Supporting Information

Biomimetic Aligned Micro-/Nanofibrous Composite Membranes with Ultrafast Water Transport and Evaporation for Efficient Indoor Humidification

Jingxiu Chen,[†] Jianzhang Mai,[‡] Chao Wang,[†] Yanyan Lin,[†] Dongyang Miao,[†] Yongqiang Lin,[§] Aijaz Ahmed Babar,^{†,∥} Xianfeng Wang,^{*,†,⊥} Jianyong Yu^{*,†} and Bin Ding[†]

[†]Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China

[‡]Guangdong Midea Refrigeration Equipment Co., Ltd., Foshan, Guangdong 528311, China

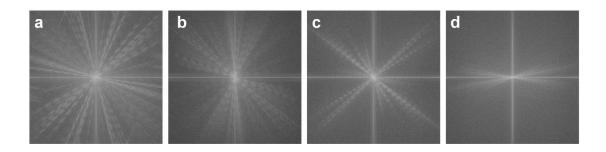
[§]Qing Yuan Polytechnic, Qingyuan, Guangdong 511510, China

^{II}Textile Engineering Department, Mehran University or Engineering and Technology,

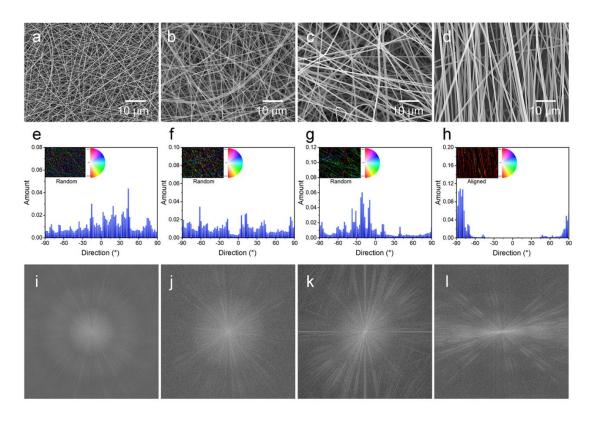
Jamshoro 76060, Pakistan

[⊥]College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430073, China

*Email: wxf@dhu.edu.cn.


*Email: yujy@dhu.edu.cn.

Supplementary Information contains:


Supplementary Figures S1-S13

Supplementary Tables S1-S3

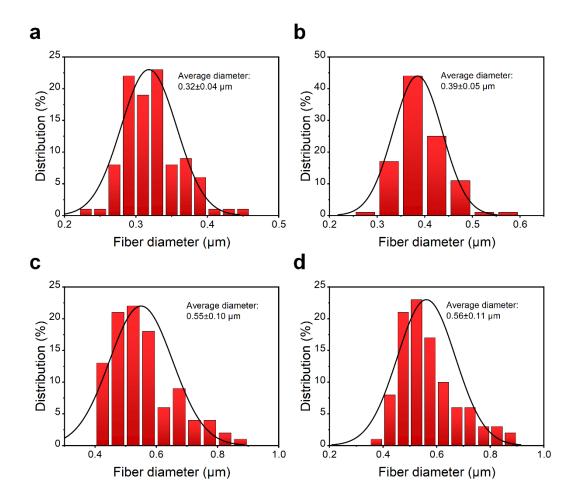

Supplementary Movies S1-S7

Figure S1. 2D-FFT for PAN NFMs at various RH of (a) 25%, (b) 45%, (c) 65%, and (d) 85%.

Figure S2. SEM images of PAN NFMs at various RH of (a) 25%, (b) 45%, (c) 65%, and (d) 85%. (e–h) Directionality histograms for PAN NFMs in (a–d). Color images of nanofibers indicate the angle mapping of fiber orientations. (i–l) 2D-FFT for PAN NFMs in (a–d).

Figure S3. Fiber diameter distribution of PAN NFMs at different RH of (a) 25%, (b) 45%, (c) 65%, and (d) 85%.

