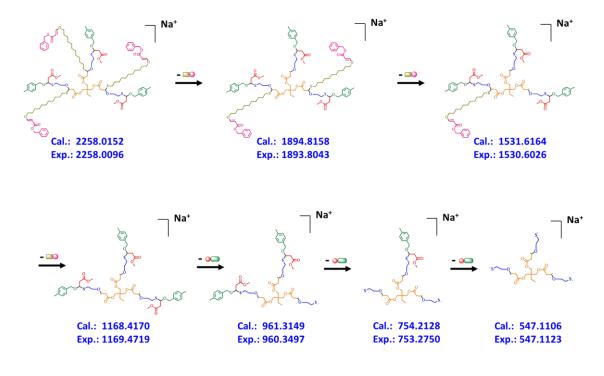



Figure S46. Fragmentation path 10 of E3.

Path 11 → 000000111011101110

Figure S47. Fragmentation path 11 of E3.

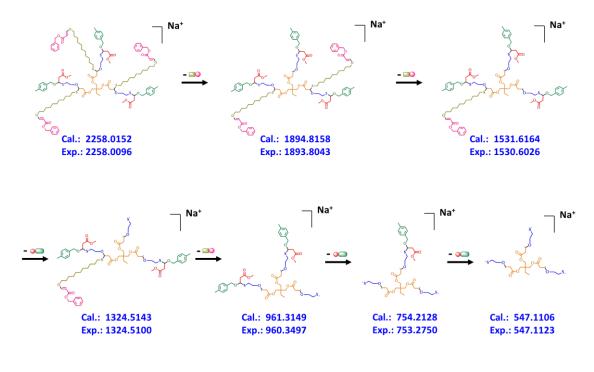
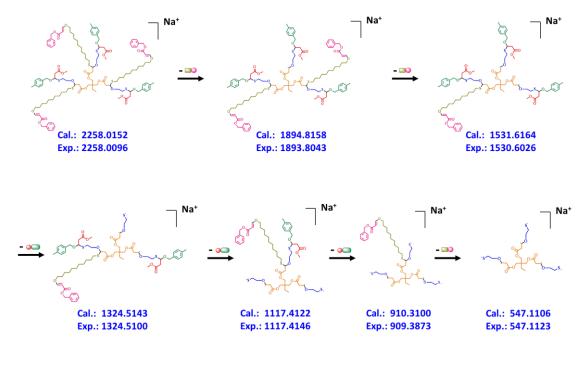
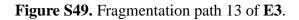
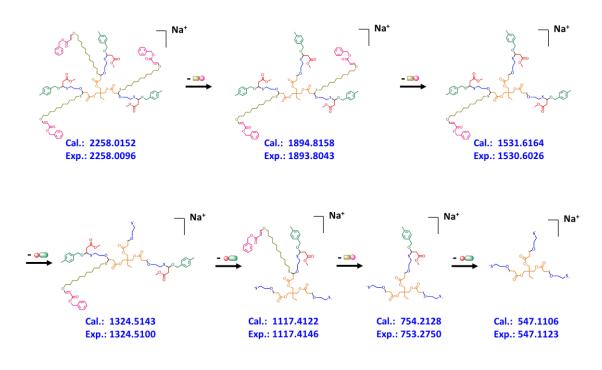
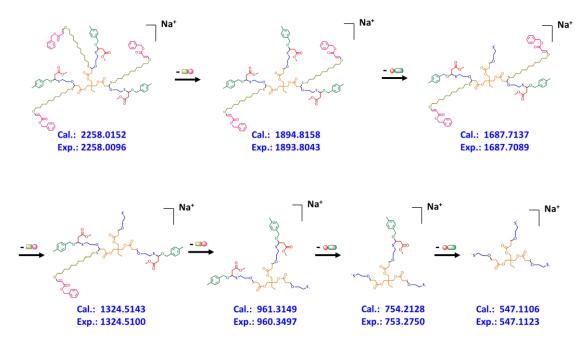
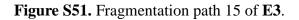




Figure S48. Fragmentation path 12 of E3.

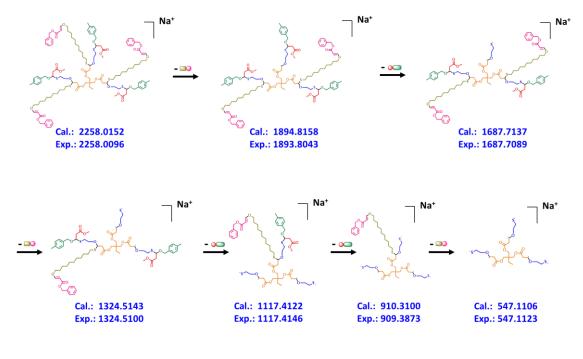
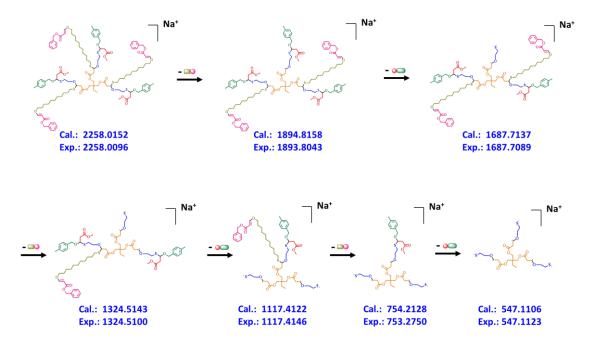
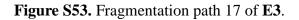


Figure S50. Fragmentation path 14 of E3.

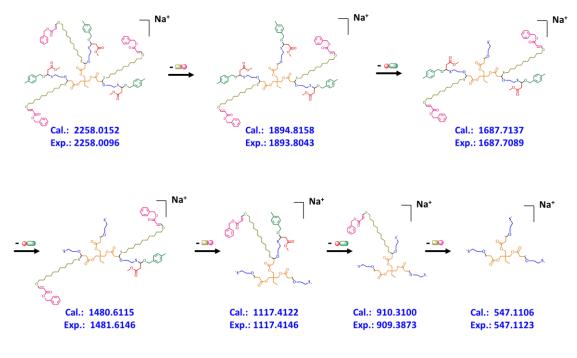
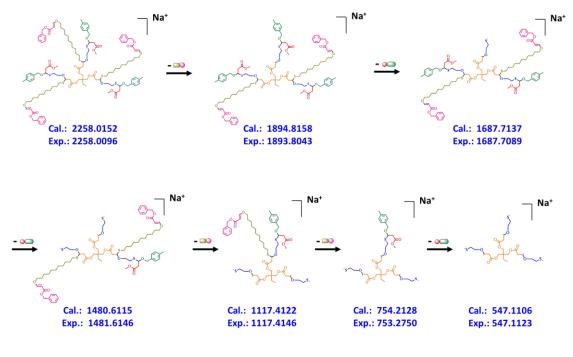
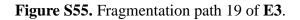

Path 15 → 000011101110001110



Path 16 → 111000001110001110

Figure S52. Fragmentation path 16 of E3.

