Supporting Information

Solution-Processed, Inverted AgBiS₂ Nanocrystal Solar Cells

Dezhang Chen¹, Sunil B. Shivarudraiah¹, Pai Geng^{1,3,4}, Michael Ng¹, C.-H. Angus Li¹, Neha Tewari¹, Xinhui Zou^{1,2}, Kam Sing Wong², Liang Guo^{3,4}, Jonathan E. Halpert¹*

¹ Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong

² Department of Physics, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong

³ Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China

⁴ Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China.

Corresponding Author

*E-mail: jhalpert@ust.hk (J.E.H)

Figure S1: (a) HRTEM image of AgBiS₂ nanocrystals and (b) size distribution histogram.

Figure S2: XRD pattern of AgBiS₂ NCs thin film. Red solid lines refer to PDF#21-1178.

Figure S3: (a) Absorption coefficient measurement of 3 layers AgBiS₂ thin film on quartz. Methyl acetate was applied to wash the excess oleate ligands between each layer. (b) AgBiS₂ p-i-n devices EQE spectrum and the first derivative of EQE. The bandgap of AgBiS₂ is highlighted in red text.

Figure S4: UPS (UV excitation by HeI at 21.22 eV) spectra of the AgBiS₂ film.

Figure S5: UPS (UV excitation by HeI at 21.22 eV) spectra of spray coated NiO film.

Figure S6: Transient absorption (TA) time profiles of AgBiS₂ nanocrystals on Glass / NiO / ZnO surface.

Figure S7: JV curve for forward and reverse scan for p-i-n AgBiS₂ solar cell (-0.2V - 0.7V, step $\pm 0.01 V$, rate 0.01s). No obvious hysteresis is observed.

Figure S8: Picture of AgBiS₂ solar cells using different ETLs: C_{60} (left) and PCBM (right). The solar cell spin-coated with C_{60} in chlorobenzene shows rough film due to the low solubility of C_{60} .

Chemicals	Structure	Purity	Amount	Price (USD)	Amount used per 100 chips	Price per 100 chips
Ni(acac) ₂	p-i-n HTL	96%	100 g	79	0.25 g	0.20 USD
ACN	p-i-n HTL	99.9%	4 L	96	100 mL	2.4 USD
РСВМ	p-i-n ETL	99%	1 g	866	25 mg	21.6 USD
BCP	p-i-n ETL	99.99%	500 mg	225	5 mg	2.25 USD
Summary	p-i-n					26.45 USD
Zn(OAc) ₂	n-i-p ETL	99%	250 g	87	0.5 g	0.17 USD
Ethanolamine	n-i-p ETL	98%	100 mL	39.4	1 mL	0.39 USD
PTB7	n-i-p HTL	99.9%	100 mg	656	25 mg	164 USD
MoO _x	n-i-p HTL	99.9%	5 g	82	5 mg	0.82 USD
Summary	n-i-p					165.38 USD

Table S1. Summary of the costs of p-i-n structure and n-i-p structure in USD. All the prices are obtained at: www.sigmaaldrich.com.

HTL	Voc (V)	J _{SC} (mA cm ⁻²)	FF	PCE (%)
20 nm NiO	0.32	20.07	0.40	2.51
30 nm NiO	0.38	20.71	0.54	4.25
40 nm NiO	0.37	20.57	0.49	3.73
PEDOT:PSS	0.00	0.37	N/A	N/A
NiO Sol-gel (30 nm)	0.36	7.92	0.24	0.70

Table S2. Summary of inverted $AgBiS_2$ solar cells photovoltaic performances with different hole transporting layer (HTL). We also applied the NiO film by reported sol-gel method^{S1}, and compare the device performances. The sol-gel NiO shows a worse photovoltaic performance than the spray-coated NiO. We attributed such a decrease in PCE to the lower valence band energy (-5.7 eV, by UPS), which results in a poor hole transporting process.

Sample	Probe	A ₁	τ1	A ₂	$ au_2$	R ²
	Wavelength (nm)					
Glass_AgBiS ₂	800	8.383	1.316	7.707	15.522	0.997
$Glass_AgBiS_2$	850	9.038	1.136	6.918	14.660	0.999
$Glass_AgBiS_2$	900	9.731	0.825	7.409	13.259	0.995
Glass_AgBiS ₂	950	13.240	0.806	8.400	12.985	0.994
$Glass_AgBiS_2$	1000	19.630	0.793	10.632	12.656	0.994
ZnO_AgBiS_2	800	3.557	1.307	4.101	16.227	0.996
ZnO_AgBiS ₂	850	4.290	1.041	4.022	13.519	0.993
ZnO_AgBiS ₂	900	3.816	1.054	3.745	14.192	0.992
ZnO_AgBiS_2	950	4.822	0.894	4.376	13.689	0.988
ZnO_AgBiS ₂	1000	4.221	0.940	4.608	14.027	0.983
NiO_AgBiS ₂	800	8.003	1.872	4.935	21.063	0.996
NiO_AgBiS ₂	850	6.879	2.030	4.542	23.146	0.994
NiO_AgBiS ₂	900	6.282	2.361	4.003	23.111	0.994
NiO_AgBiS ₂	950	27.153	1.919	4.794	25.896	0.994
NiO_AgBiS ₂	1000	25.909	2.341	5.159	28.230	0.989

 Table S3. Summary of fitting parameters of TA spectroscopy.

Measurements	Sample	Α	τ	R ²
TPV	n-i-p	0.489	35.14	0.963
TPV	p-i-n	0.902	96.33	0.985
TPC	n-i-p	1.088	30.39	0.932
TPC	p-i-n	1.052	45.75	0.965

 Table S4. Summary of fitting parameters of TPV and TPC.

PCBM conc. (mg / mL)	BCP conc. (mg / mL)	V _{OC} (V)	J _{SC} (mA cm ⁻²)	FF	PCE (%)
1	1	0.32	10.15	0.32	1.04
5	1	0.38	20.71	0.54	4.25
10	1	0.35	20.42	0.52	3.72
20	1	0.12	5.37	0.13	0.08
5	0.1	0.37	8.50	0.40	1.26
5	0.5	0.40	21.18	0.50	4.23
5 (not annealed)	1	0.40	16.58	0.35	2.33
5	5	0.38	1.21	0.10	0.05

Table S5. Summary of the inverted $AgBiS_2$ solar cells photovoltaic performances with different concentration of PCBM / BCP.

REFERENCE

S1. Shivarudraiah, S. B.; Ng, M.; Li, C.-H. A.; Halpert, J. E. All-Inorganic, Solution-Processed, Inverted CsPbI₃ Quantum Dot Solar Cells with a PCE of 13.1% Achieved via a Layer-by-Layer FAI Treatment. *ACS Appl. Energy Mater.* **2020**, *3*, 5620-5627.