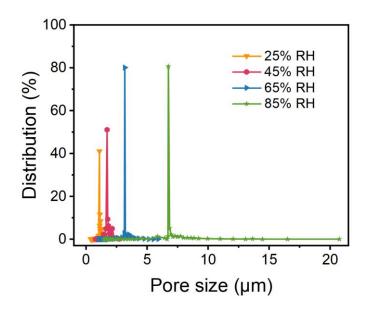
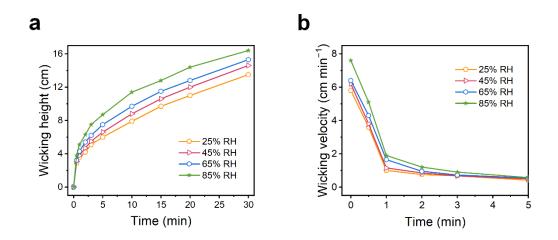



Figure S4. Pore size distribution of PAN NFMs at different RH of (a) 25%, (b) 45%,

(c) 65%, and (d) 85%.

Figure S5. Wetting behavior of the micro-/nanofibrous composite membranes at different RH: (a) wicking height and (b) wicking velocity.

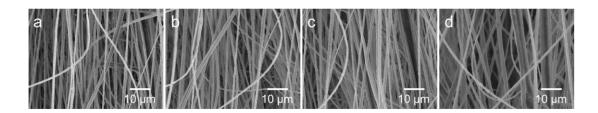
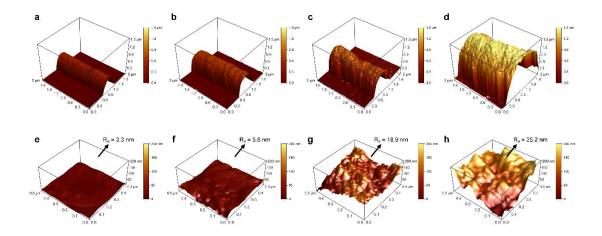
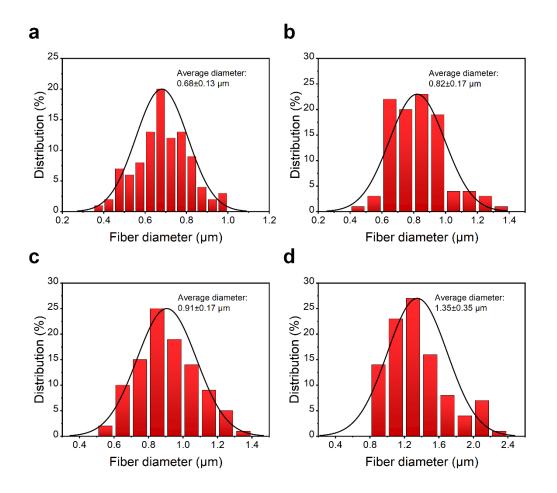




Figure S6. SEM images of PAN-SiO₂ NFMs with various concentrations of SiO₂ NPs:

(a) 5 wt %, (b) 10 wt %, (c) 20 wt %, and (d) 30 wt %.

Figure S7. (a-d) 3D AFM images of the original PAN-SiO₂ nanofibers with various concentrations of SiO₂ NPs: (a) 0 wt %, (b) 5 wt %, (c) 10 wt %, and (d) 30 wt %. The images were further plane fitted to calculate the average roughness of the corresponding (e) PAN-SiO₂-0, (f) PAN-SiO₂-5, (g) PAN-SiO₂-10, and (h) PAN-SiO₂-30 fiber.

Figure S8. Fiber diameter distribution of PAN-SiO₂ NFMs with various concentrations of SiO₂ NPs: (a) 5 wt %, (b) 10 wt %, (c) 20 wt %, and (d) 30 wt %.

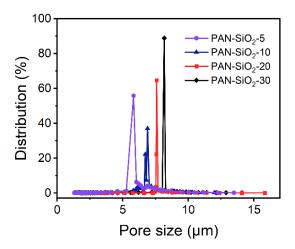


Figure S9. Pore size distribution of PAN-SiO₂ NFMs with various concentrations of SiO₂ NPs: (a) 5 wt %, (b) 10 wt %, (c) 20 wt %, and (d) 30 wt %.