Path 17 → 001110001110001110

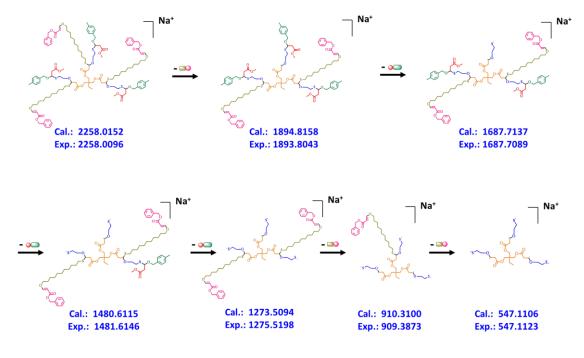


Figure S54. Fragmentation path 18 of E3.

Path 19 → 001110111000001110

Path 20 → 111011100000001110

Figure S56. Fragmentation path 20 of E3.

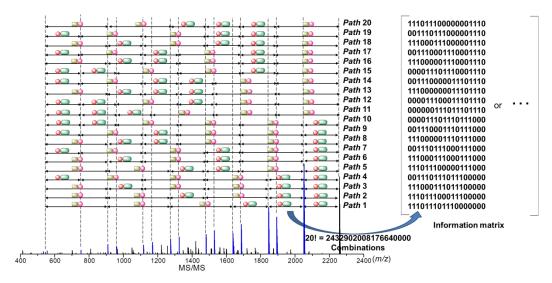
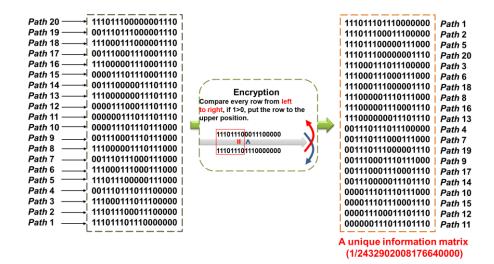
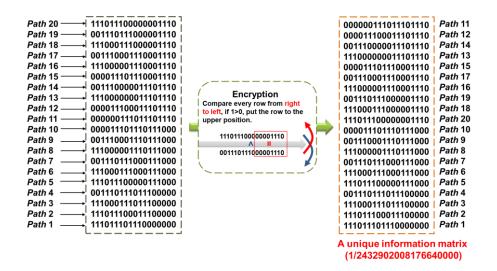




Figure S57. Translation from MS/MS fragmentation paths of E3 to information matrix.

Figure S58. A second encryption with the rule of "comparing every row from left to right, if 1 > 0, put the row to the upper position".

Figure S59. A second encryption with the rule of "comparing every row from right to left, if 1>0, put the row to the upper position".

References

[1] Li, H.; Wang, J.; Sun, J. Z.; Hu, R.; Qin, A.; Tang, B. Z. Metal-Free Click Polymerization of Propiolates and Azides: Facile Synthesis of Functional Poly(aroxycarbonyltriazole) s. *Polym. Chem.* **2012**, *3*, 1075-1083.

Additional Data

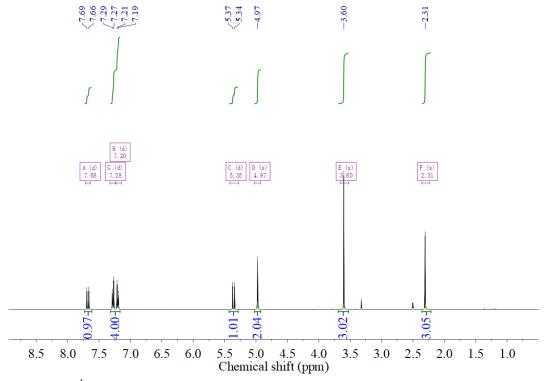


Figure S60. ¹H NMR spectrum of A1 in DMSO-*d*₆.

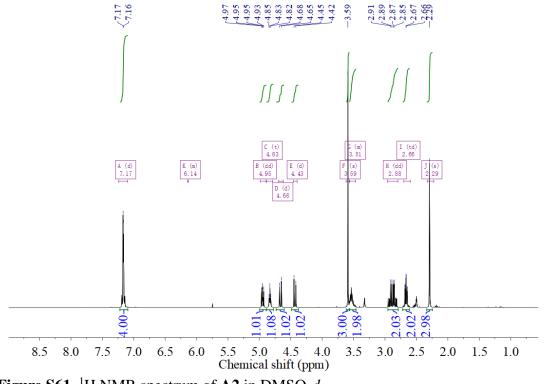


Figure S61. ¹H NMR spectrum of A2 in DMSO-*d*₆.

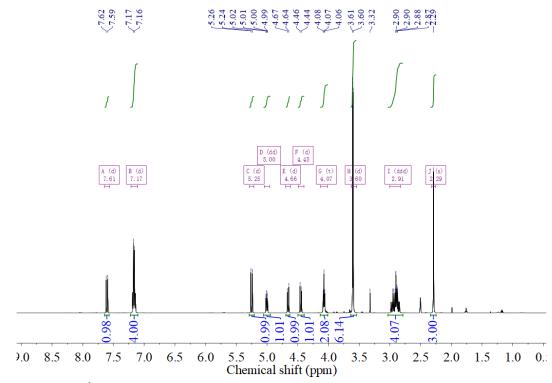
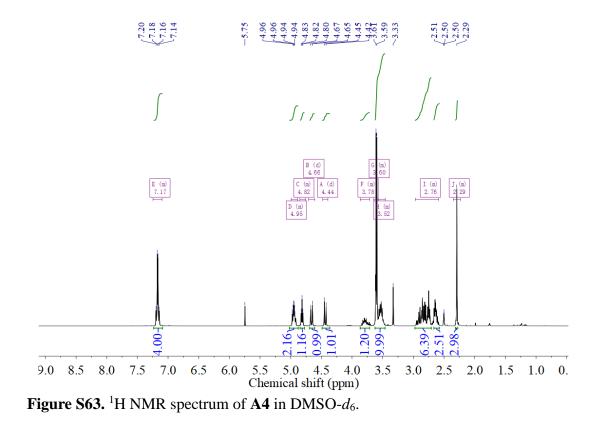



Figure S62. ¹H NMR spectrum of A3 in DMSO-*d*₆.

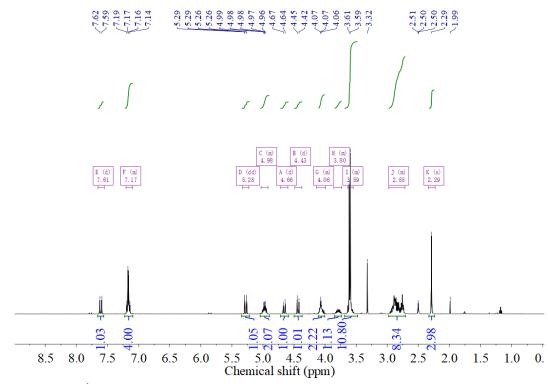
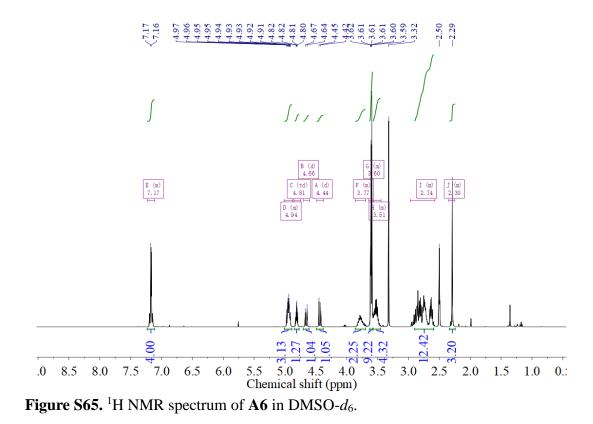



Figure S64. ¹H NMR spectrum of A5 in DMSO-*d*₆.

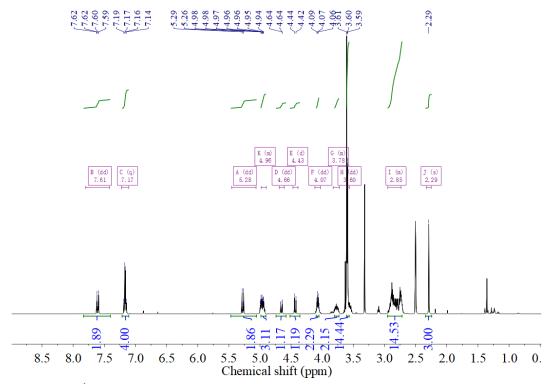
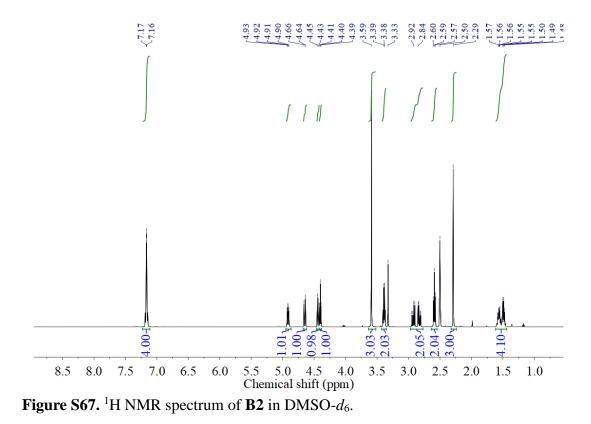



Figure S66. ¹H NMR spectrum of A7 in DMSO-*d*₆.

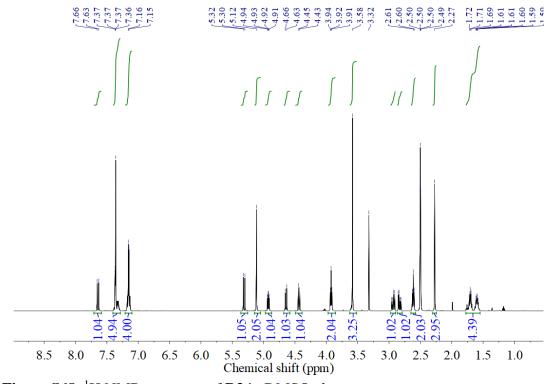
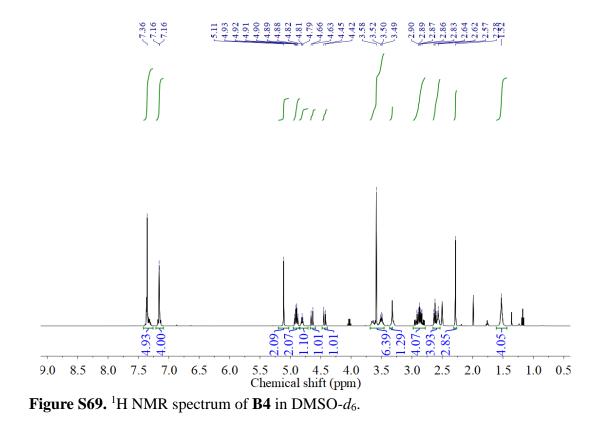



Figure S68. ¹H NMR spectrum of B3 in DMSO-*d*₆.

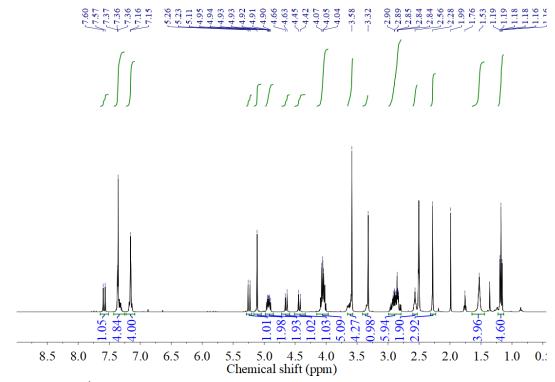


Figure S70. ¹H NMR spectrum of B5 in DMSO-*d*₆.