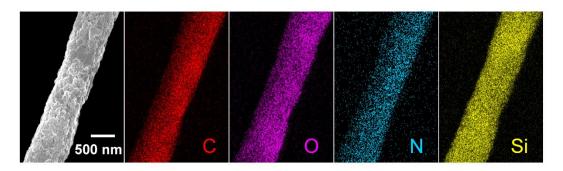
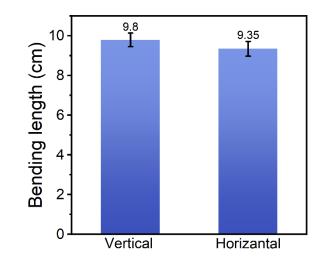
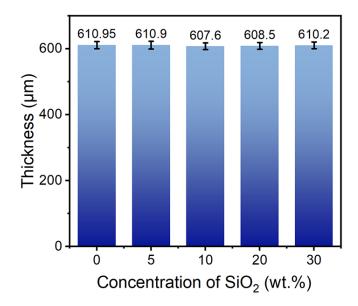




Figure S10. FE-SEM image and corresponding elemental maps of PAN-SiO₂-20 nanofiber.

Figure S11. The mechanical stiffness of PAN nanofiber/NW composite membrane. The vertical and horizontal bending lengths were 9.8 cm and 9.35 cm, respectively.

Figure S12. The thickness of highly aligned PAN-SiO₂ nanofiber/NW composite membranes with different concentrations of SiO₂ NPs.

Figure S13. Wetting behavior of the PAN nanofiber/NW composite membranes with different concentrations of SiO₂ NPs: (a) wicking height and (b) Optical photographs.

Sample	Wicking velocity (cm 30min ⁻¹)	Water absorption (%)	Pressure drop (Pa)	Water evaporation rate (mL h ⁻¹)	Humidity capacity (mL h ⁻¹)
Nonwoven	9.3	346	0	0.28	327
Composite membranes	19.5	497.7	14.4	0.34	514

Table S1. Humidification performance of the nonwoven fabric and micro-/nanofibrous

 composite membranes.

PAN (wt %)	SiO2 NPs concentration (wt %)	Viscosity (cps)	Surface Tension (mN m ⁻¹)	Conductivity (uS cm ⁻¹)
10	0	1060.97	35.47	298
10	5	1253.03	35.42	290
10	10	2606.80	34.76	284
10	20	3226.46	34.12	278
10	30	4256.43	33.24	275

Table S2. Properties of PAN-SiO₂ precursor solutions with various SiO₂ NPs concentrations.

SiO ₂ NPs concentration (wt %)	Atomic content (%)				
	С	Ν	0	Si	
0	75.75	19.78	4.47	0	
5	74.80	20.63	4.07	0.50	
10	73.28	20.21	5.33	1.18	
20	69.48	19.75	8.10	2.67	
30	63.22	17.78	13.46	5.54	

Table S3. XPS data of PAN-SiO₂ NFMs with different concentrations of SiO₂ NPs.

Movie S1.

Water transport process from the top view of the random PAN NFM, the 200 μ L red ink droplet was dropped on the surface of membrane.

Movie S2.

Water transport process from the top view of the highly aligned PAN NFM, the 200 μ L red ink droplet was dropped on the surface of membrane.

Movie S3.

Wetting behavior of the highly aligned PAN-SiO₂-0 nanofiber/NW composite membrane, the 5 μ L water was dropped on the surface of membrane.

Movie S4.

Wetting behavior of the highly aligned PAN-SiO₂-5 nanofiber/NW composite membrane, the 5 μ L water was dropped on the surface of membrane.

Movie S5.

Wetting behavior of the highly aligned PAN-SiO₂-10 nanofiber/NW composite membrane, the 5 μ L water was dropped on the surface of membrane.

Movie S6.

Wetting behavior of the highly aligned PAN-SiO₂-20 nanofiber/NW composite membrane, the 5 μ L water was dropped on the surface of membrane.

Movie S7.

Wetting behavior of the highly aligned PAN-SiO₂-30 nanofiber/NW composite membrane, the 5 μ L water was dropped on the surface of membrane.