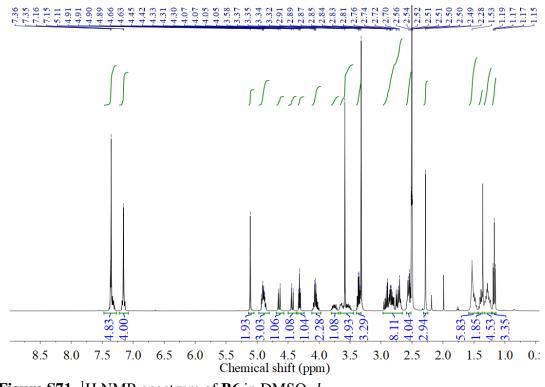


Figure S71. ¹H NMR spectrum of **B6** in DMSO-*d*₆.

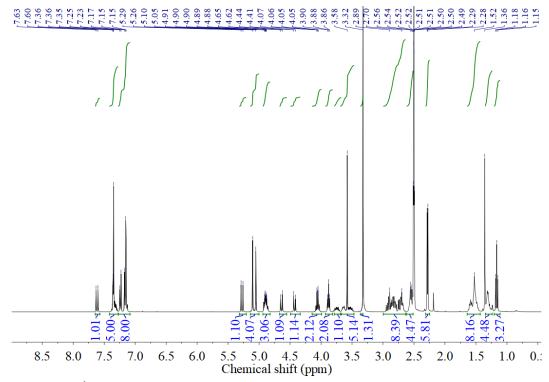


Figure S72. ¹H NMR spectrum of B7 in DMSO-*d*₆.

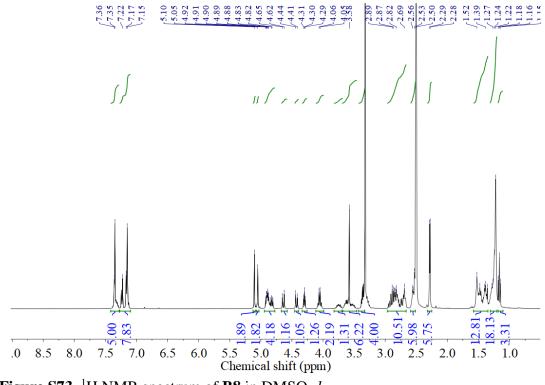
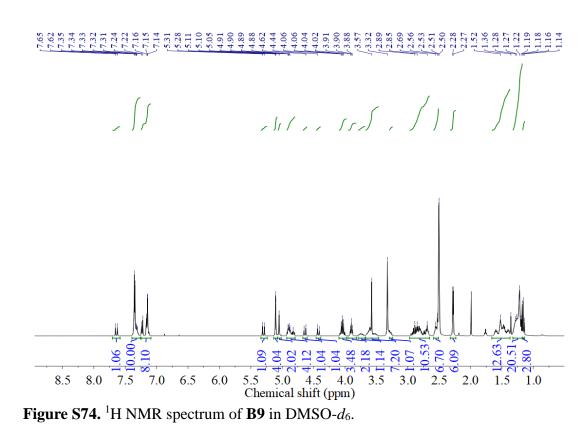



Figure S73. ¹H NMR spectrum of B8 in DMSO-*d*₆.

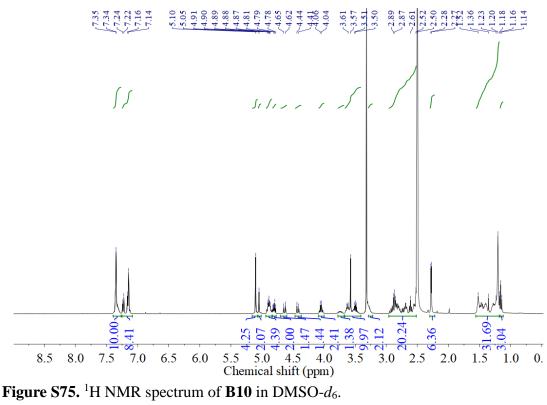


Figure S75. ¹H NMR spectrum of B10 in DMSO-*d*₆.

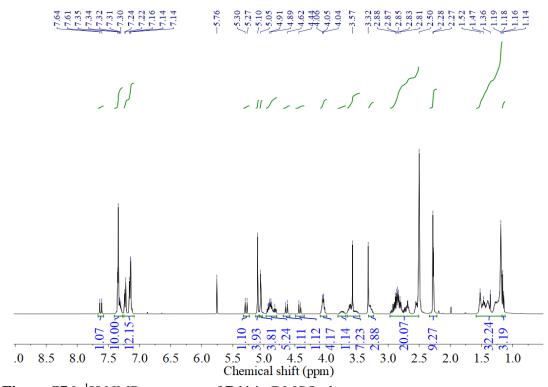
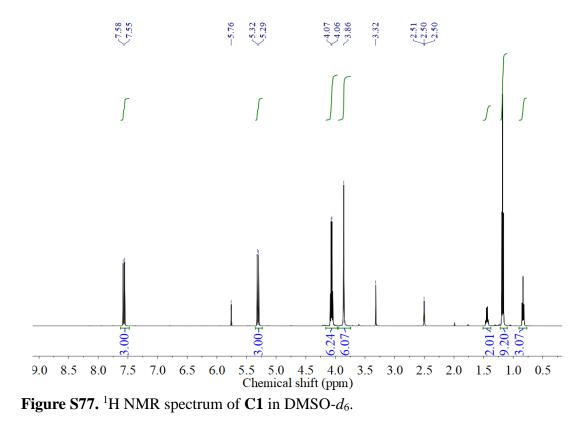



Figure S76. ¹H NMR spectrum of B11 in DMSO-*d*₆.

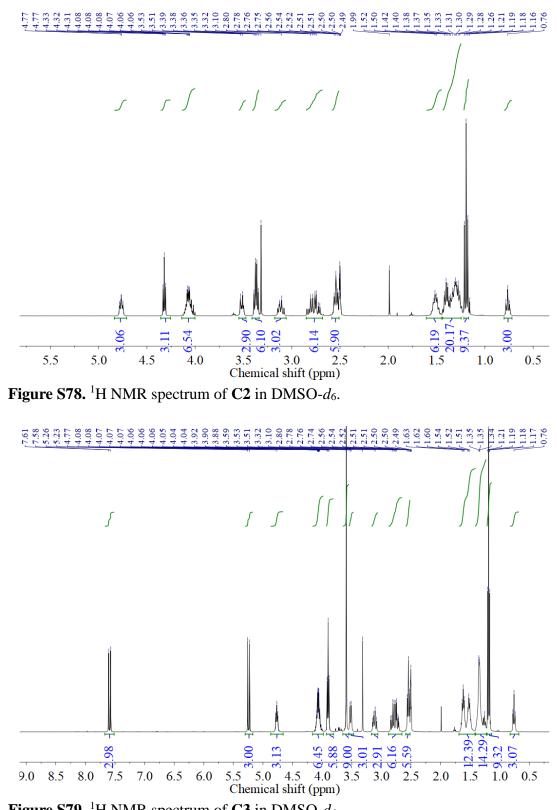


Figure S79. ¹H NMR spectrum of C3 in DMSO-*d*₆.

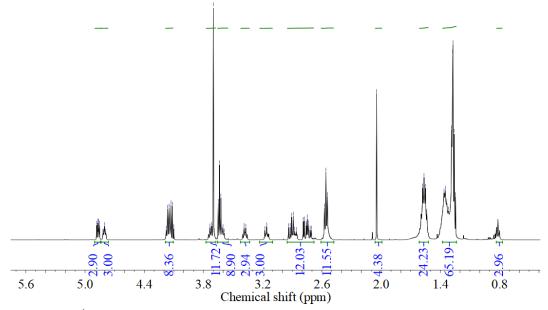
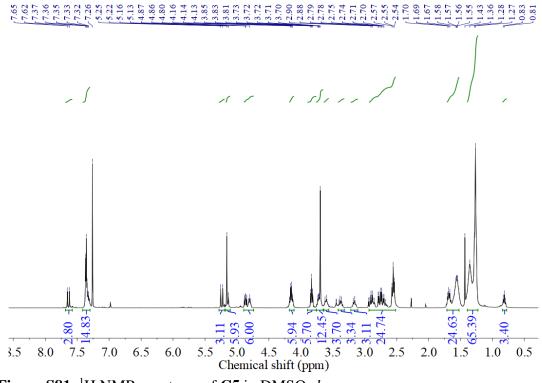



Figure S80. ¹H NMR spectrum of C4 in DMSO-*d*₆.

Figure S81. ¹H NMR spectrum of C5 in DMSO- d_6 .

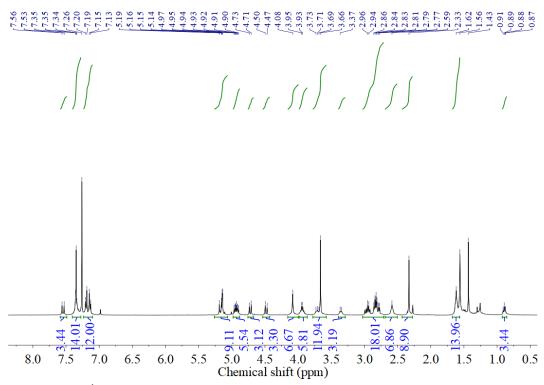


Figure S82. ¹H NMR spectrum of D1 in DMSO-*d*₆.

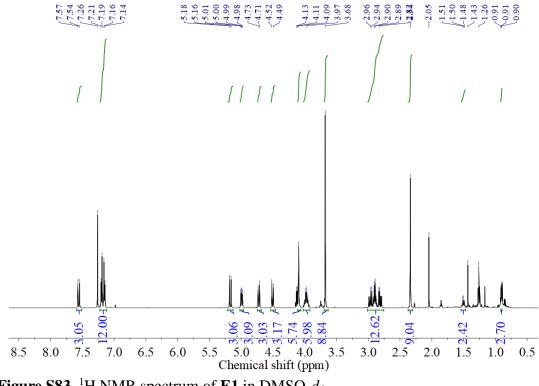
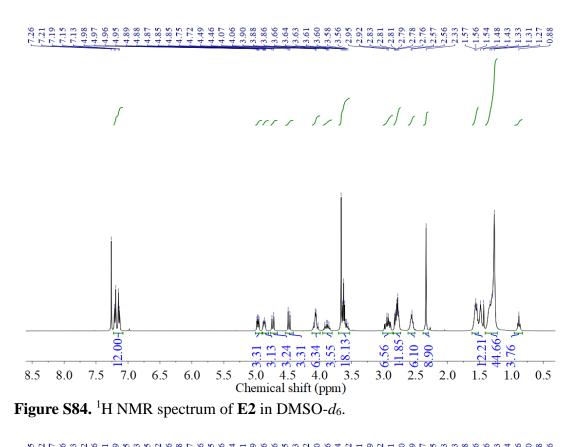



Figure S83. ¹H NMR spectrum of E1 in DMSO-*d*₆.

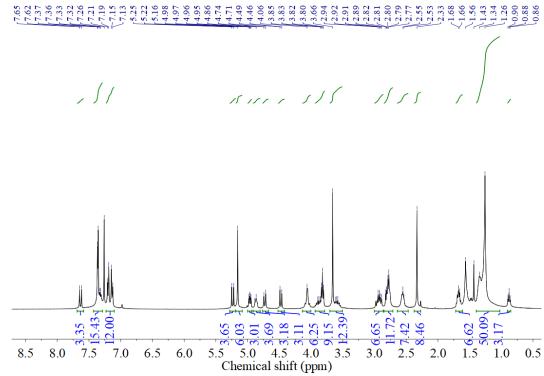


Figure S85. ¹H NMR spectrum of E3 in DMSO-*d*₆.

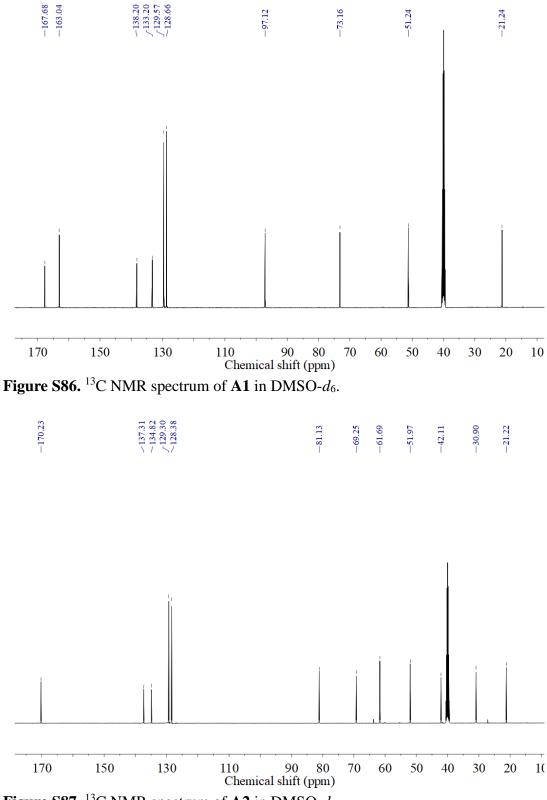


Figure S87. ¹³C NMR spectrum of A2 in DMSO- d_6 .

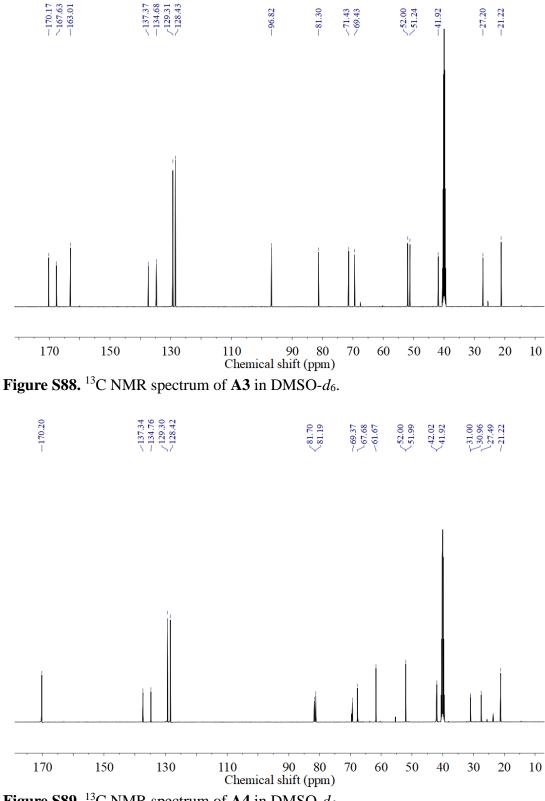


Figure S89. ¹³C NMR spectrum of A4 in DMSO- d_6 .

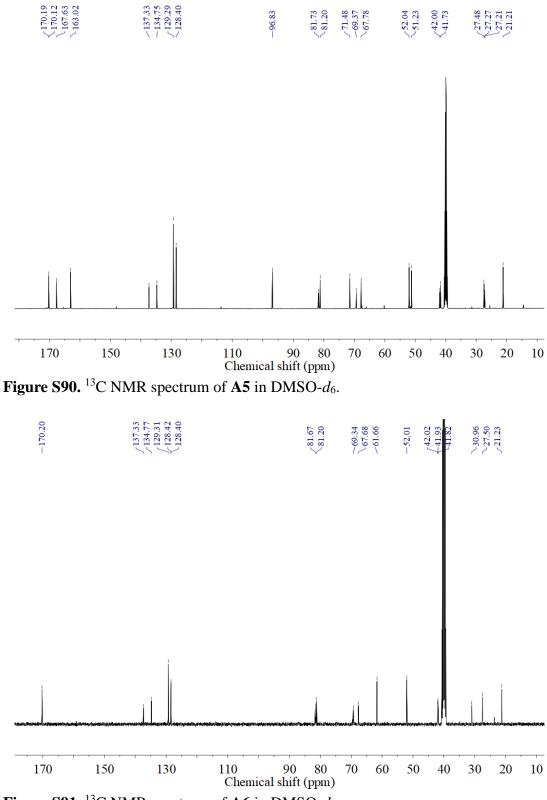


Figure S91. ¹³C NMR spectrum of A6 in DMSO- d_6 .

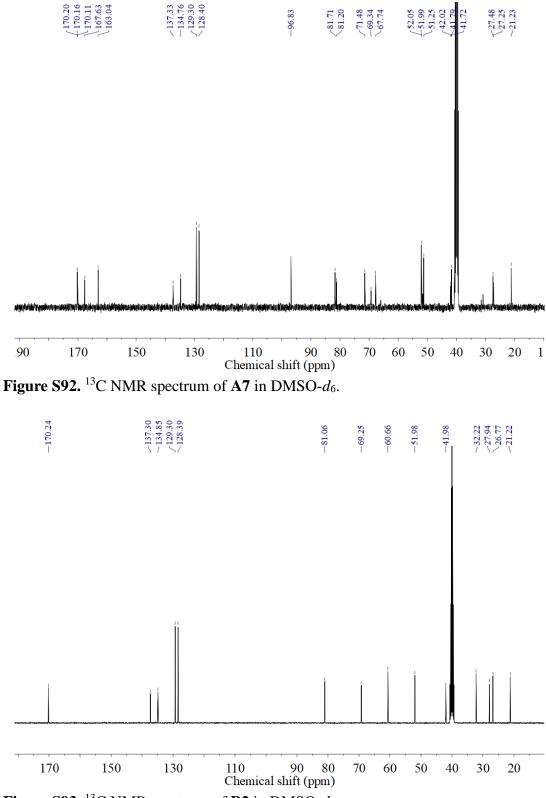


Figure S93. ¹³C NMR spectrum of **B2** in DMSO- d_6 .

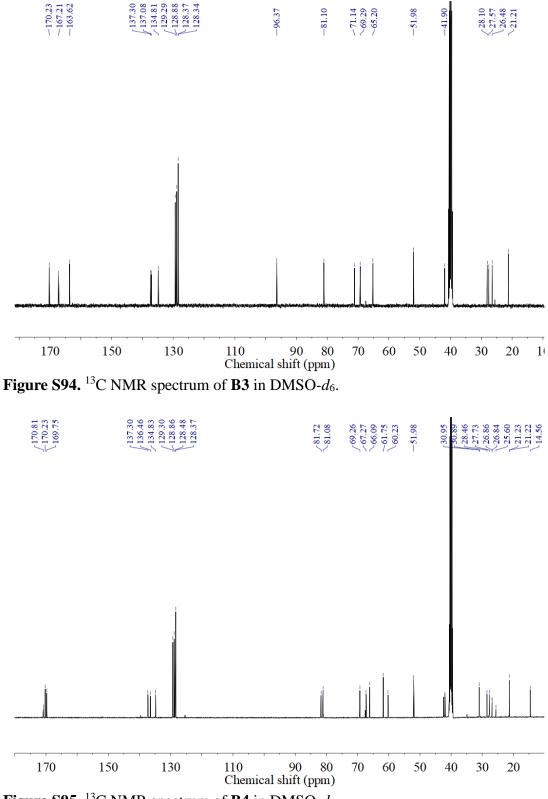


Figure S95. ¹³C NMR spectrum of **B4** in DMSO- d_6 .

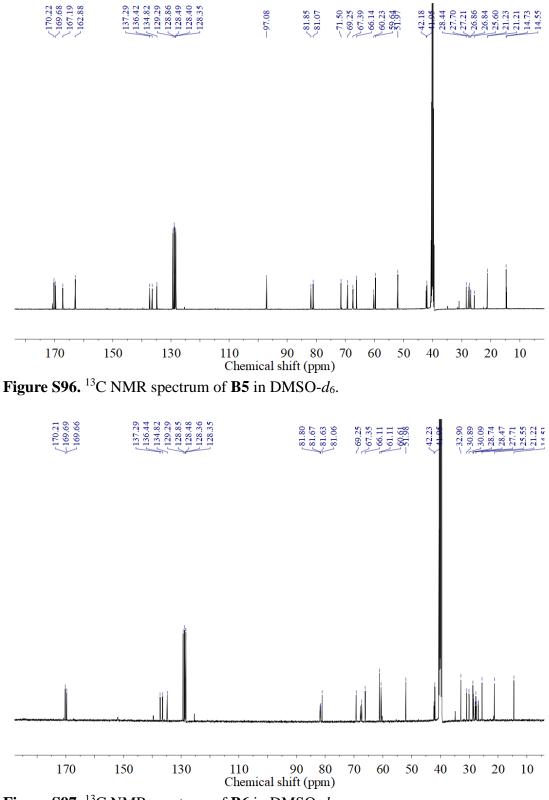


Figure S97. ¹³C NMR spectrum of **B6** in DMSO- d_6 .

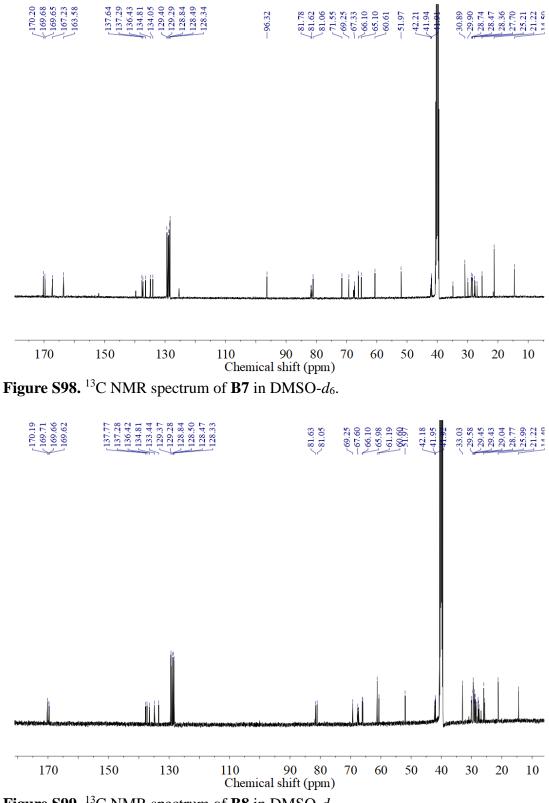


Figure S99. ¹³C NMR spectrum of **B8** in DMSO- d_6 .

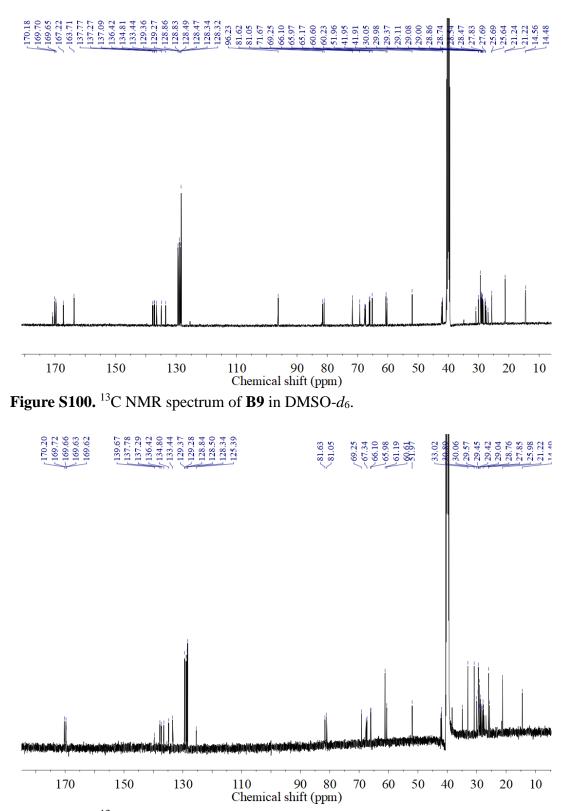


Figure S101. ¹³C NMR spectrum of B10 in DMSO-*d*₆.

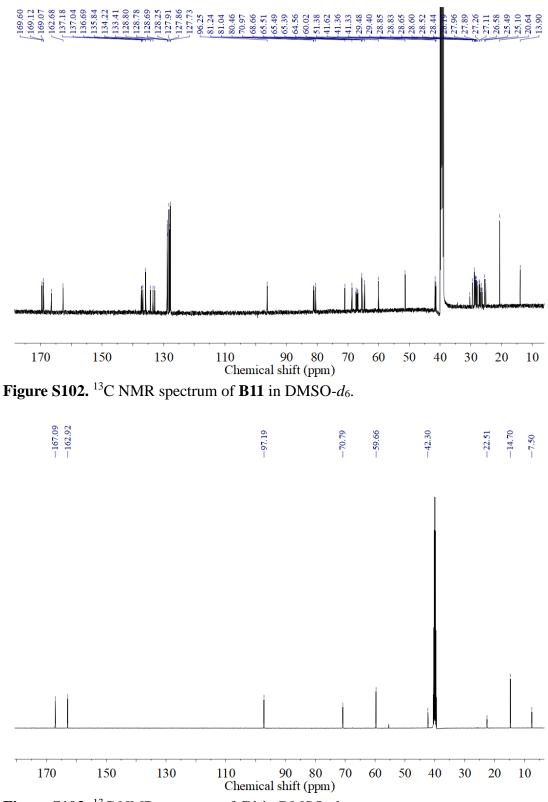


Figure S103. ¹³C NMR spectrum of C1 in DMSO-*d*₆.

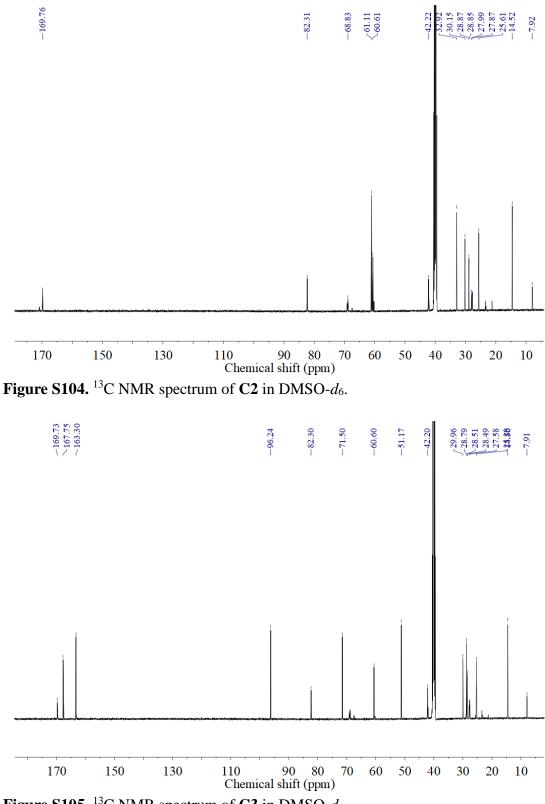


Figure S105. ¹³C NMR spectrum of C3 in DMSO-*d*₆.

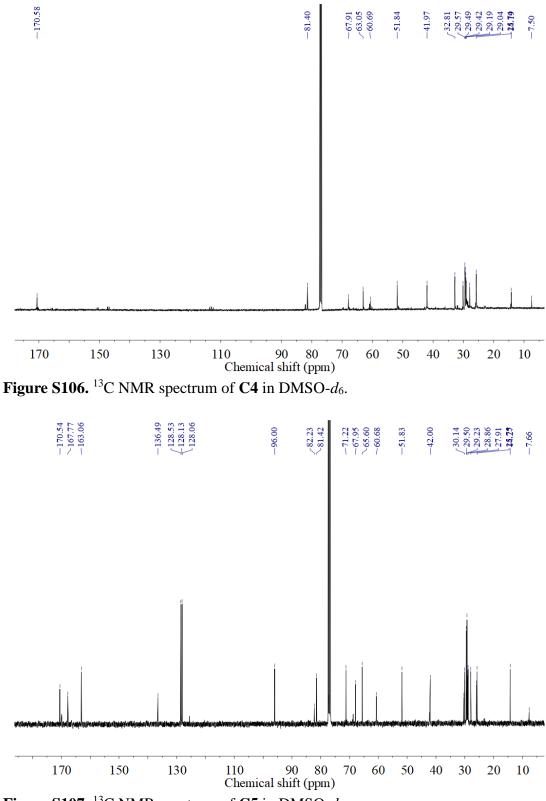


Figure S107. ¹³C NMR spectrum of C5 in DMSO- d_6 .

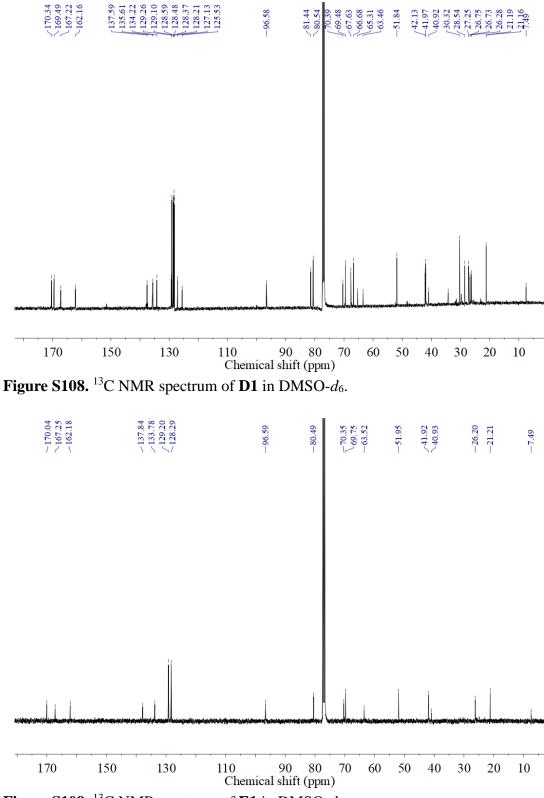


Figure S109. ¹³C NMR spectrum of E1 in DMSO-*d*₆.

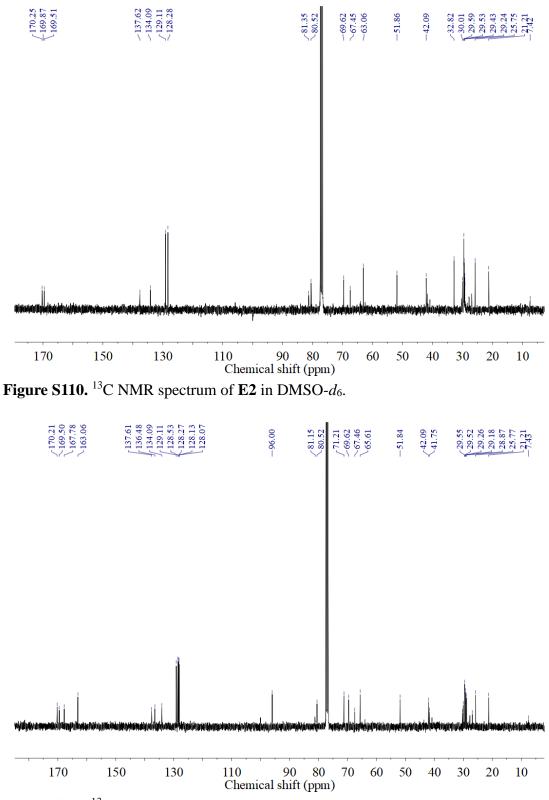


Figure S111. ¹³C NMR spectrum of E3 in DMSO- d_6 .